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Dispersion in Laminar Flow Through 
Tubes by Simultaneous Diffusion 
and Convection 
The dispersion of a small quantity of a solute initially injected into a round tube in which 
steady-state laminar flow exists is critically examined. It is shown that the mean solute 
concentration profile is far from being symmetric at small dimensionless times after injec­
tion. The mean concentration and the axial location at the peak of the profile are present­
ed in detail as functions of time for flow with various Peclet numbers. It is suggested that 
such results may be useful for determining either the molecular diffusion coefficient or 
the mean flow velocity or both from experimental measurements. A previously established 
criterion in terms of the Peclet number for determining the minimum dimensionless time 
required for applying Taylor's theory of dispersion is graphically illustrated. Although 
the complete generalized dispersion equation of Gill's model is exact, the truncated two-
term form of it with time-dependent coefficients is exact only asymptotically at large val­
ues of time; however, at small Peclet numbers, the two-term approximation is shown 
graphically to be reasonably satisfactory over all values of time. The exact series solution 
is compared with the solution of Tseng and Besant through the use of Fourier transform. 

Introduction 
The problem of dispersion of a miscible material is a round straight 

tube in which fully developed laminar flow exists has been analytically 
studied by many authors. Taylor [1], who initiated the study of this 
problem, showed in an intuitive analysis that, for given prescribed 
initial conditions, the cross-sectional mean concentration of the solute 
after some time has elapsed spreads out longitudinally in a coordinate 
moving with the mean flow velocity according to Fick's second law 
of diffusion with a constant effective dispersion coefficient which, 
subsequently improved by Aris [2], is completely determined by the 
tube diameter, the flow velocity, and the molecular diffusion coeffi­
cient. Aris, and afterward Gill, et al. [3,4], from a different appraoch, 
has proved that Taylor's analysis with the correct effective dispersion 
coefficient is valid strictly asymptotically at large values of time. The 
latter authors, through examples with initial solute inputs in the form 
of a slug of finite axial extension, also specified the minimum values 
of time beyond which Taylor's analysis is considered to be useful. Such 
specifications cannot be regarded as adequately general and therefore 
the question on the time limit for applying Taylor's theory of dis­
persion still remains to be answered. 

In a previous paper [5], the criterion for the validity of Taylor's 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 
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ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
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analysis has been established on a more rigorous basis. It will be 
graphically demonstrated that Taylor's model of laminar dispersion 
is valid for all practical purposes when Dt/a2 £; 0.7, where D is the 
molecular diffusion coefficient, a the radius of the tube, and t is the 
length of time after introduction of the solute into the tube. The 
molecular diffusion coefficients in gases at moderate pressures and 
temperatures are of the order of 0.1 cm2/sec. If the dispersive flow 
takes place in a tube of 0.1 cm in radius with an average flow velocity 
of 10 cm/sec, the foregoing criterion yields a time t ~ 0.07 sec and the 
length of the tube required is in centimeters. Thus, for gaseous dis­
persion, Taylor's theory can be used with complete confidence from 
the experimental viewpoint. The ratio of the diffusion coefficients 
in liquids to those in gases at normal conditions is 10~4 or smaller. For 
dispersion of liquids with the same flow velocity in the same size of 
tube, Taylor's theory then applies at a time t ~ 700 sec and a tube in 
excess of 70 meters in length becomes necessary. The theory of lam­
inar dispersion in tubes does not account for the effect of gravity on 
the concentration distribution of the solute. Even though the excessive 
requirement of tube length can be managed in experiments, it is highly 
unlikely that analytical predictions can be made to meaningfully 
compare with experimental results observed beyond such a long time 
period unless gravity is properly included in the theoretical analysis. 
What is needed is a method of solution of the diffusion-convection 
equation that is valid at small values of time. Nevertheless, Taylor 
made experimental measurements successfully comparable with his 
analysis on the dispersion of potassium permanganate solution in 
water flowing in a tube with a radius as small as 0.025 cm. 

Lighthill [6] has given a solution specifically developed for short 
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durations of time after solute injection. The solution, obtained under 
the assumption that longitudinal molecular diffusion can be ignored, 
has a time limit no longer than that required by the solute in the flow 
field to reach the flow boundary by molecular diffusion in the radial 
direction. Indeed, the solution is only valid asymptotically at small 
times when the concentration distribution is exclusively governed by 
convective transport. 

The approach of Gill, et al. [7,8], and the present method are shown 
to be equivalent in reference [9] where the dispersion coefficients 
required in Gill's general equations governing the mean transverse 
mean concentration are evaluated systematically in an algebraic 
manner on the basis of the present analysis. DeGance and Johns [10] 
also rigorously justified Gill's theory and approached the same 
problem by expanding the local concentration in Hermite polynomials 
in the axial coordinate. By truncating the general equation beyond 
the second axial derivative, however, the resulting equation becomes 
quite limited in utility. Booras and Krantz [11], on the ground that 
for power-law non-Newtonian fluids the concentration distribution 
due to pure convection can be highly unsymmetrical, seriously 
questioned the general validity at small times of this truncated two-
term dispersion model. The present numerical calculation shows that 
for dispersion in liquids, Gill's two-term equation is applicable at large 
times; it is an excellent approximation at times much smaller than 
that required by Taylor's analysis, however, when the effect due to 
convective transport becomes comparable to that due to molecular 
diffusion. 

At small times, distribution of the mean concentration does not 
follow Fick's law of diffusion. This problem has been brought up by 
Aris [2] and studied by Chatwin [12] who, for the case of an initial 
concentrated input distributed uniformly over the tube cross section, 
presented a solution showing the asymmetrical nature of the mean 
concentration profiles at later times. The solution, however, is in­
correct in detail except at large times when the concentration profile 
becomes nearly symmetric about the point moving with the average 
flow velocity. For an initial input in the form of a uniform slug, Hunt 
[13] developed an approximate solution for the local solute concen­
tration by using the first-order perturbation method through as­
ymptotic boundary matching with the unperturbed pure-convection 
concentration profile. The solution was first thought to be a fair ap­
proximation at small times for flow with large Peclet numbers. It 
turned out, however, that the technique of asymptotic matching in­
troduced too large an effect due to molecular diffusion on the con­
centration distribution of the solute [5]. Hunt's solution, therefore, 
can not be regarded as quantitatively valid in general at small 
times. 

In a recent paper, the present author provided a general method 
of solution to the basic diffusion-convection equation without im­
posing any arbitrary assumptions [5]. Without the use of the ap­
proximation for the higher order coefficients of the Bessel functions 
in the series expansion for the local concentration, the present method 
of solution is equivalent to the eigenvalue and eigenvector approach 
used by Tseng and Besant [14,15]. A comparison of the two methods 
is given in the Appendix of this paper. The method is mathematically 
rigorous and computationally systematic. In reference [5], typical 
mean concentration profiles predicted by the various theories for the 
case of a concentrated initial input are compared, and the time limit 
of Taylor's analysis is established. This paper presents the detailed 
calculations showing the eventual approach to normal distribution 
of the solute concentration when the initial input is in a concentrate'd 
form. It is to be noted that for this form of input the theory of Taylor 
and of the two-term dispersion model of Gill, et al., invariably predict 
a concentration distribution symmetric about the point moving with 
the average flow velocity. 

Basic Equation and Solution 
The diffusion-convection equation for fully developed laminar flow 

satisfied by the local solute concentration C(z, r, t) which is considered 
to be symmetrical about the center line of the tube is 

dt \ a1) dz [dz2 r dr \dr; (1) 

Here D is the molecular diffusion coefficient, a the radius of the tube, 
U the flow velocity at the center line, and z, r, and t are the axial 
distance, radial distance, and time, respectively. For flow in tubes with 
no sorption at the walls, the boundary condition is 

dC 
— = 0 at r = a, (2) 
dr 

and for a concentrated solute input of mass unity uniformly distrib­
uted over the cross section of the tube, the initial condition may be 
written as 

C(z, r, 0) = Ste)/™2. 

where 5(z) is the Dirac delta function. 
Upon using the dimensionless variables 

1 
r = Dt/a2, £ = r/a, f = 

oPe 
(z - 0.5Ut), 

(3) 

(4) 

where Pe = aU/D is the diffusion Peclet number, and the dimen­
sionless concentration 

*(f, f, T) = •Ka^C 

we have the diffusion-convection equation in the form 

5 * _ J _ ^ ! * 1 a / d¥\ II 
dr " P e 2 df2 + £ d £ \ d£J \2 ' 

and the initial and boundary conditions 

*(ft€,0)-«(i) /Pe, 

e 

at £ = 1. 

(5) 

(6) 

(7) 

(8) 

The solution of equation (6) satisfying the boundary condition (8) 
is formulated as 

*(f.«,T)- E iMf, TM,(A,«M,(A,) , 
B=0 

0) 

where JQ(X) is the Bessel function of zeroth order and fin, arranged 
in increasing order of magnitude by starting with /3o = 0, are the 
non-negative zeros of the first-order Bessel function Ji(x). 

The expansion representing the local concentration given by 
equation (9) is complete. An exact determination of the local con­
centration, however, requires the complete solution of the functions 
^n (f, r) to all orders determined from an infinite set of interrelating 
differential equations which are obtained by substituting equation 
(9) into equation (6) and ultimately eliminating from the resulting 
equation the radial variable ij by integration through the use of the 
orthogonal relations of Bessel functions. Such a procedure, although 
exact in the sense of convergence in the mean, has proved to be rather 
ineffective [16]. 

The present author showed in a recent paper [5] that, for any given 
Pe and T, if the conditions 

and 

8N
2T »1, 

-exp(-ftv2T)<-

(10a) 

(106) 
\MPN)\ ' ' ' " " Pe 

of which the first is a necessary and the second a sufficient condition, 
are satisfied, then an approximate determination of the functions 
lAn(f> T) can be obtained from the linear equations 

*l>n_ R 2 . N-l Wm 

and 

Pe2 af2, 
n<N-l, (11) 
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I V d ^» > v 
Wn = - E Cum — , Tl > N, 

m=0 Of 

(12) 

where <5„m is the Kronecker delta, 

pi ft 2\MM^M^1 (13) 
Jo \2 J MMMPm) 

and 

(AD : E C„lClm/Pl2. (14) 

At very large values of dimensionless time such that the conditions, 
obtained by setting N = 1 in (10a) and (106), 

T » l/ft2, 

and 

— exp ( - / * * ) < - f t 4 p e Jo(j8i)| 

(15a) 

(156) 

are satisfied, equation (11) for the determination of the function l/'otf, 
T), which is the mean concentration over the cross section of the tube, 
becomes 

dr ' Pe2 :+ftoo(1) 

of2 ' 

Noting that 

and thus 

co; = CJO
 : 

ft2' 
l>l, 

feoo(1) = E coicio = 16 E ft-6, 

(16) 

(17) 

(18) 

it is seen that the change of the mean concentration obeys Fick's law 
in a coordinate moving at a speed equal to the mean velocity of flow 
with an effective constant dispersion coefficient 

=4+16 Eft"6 

r&z z=i 

and the mean concentration becomes normal in distribution if the 
initial concentration is symmetric about the origin. Equation (16) is 
identical to that obtained by Taylor in his original analysis [1]. Al­
though condition (156) may be overly restrictive at very small values 
of dimensionless time (see Pig. 6), it represents the sufficient condition 
under which Taylor's equation may be used with complete confi­
dence. 

For a delta function initial concentration input given by equation 
(7), the initial conditions for the functions i/' 

<Mf,0) = 5(f)/Pe, 

lMf ,0) = 0, n>l. (19) 

The solutions of equations (11) can be determined by employing the 
methods of Fourier and Laplace transforms. These can be written 
as 

(—l)n N-i s*°> /g \ 
'Mf, T) = E I — exp [ajT + i(bjT + ojf)]dco, 

- ;=o »/-» \A'U 27rPe 

n = 0, 1, ,N-1, (20) 

where i = V—l, aj + ibj are the N distinct zeros, i.e., p = ay + ibj 
which are functions of the real variable a), of the N X N determi­
nant 

m, n = 0,1 N - 1, (21) 

A' = dA/dp, (22) 

Bn is the complementary minor of the (n + l)th element in the first 

T 

/ \ = 

Present 
Gilletol. -
Lighthill 
Taylor 
Chat win 
Hunt 

u^ -
0 

2 tA 
0 4 

•»•• 10 — 

Fig. 1 Typical comparison of transverse mean concentration profiles pre­
dicted by different methods for flow with large Peclet numbers, Pe = 10,000, 
at r = 0.02, 0.2, and 0.8 

row (jn = 0) of determinant A, that is, the determinant formed from 
A by striking out the first row and (n + l)th column, and (BJA')j is 
the ratio of Bn and A' when both are evaluated at p = ay + £6y. 

Discussion of Results 
The zeros of determinant A defined by equation (21) can readily 
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Fig. 2 Comparison of time-concentration curves predicted by different so­
lutions at zla Pe = 0.02 for flow with Pe = 10,000 

"I 1 I I M II 

OtAl2 

Fig. 3. Curves showing the peak location of the transverse mean concen­
tration and the ratio R defined by equation (23 ) as functions of the dimen-
slonless time, Pe = 10,000 

be computed by using standard computer subroutines [5] and the 
evaluation of the improper integrals given by equation (20) for the 
determination of the functions ^„(f, T) can be accurately performed 
through the method of fast Fourier transform [17]. Under the re­
quirement given by condition (10a), the effective orders of approxi­
mation used in the calculations are made at least equal to the order 
JV required to satisfy condition (106) which under all cases gives a 
value of N sufficiently good for practical purposes. 

For the purpose of investigating the approach to normal distribu­
tion, the function ^0(f, f), which is the mean concentration obtained 
by averaging the local concentration over the cross-sectional area of 
the tube, is calculated in detail. Figs. 1, with Pe = 10,000, show typical 
comparisons of the mean concentration profiles predicted by the 
various methods at different dimensionless times for flow with large 
Peclet numbers. Another comparison of these solutions is illustrated 
in Fig. 2 which shows the mean concentration of the solute when re­
corded in the course of time at a fixed axial location zla Pe = 0.02. 
Lighthill's solution, specifically developed for small times, is seen here 
near the front of the profile indeed the result which would arise if 
longitudinal molecular diffusion were ignored. The solution of Hunt, 
on the other hand, shows too excessive a dispersion of the solute by 
molecular diffusion. It has been shown by detailed numerical com­
parisons [5] that the solutions by Taylor, Chatwin, and the solution 
of Gill's truncated two-term equation are in general asymptotically 
valid at large values of time. For flow with small Peclet numbers (Pe 
~ 15, see Fig. 7), however, the results obtained by Gill's solution are 
reasonably satisfactory over the entire time domain. The present 
result reveals that the concentration distribution at small times is 
indeed far from being symmetric and a peak of the concentration 
profile always shows up at an axial location somewhat downstream 
of, and only asymptotically approaches the section moving with the 
mean flow velocity. This result confirms Chatwin's observation [12] 
that, because of radial diffusion and interaction of the solute with the 
wall, the concentration distribution at small times should invariably 
be asymmetric while satisfying the requirement, for the case of an 
initial solute input uniform over the cross section of the tube, that the 
first moment of the meah concentration distribution is zero about the 
origin in the moving axial coordinate [2]. For the purpose of checking 
the correctness of the present method of solution, and thus the ac­
curacy of the calculated results, the first moment of the computed 
concentration distribution has been evaluated by using the IMSL 
subroutines DCSQDU and ICSICU which are based on the method 
of cubic spline approximation [18,19]; the result is essentially zero 
and therefore is not presented here. The ratio of the amount of solute 
in the region downstream to that in the region upstream of the mean 
flow position 

R=S-Jodt/S~^dS (23) 

is plotted in Fig. 3 as a function of time for flow with Pe = 10,000. 
Initially if = 1 for the concentrated input considered in this paper. 
The variation of R as illustrated, hitting a peak value of almost 1.2, 
clearly shows the importance of the detailed interplay between mo­
lecular diffusion and convective transport at small values of time. 
Since the first moment of the mean concentration distribution is zero, 
the mean concentration profile, therefore, eventually becomes sym­
metric about the plane moving with the mean flow velocity. Also 
plotted in Fig. 3, for flow with the same Peclet number, is the distance 
from the mean flow position, in unit of the tube radius a, of the peak 
location of the concentration profile as a function of time. It is clearly 
seen that the peak first moves rapidly downstream, reaches a maxi­
mum distance in the course of time, and then very slowly moves 
toward the origin, as is expected due to the eventual approach to 
symmetry of the concentration profile, in the moving reference frame. 
Since the present analysis is exact, the consistency as shown in Fig. 
3 between the variation of R and the change of the peak location shows 
that the present calculational procedure is correct and accurate. 

Collectively, for flow with Peclet numbers in the range of 5 < Pe 
< 10,000, the distance between the point of solute injection and the 
peak location of the mean concentration profile, measured in unit of 
0.51/t, is plotted in Fig. 4 as a function of the dimensionless time. It 
is clearly seen from this graph that for flow with low Peclet numbers 
(Pe ~ 10), the peak location may be identified with the section moving 
with the average flow velocity with little error. For flow with high 
Peclet numbers, however, these two locations become significantly 
different, especially at a dimensionless time smaller than that given 
by equation (156). 

In experiments for flow with known tube radius a, if the peak lo­
cation 2 at a time t is accurately detected, then the result shown in 
Fig. 4 suggests a method for determining the molecular diffusion 
coefficient with known flow velocity, and vice versa, without quan­
titatively measuring the concentration of the solute at the peak lo­
cation. For example, if U is known and from the experimental mea­
surement 2z/Ut = 1.5, then P e r = O.lba/z and a trial-and-error 
method along the line IzlUt = 1.5 in Fig. 4 will enable Pe and T to be 
determined separately. The desired molecular diffusion coefficient 
can then be calculated from either the value of T or the value of Pe so 
obtained. To determine the flow velocity with known molecular dif­
fusion coefficient, a similar procedure may be applied along a constant 
Dt/a2 line with a value given by the measured time. The method be­
comes particularly simple for the time range in which the ratio 2z/Ut 
is practically independent of the Peclet number but a function of r 
only. In this case the curve labeled with Pe > 10,000 applies and thus 
no trial-and-error is required for determining the pertinent physical 
quantity. This case apparently is important for dispersion in liquids 
where the Peclet number is usually quite large. 
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T =Dt/a' 

Fig. 4 Locations of maximum mean concentration as functions of the di­
mensionless time for flow with various Peclet numbers 

The product Pe r\po at the peak of the mean concentration profile 
is plotted in Fig. 5 as a function of the dimensionless time T for various 
values of the Peclet numbers. Also plotted in Fig. 5 for Pe = 5,10,15, 
and Pe > 10,000, are the peak values of Pe r\po predicted by Taylor's 
theory at locations moving with the mean flow velocity. It is clearly 
seen from this comparison that, unless the value of the Peclet number 
is very small, Taylor's theory is strictly valid asymptotically at large 
values of the dimensionless time. 

The practical usefulness of the results given in Fig. 5 is similar to 
that in Fig. 4 if the peak mean concentration i/'o is measured at a 
known value of time T. When both \p0 and z/a at the peak are experi­
mentally determined at a recorded time, then, by applying a trial 
procedure, Figs. 4 and 5 jointly can be used for the calculation of both 
the flow velocity and the molecular diffusion coefficient D. The results 
given by the curves for Pe > 10,000 should be useful for dispersion 
in liquids with large Peclet numbers. 

In order to see how effective condition (156) is in specifying the limit 
of the dimensionless time above which Taylor's theory becomes valid, 
Fig. 6 compares the dimensionless time determined from condition 
(156) (treated as an equation) and that required for Taylor's theory 
to yield the specified percentages of the presently calculated mean 
concentration at the peak locations of the presently determined mean 
concentration profiles. For flow with very low Peclet numbers, it is 
seen here that the time limit is somewhat overestimated. The reason 
for this is that, when convective transort becomes comparable with 
molecular diffusion in the process of modifying the solute concen­
tration, the axial concentration gradient persists to remain signifi­
cantly large for a relatively long period of time after solute injection 
and the assumption used in the original derivation of inequality (156) 
that the axial concentration gradient be small [5] becomes overly 
stringent under this condition. The overall comparison shows, how­
ever, condition (156), when viewed as an inequality, is a reasonably 
effective criterion. 

Taylor's theory ignores the effect on the concentration distribution 

Journal of Applied Mechanics 

Fig. 5 Dimensionless peak mean concentration as function of dimensionless 
time for flow with various Peclet numbers; , peak mean concentration 
given by Taylor's solution at locations moving with mean flow velocity 

Fig. 6 Graphical illustration showing the effectiveness of inequality (15b) 
as a sufficient condition for the validity of Taylor's theory; the specified per­
centage Is equal to the ratio of the mean concentration given by Taylor's so­
lution and that given by the present method, both evaluated at the peak lo­
cations of the presently calculated concentration profiles 

due to molecular diffusion in the longitudinal direction. It assumes 
that, in a coordinate moving with the mean flow velocity, change in 
concentration due to convective transport (axial gradient assumed 
to be radially independent) in the bulk of the tube is everywhere in­
stantaneously balanced by molecular diffusion in the radial direction 
(see equation (19) in reference [1]). The assumption imposes too rapid 
a radial diffusion, and as a result, the overall dispersion of the solute 
in the tube is overestimated. Fig. 6 shows, however, Taylor's as­
sumption is realistically valid at a dimensionless time r > 0.7 over the 
entire range of Peclet numbers. 

As mentioned previously the general equation of Gill, et al. [3,7], 
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Fig. 7 Comparison of results given by the two-term approximation of Gill, 
et al., and that given by the present method for flow with specified Peclet 
numbers. The dashed line gives the ratio of the peak mean concentration given 
by Gill's method to that of the presently determined concentration profiles; 
the solid line gives the ratio of the mean concentrations when both are eval­
uated at the peak location of the presently determined concentration pro­
file. 

is exact, but the truncated two-term approximation to the general 
equation is much easier to use. Therefore, it is also of interest to 
compare the present results with the solution of the two-term dis­
persion equation of Gill for the case with a concentrated initial input. 
Such a comparison is made in the form of Fig. 7 where it is plotted, 
for Pe = 15, 50, 100, and 1000, (a) the ratio of the peak mean con­
centration obtained by Gill's method to that of the presently calcu­
lated concentration profiles, and (6) the ratio of the mean concen­
trations obtained by Gill's and the present method when both are 
evaluated at the presently determined peak locations. From this 
comparison, though limited in the range of graphical display, it is seen 
that the degree of genuineness predicted by Gill's two-term model of 
dispersion at small dimensionless times depends sharply on the value 
of the diffusive Peclet numbers. For flow with large Peclet numbers 
(e.g., Pe = 1000) Gill's two-term model yields reasonable values for 
the peak mean concentration even though the location of the peaks 
is incorrectly locked up at the moving origin at all times. For flow with 
small Peclet numbers (e.g., Pe = 15), Fig. 7 shows that both concen­
tration ratios are reasonably close to unity throughout the entire range 
of time. The discrepancy for flow with large Peclet numbers appar­
ently comes from neglecting the higher-order terms in Gill's gener­
alized dispersion equation for the change in the transverse mean 
concentration. 

C o n c l u s i o n 
The problem of laminar dispersion in round tubes, subject to axially 

symmetric and square-integrable initial conditions, has been solved 
analytically. The series expansion for the local concentration con­
verges in the mean and, therefore, by increasing the number of terms 
in the series, the computed result can be made as accurate as is de­
sired. The number of terms required for a close representation of the 
true concentration is effectively specified by inequalities (10a) and 
(106). A FORTRAN computer program has been completed which, 
subject to either a concentrated or a slug initial solute input, can be 
used to determine the concentration distribution in either Newtonian 
or non-Newtonian fluids. The program can easily be extended to 
handle nonuniform initial conditions. 
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APPENDIX 

C o m p a r i s o n W i t h M e t h o d by T s e n g and B e s a n t [ 1 4 , 1 5 ] 
The technique used by Tseng and Besant for solving equation (6) 

by starting with the particular solution (equation (4) in reference [14]) 
and then going through the evaluation of the eigenvalues and eigen­
vectors of the characteristic equation has essentially the same basis 
as the present method without using the approximation specified by 
equation (12). 

The functions \pn(£, T) defined in the series expansion for the local 
concentration given by equation (9) satisfy the equations [5] 

o r Pe* a j * P" *" m=o "m d f ' 

n = 0 ,1 , 2, (24) 

Let <t>n be the Fourier transform of \pn, namely, 

</>„(", T) = -±= C tne-i«<dl (25) 
V2ir • / - « 

Then the Fourier transform of equation (24) is 
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dit>n 

dr ' P e 2 ' 
QnHn ~ 10) L Cnm<)>m, (26) 

m-0 

which is a set of linear equations with constant coefficients para-
metrically dependent on the variable 01, and therefore has a solution 
of the form 

•Pn = exp - ( £ + A.»+x), (27) 

Substituting equation (27) into equation (26) yields the system of 
algebraic equations 

£ (»'&>c„ 
m=0 

*&nm)<t>m = 0, n = 0, 1, 2, . (28) 

The eigenvalue Xo, Xi, X2, can therefore be determined from the 
characteristic equation 

X«„ '0 , (29) 

and the solution to equation (26) associated with eigenvalue X m can 
be written as 

. = exp 
Pe2 + (3„2 + Xm T (30) 

By linearly combining all the 0nm's, the general solution to equation 
(24) can be obtained by applying the inverse Fourier transform, 
namely, 

iMf. T.) • 
A / 2 ^ 

E ( fn, 

exp 
Pe2 + j8„ 2 +X m T + iwf du. (31) 

For any prescribed initial distribution \^„(f, 0), the axial deriva­
tives 

dk 

^ ( * ) ( f ,0 )=—r^„( f ,0 ) , fc-0,1,2,. 
of 

(32) 

can be evaluated to all orders. Use of equation (32) in equation (31) 
gives 

Xfrn<*>(£ 0) = ~ Z f " (,«')*/»»«'"'«»'. 
V27T m=0 « / - » 

(33) 

Multiply equation (33) by exp (-io>f)A/27r and integrate over f to 
get 

= = f" *„<*>«•, 0 ) e - ' » » a r - ( t o ) * E U 
2lT J—™ mmQ V&r 

(34) 

which can be used to determine fnm as functions of to. Such a proce­
dure for the determination of fnm, however, can be completely by­
passed if Laplace transform is applied to equation (26). 

Substitution of equation (31) into equation (9) gives the local 
concentration in the form 

•(r,€,r)-^=£: £<-i>»f*$ 
V27Tn=0m-0 «o(Pn) 

J ^ fnm exp - F ^ + j8„2 + X J r + io>f dco, (35) 

which is formally the same as equation (7) in reference [14] or equation 
(21) in reference [15]; the only difference is that Tseng and Besant 
chose to express the functions fnm in terms of the eigenvectors of 
equation (28). The aforementioned formulation is made in an axial 
coordinate moving with the mean flow velocity and therefore the 
content of the present characteristic equation (29) is not identical to 
that given by Tseng and Besant. Had the comparison been made in 
the fixed coordinate and the term /3„2 been included as part of the 
eigenvalue X, then the two characteristic equations would have agreed 
in all algebraic detail. 

Tseng and Besant presented their calculated transverse mean 
concentration distributions at dimensionless times T < 2.5 X 10 - 7 with 
a Peclet number Pe = 10 000 for a concentrated initial input (Fig. 10 
in reference [15]). At such small times the departure of the actual 
concentration distribution from that due to pure convection should 
be small. The transverse average thus should be roughly constant 
within the range | f | / r < 0.5 and zero elsewhere [1]. Instead, Fig. 10 
in reference [15] showed that the mean concentration peaks at f = 0 
and decreases steadily as the distance from the mean position (f = 
0) increases. The method of solution used by these authors, as has 
been shown previously, is equivalent to that used in the present paper. 
Figs. 1 at T = 0.02 shows that the front portion of the profile should 
be flat, especially if the time is smaller. Such discrepancy in the cal­
culated results, perhaps, serves to indicate that their computational 
accuracy for the evaluation of the eigenvalues and eigenvectors should 
be reexamined. 
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Droplet Dynamics in Creeping Flows 
The accelerated motion of a liquid droplet is investigated analytically. The equation of 
motion is developed through an analysis of the internal and external fluid motions. Re­
sponse to step changes in applied force and external fluid velocity are determined. Oscil­
lating forces and velocities are treated and frequency response characteristics found. In 
the appropriate limits, the results reduce to the known behavior of bubbles or rigid parti­
cles. 

I n t r o d u c t i o n 
The relative motion between a droplet and the surrounding fluid 

is of interest for a variety of reasons. Heat and mass transfer, fuel 
burning rates, coagulation, and dissipation are enhanced by the dis­
parate motions produced by fluid acceleration. We seek here to de­
scribe this motion when a spherical droplet moves at low Reynolds 
number through the fluid about it. In contrast with the steadily 
moving droplet, sufficiently large surface tension is required to 
maintain the spherical form of an accelerating droplet. 

By analyzing the coupled motions within and about the droplet, 
a unified theory is produced which reduces to descriptions of bubble 
or rigid particle motions in the appropriate limits. We are concerned 
here with describing the effect of the viscous internal response on 
motion in stationary or accelerating fluids, in response to steady or 
fluctuating forces. 

Much earlier work has examined the responses of either rigid or 
inviscid spheres in creeping fluids. While the motions of bubbles and 
solid spheres differ significantly, little attention has been devoted to 
a rigorous analysis of the accelerating fluid sphere whose viscosity lies 
between these extremes. Sy and Lightfoot [1] examined the response 
of a spherical liquid drop to a step application of a constant force. As 
discussed later, their model differs from that presented here. Droplet 
response to accelerating flow is of particular interest; no previous 
investigations have accounted for the effects of internal circula­
tion. 

T h e T r a n s i e n t V e l o c i t y D i s t r i b u t i o n 
We consider the rectilinear transient motion of a spherical droplet 

immersed in a second fluid. The fluids are incompressible and New-
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tonian with constant, but different, viscosities. The equation of motion 
of the droplet is developed by analyzing the coupled fluid motion 
within and about the droplet. At the small Reynolds numbers treated 
here, the convective acceleration is neglected in both fluids but local 
acceleration is retained. 

This axisymmetric motion is governed by 

l ! | £ ! - - - | i = 0 
I ve dtl 

in the external fluid and 

£ 2 | £ 2 - - -W;=0 
vi dtj 

(1) 

(2) 

in the droplet. \p is the Stokes stream function, t is the time, and v is 
the kinematic viscosity. The subscripts denote the fluid. E2 is the 
Stokes stream function operator. 

In spherical (r, 8, A) coordinates, this operator is 

£ 2 = _^+sine_a 
dr2 r2 dB 

l_b_ 

sin 8 dB 
(3) 

r is the distance from the droplet center and B, the polar angle. The 
local velocity components in these coordinates are 

- 1 d f 

r2 sin 6 dB 

1 
vo> 

df 
r sin 8 dr 

(4) 

At this point, our analysis already differs from the earlier work of 
Sy and Lightfoot [1]. In their treatment of transient creeping flow 
about fluid spheres, the same equation is used for both fluids, no 
distinction being made between kinematic viscosities. They distin­
guish between viscosities only later in the application of a boundary 
condition. Consequently, our relations reduce to theirs only in a few 
limits. 

We will first examine the flow when the frame of the fluid far from 
the droplet is an inertial frame. In this frame, the stream function 
approaches a constant as the fluid velocity far from the droplet van­
ishes. 

\[/e -* 0 as r ~* •» (5) 

The boundary conditions at the droplet surface are also expressed 
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as seen by an observer in this frame. The droplet moves with a relative 
velocity u. Neither fluid crosses the moving spherical droplet surface. 
In each case, the relative normal velocity vanishes there, yielding 

u a2 sin2 6 
Ve H = 0 at r = a 

and 

ii + - • 0 at r = a 

(6) 

(7) 

The droplet surface, r equal to a, is not a stream surface in this 
frame. 

The tangential velocities of the two fluids are equal at the interface. 
In terms of the stream function 

dr dr 
at /• = a (8) 

The tangential stresses generated by fluid motion balance at the in­
terface, 

OOr, OOri at r = a. (9) 

The final condition is the boundedness of interior fluid velocities at 
the origin. 

The motions, within and about the droplet, are coupled and must 
be found together. In certain physical limits, the motions uncouple. 
As the interior viscosity increases without bound, the interior becomes 
rigid. As the interior viscosity vanishes (the bubble limit), the inter-
facial tangential stress vanishes. In this case, the exterior motion may 
again be found without reference to the interior flow [2]. 

The transient coupled motions are perhaps most readily found 
through use of a Laplace transform with respect to time. Denoting 
a transformed quantity with a bar, we have 

i/-(s) C f(t) 
Jo 

exp (st) dt. (10) 

Solutions of equations (1) and (2) are found by using an angular 
dependence indicated by equations (6) and (7) and factoring the re­
sulting fourth-order ordinary differential equation in r into two sec­
ond-order differential equations. The resulting equations are 

ld^ 

[dr2 

and 

r$K-° (ID 

d ! . _ _ 2 - _ s \ -
dr2 r2 vj 

The general solution then is a sum of 

0. 

i/<i = [A r2 + B r"1] sin2 0 

(12) 

(13) 

and 

+ - | exp \—r (14) 

The constants in both fluids result from the boundary and boun­
dedness conditions. For the exterior fluid, equation (5) yields, 

Ae = Ce = 0 

while boundedness at the origin requires 

and 

Bi=0 

Ci = Dt. 

(15) 

(16) 

(17) 

7 = He/K (18) 

and other dimensionless quantities, y goes to 0 in the rigid limit and 
°° in the bubble limit. 

2 - 3 7 - ya \j — J (3 - 3a \j — + a2 -

a2i(i-aV3exp(aVi)-[(2-37-7a\/;) 
X 3 + 3 a • W - + a 2 - + a 2 - 1 + a\/—\ 

\ V vt nil vi \ V Vil. 

and 

2 = 1 - 7 1 + 

X exp - (19) 

•a\/—\ \—o + 3a\l o z— exp a * / — 
V Vel [\ V n Vil \ V Vi. 

+(3+3aVra23exphv^ 
In the fluid about the droplet, 

Be - — u a 3 H( i + a V;) /H)] 
and 

D^lUa3Xexp(a^J})/[a2v) 
while the coefficients 

Ai = - - u 
2 

l + 37Jl + aV/I)((l-a1/I)exp(aV^) 

- ( 1 + a V / ! ) e x p hv / ! ) ) / A 

A (20) 

(21) 

(22) 

and 

Ct = Di • -u a 3 7 l + o i / — 
2 '{ V v, 

(23) 

(24) 

describe motion within the droplet. 
When 7 increases without bound, the exterior stream function in 

the gas bubble limit [2] is recovered. The velocity distribution about 
a rigid sphere is produced when 7 vanishes. 

As the droplet velocity approaches a steady value, the stream 
function approaches the value given by the final limit theorem, the 
Hadamard [3]-Rybczynski [4] stream function. 

Motion in a Stationary Fluid 
The accelerating droplet experiences an unsteady force exerted by 

the surrounding fluid. This force on a spherical body in the axisym-
metric creeping flow is [5], independent of the interfacial boundary 
conditions, 

7 J* *• / dupe 1 — \ . 
[a + 2»pe 2 sin 6 dd 

0 \ dr '/ 
(25) 

pe is the density of the exterior fluid. In terms of the coefficients of 
the exterior stream function, this force becomes 

f = --irpes -Be + 2De 1 + a y — exp ( -0 \ / — (26) 

This force, together with any externally applied force F on the droplet, 
produce acceleration of the droplet 

f + F = mi su (27) 

The remaining coefficients are more compactly expressed by first 
defining the viscosity ratio 

The droplet mass is m;. Correspondingly, we have me as the displaced 
mass. Combining equations (27) and (26), the externally applied force 
is related to the droplet velocity by 
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Fig. 2 Oscillating applied force on a neutrally buoyant droplet 

Fig. 1 Step change in the applied force on a neutrally buoyant droplet 

m,- H 1 su + 6wne au \ 1 + a -12 
Ve, 

(28) 

Only the factor, 2 , defined by equation (20), distinguishes this relation 
from its rigid sphere counterpart. 

When the internal viscosity increases without bound, we invert to 
find the force on an accelerating rigid sphere 

_ ( me\ du 9me 
F = m,- H h 6irue au H 

\ 2} dt la IT Jo 

! du/dr 
dr (29) 

\ft~ T 
The relation is well known [6, 7]. The integral expression, usually 
designated the Basset term, originated with Boussinesq [8]. 

When the internal viscosity and mass vanish, we recover the Mor­
rison and Stewart [2] expression for accelerating creeping response 
of a bubble. 

F + - I ' dF/dr 

3\/wVe J o y/t — T 

3me jv~e r* du/dr 

a 

me du 
1- 4iru.eau 

2 dt 

•w Jo VT^ 
dr + mea r 

V i f p Jo 

td2u/dr2 

VT-
dr (30) 

The general expression (28) obtained here would have no simple in­
terpretation if inverted. Instead, we examine the response to a set of 
basic inputs. For this purpose, the following dimensionless parameters 
are introduced. 

Using a relaxation time 

(m; + me/2) 

6ir/j,,,a 

we define a dimensionless time 

T--

and 

t/a 

The density ratio is described by 

P-
9m. 

2m,- + m. 

1/2 

(31) 

(32) 

(33) 

(34) 

which takes on the values 0, y/W, and 3 when the droplet mass is, re­
spectively, much greater than, equal to, and much less than the dis­
placed mass. 

Expressing equation (28) in dimensionless form, we first can invert 
numerically [9] to find the response to a step change F in the applied 
force. Some results for a neutrally buoyant droplet are shown in Fig. 
1 and illustrate the effect of droplet viscosity on the response. The 
velocity is expressed as a fraction of the final steady velocity uo- The 
final velocity is 

- © • - i 

Fig. 3 Oscillating applied force on a neutrally buoyant droplet 

(l + y)F/6iriiM\ + 2y/3). 

The initial droplet response is revealed by expanding the transformed 
velocity in negative powers of the Laplace parameter, then inverting. 
The result is 

u/uo : 1 + 27/3 W 7 ( 9 - P)/2 . fill + (35) 
1 + 7 I 3Vir (7/3 + V 7 O - /32)/2) 

in dimensionless form. The initial acceleration is simply the ratio of 
the applied force to the apparent mass. 

The approach to steady state is shown using the Bromwich [10] 
expansion in positive powers of \fS. For long times, 

, (1 + 27/3) 
u/u0 = 1 - 1 : + . (36) 

( 1 + 7 ) VTTT 

In dimensional form, the dominant term in the approach to steady 
state had no viscosity ratio dependence. 

The sinusoidal steady-state response to an oscillating force is 
readily obtained using the Fourier transform 

- / : u exp (—id)t) dt (37) 

where i denotes y/^-T and OJ is the frequency. The Fourier transformed 
relation is simply equation (28) with ia in place of s. Results are 
conveniently presented as a function of the dimensionless fre­
quency 

Q = a2w/9ve (38) 

Figs. 2 and 3 show the steady-state response to an oscillating force. 
The magnitude of the response monotonically decreases as the fre-
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Fig. 6. Oscillating fluid about a lighter droplet 

quency increases. The droplet lags behind the force, the phase angle 
approaching negative 900 for large frequency. This same behavior is 
seen at all mass ratios and viscosity ratios. 

Motion in an Accelerating Fluid 
The response to an accelerating external fluid is very different in 

character. This response can be found by a straightforward procedure. 
Let v be the external fluid velocity far from the droplet. Then U in the 
coefficients of equation (26) is replaced by the relative velocity u -

Journal of Applied Mechanics 
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Fig. 8 Oscillating fluid about a heavier droplet 

Fig. 9 Oscillating fluid about a heavier droplet 

v. The externally applied force F is, in this case, the force me sv re­
sulting from the pressure gradient in the surrounding fluid. With these 
changes, we have in place of equation (28), 

meSU = misu + mes(u - v)/2 + 67rJ.tea(u - v) (1 + avS!Ve)~ 
(39) 

A different format is used to display response to an accelerating fluid. 
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Discussion 
Droplet viscosity and density through their influence on fluid 

motion about the droplets, significantly influence accelerated droplet 
motion. The response to a variety of inputs has been examined and 
the effects of viscosity and density discussed. The general character 
of the response for any mass or viscosity ratio can be elicited from the 
curves presented. 

References 
1 Sy, F., and Lightfoot, E. N., "Transient Creeping Flow Around Fluid 

Spheres," AIChE Journal, Vol. 17,1971, pp. 177-181. 
2 Morrison, F. A., Jr., and Stewart, M. B., "Small Bubble Motion in an 

Accelerating Liquid," ASME JOURNAL OF APPLIED MECHANICS, Vol. 43,1976, 
pp. 399-403. 

3 Hadamard, J., "Mouvement Permanent Lent d'une Sphere Liquide et 
Visqueuse dans un Liquide Visqueux," Comptes Rendus, Vol. 152,1911, pp. 
1735-1738. 

4 Rybczynski, W., "Uber die Fortschreitende Bewegung einer Fliissigen 
Kugel in einem zahen Medium," Bulletin Internationale de L'Academie des 
Sciences de Cracovie, 1911, pp. 40-46. 

5 Morrison, F. A., Jr., "The Force on an Accelerating Body in Axisym-
metric Creeping Flow," Journal of Applied Mathematics and Physics (ZAMP), 
Vol. 23,1972, pp. 333-336. 

6 Basset, A. B., A Treatise on Hydrodynamics, Vol. II, Dover, New York, 
1961 (original Deighton, Bell Edition, 1888). 

7 Fuchs, N. A., The Mechanics of Aerosols, Pergamon Press, New York, 
1964. 

8 Boussinesq, J. V., Theorie Analytique de la Chaleur, Vol. II, Gau-
thier-Villars, Paris, 1903. 

9 Bellman, R., Kalaba, R. E. and Lockett, J., Numerical Inversion of the 
Laplace Transform, Elsevier, Amsterdam, 1966. 

10 Bromwich, T. J.I'a., "Symbolical Methods in the Theory of Conduction 
of Heat," Proceedings of the Cambridge Philosophical Society, Vol. 20,1921, 
pp. 411-427. 

IMPORTANT NOTICE 

Mandatory Excess Page Charges for Transactions 

Effective July 1,1981, all Transactions papers that exceed the standard (six pages) length, will be 
assessed a mandatory page charge of $125 per page for those pages exceeding the six page limit. 

Whereas the response to a specified force is qualitatively similar for 
all mass ratios, the response to an accelerating fluid differs signifi­
cantly. The neutrally buoyant droplet moves exactly with an accel­
erating surrounding fluid. Lighter and heavier droplets move relative 
to the fluid. 

Fig. 4 shows the response of a light droplet to a step change in fluid 
velocity. The droplet immediately assumes a velocity equal to /32/3 
of the fluid velocity, then uniformly decelerates to the velocity of the 
surrounding fluid. The heavier droplet, whose response appears in 
Pig. 5, also has a step change to /32/3 of the external fluid velocity. In 
this instance, that change is less than the change of the surrounding 
fluid so the droplet continues to accelerate. In both cases, increased 
droplet viscosity produces a more rapid response. 

Figs. 6 and 7 show the steady-state motion of a light droplet in an 
oscillating fluid. Lighter droplets (0 > V3) have velocity magnitudes 
greater than the surrounding fluid and phase angles leading that fluid. 
For low frequencies, the velocity ratio is one and the phase angle zero. 
The phase angle reaches a peak at an intermediate frequency whose 
value depends on the viscosity ratio. At high frequencies, the phase 
angle again approaches zero and the magnitude ratio approaches 
/32/3. 

Heavier droplets differ by lagging the surrounding fluid and by 
having magnitude ratios less than unity decreasing to /32/3 with in­
creasing frequency. See Figs. 8 and 9. 

In both cases, the velocity difference and the peak phase angle 
change increase as droplet viscosity decreases. The location of the 
peak phase angle varies only slightly with viscosity ratio, occurring 
at higher frequencies for more viscous droplets. 
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The Study of Sluice Gate and 
Sharp-Crested Weir Through 
Hodograph Transformations1 

The problems of sluice gate and sharp crested weir were studied through hodograph trans­
formations. Numerical calculations of the stream function in terms of hodograph vari­
ables were carried out after the hodographs were transformed into rectangles. Results 
were compared with the available experimental data and other results of calculations. 
Favorable agreement in all cases substantiated the fact that the method of hodograph 
transformation is effective in dealing with these problems strongly influenced by gravita­
tion. 

Introduction 
Hydrodynamic free surface flow problems under the influence of 

the gravitational field have not been thoroughly examined. Due to 
their more difficult and complicated nature, solutions for problems 
of sluice gates and sharp-crested weirs have not been well established. 
The basic difficulty in solving these problems lies in the fact that the 
unknown free surface is no longer a boundary of constant speed as a 
result of gravitation. Thus the determination of the free surface as 
a part of the solution of these problems always involves a nonlinear 
coupling relationship along the boundary through the Bernoulli's 
principle. 

Approximate methods were developed earlier by Marchi [2], Mel-
konian [3], Gurevich [4], and Benjamin [5] for the problem of sluice 
gate by neglecting the existence of the upstream free surface. These 
methods usually consisted of successive applications of conformal 
transformation, after adopting an approximate analytic expression 
for the velocity variation along the free surface in the hodograph 
plane. Other analytical work on the problems of jet streams under the 
influence of gravitation was carried out by Keller and Weitz [6], Clarke 
[7], and later Keller and Geer [8]. Upon selecting the thin jet thickness 
as a small parameter which is inversely proportional to the Froude 
number of the approaching flow, solutions based on asymtotic ex­
pansions were obtained by Clarke for the problem of free overfall 
which are, respectively, valid for upstream and downstream flow re-

1 This work is based on a PhD thesis by the first author [1]. 
2 Present Address, Research Associate, Department of Mechanical Engi­

neering, University of California, Berkeley, Calif. 94720. 
Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 

OF MECHANICAL ENGINEERS, and presented at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
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Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, April, 
1980; final revision, November, 1980. Paper No. 81-APM-23. 

gions. The primary restriction of these methods is that the asymptotic 
' expansion is accurate only for small gravitational effects. 

The sharp-crested weir is commonly employed as a device for flow 
measurement, and is also of fundamental importance as its free sur­
face profile provides the basis for the design of spillways. An early 
results for the sharp-crested weir with infinite weir height was ob­
tained by McNown, Hsu, and Yih [9] through relaxational calcula­
tions. Recently, a finite-element method and its generalization were 
applied to the flow over a spillway by Ikegawa and Washizu [10] and 
to flow problems with a free surface under gravity by Varoglu and 
Finn [11]. 

The method of hodograph transformation has not been extensively 
explored for engineering purposes, since the final physical configu­
ration corresponding to an indirect solution is often not of practical 
interest. However, it was recently found that this type of problem 
dominated by the influence of gravitation can be effectively dealt with 
through hodograph transformations. The problem of an imcom-
pressible fluid discharging from a horizontal channel [12] and the 
problem of a free overfall [13] have been worked out satisfactorily. 
It was recognized that even with the strong influence of the gravita­
tional field, the stream function can be determined in the transformed 
hodograph plane through numerical calculations. 

It is the intention of this paper to demonostrate the usefulness of 
this approach to obtain solutions for the sluice gate and the sharp-
crested weir. Results of these calculations would provide useful in­
formation for the design of hydraulic devices. Comparisons between 
the present results of calculations and available experimental data 
would also substantiate the merits of the method of hodograph 
transformation. 

Theoretical Considerations 
Sluice Gate. Referring to Fig. 1(a) where the configuration of 

a sluice gate is depicted, it is required, for a given uniform upstream 
approaching flow condition and gate angle a, to solve the flow field 
throughout the region including the corresponding gate opening Yr> 
and the free surface boundaries. It is well known that the action of the 
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Fig. 1 The sluice gale and its hodograph 

sluice gate would bring forth a flow transition from an upstream 
uniform subcritical flow to a downstream uniform supercritical flow. 
The influence of the gate obstruction extends to far upstream and 
downstream positions, and uniform flows with a hydrostatic pressure 
distribution are only possible at these locations. 

From conservational principles, it can be shown that the flow depth 
ratio YE, already normalized by YA, satisfies a cubic algebraic equa­
tion given by 

YE3 FrA
2\ FrA

2 

0 

with 

ft-A = yAlyfgTA, 

and the correct solution for YE is given by 

YE = VE 

i l + y/T+WFrP 
(1) 4/Fr„2 

where VE is already normalized by VA. 
For any point along the free surface, the velocity ratio is related to 

its elevation Y through the Bernoulli's principle expressed as 

u = y 1 + ( l - y ) 
FrA

2" 
Obviously, the elevation of the stagnation point B is given by 

Frj£ 

2 
YB = 1+-

(2) 

(2a) 

It has been established [14] from the basic principles that the 
governing stream function for the incompressible potential flow shall 
satisfy, in the hodograph variables, the equation given by 

9 1 , / , '/ ' '" ' n 
V^Vvu + vfa + — = 0 (3) 

where \p,u,8 are already normalized by the upstream flow quantities 
and (—a), respectively, so the values of î  and 6 vary from zero to unity. 
It has also been derived that the dimensionless coordinates in the 
physical plane satisfy the pair of differential equations given by 

dx : 

dy-

/cos (—ad) sin (—aB) 
$„ ^ do 

( „. , sin (—aB) , \ „ 
a cos (~a0) f „ + fo] dB (4) 

sin (—aB) cos (—aB) . 
— fg + fJ du 

- [a sin (-aB) ^ - ^ i L ^ l A dd ( 5 ) 

The corresponding hodograph of this problem is shown in Fig. 1(b), 
where the functions V/(B) and B/(u) pertaining to the free surfaces in 
the t>, 0-plane are yet unknown. One possible approach of trans­
forming the hodograph into rectangles is to subdivide the hodograph 
into two parts along a horizontal line through the points A and C as 
shown in Fig. 1(6) and each part of the hodograph may be subse­
quently transformed into rectangles. 

One now introduces the transformations for the upper part of the 
domain according to 

<?i = 
v - l 

vf(B) - : 

(6) 

and for the lower part of the domain according to 

<?2 = u 

1 - » / ( « ) 

The hodograph in the q, /3-plane now assumes the shape of a square 
as shown in Figs. 2(a) and 2(6). Under these transformations, equa­
tions (3)-(5) would change, respectively, into 

(7) 

fa 
'[qi(uf - 1) + l ] 2 

(vi - l ) 2 
<llVf 

a(vf - 1) 

2<7iu/ 

+ fai 

\(vf - l ) a 2 

qi(vf-l) + l | Ql[2vf'
2-v/"(vf-l)] 

Vf - 1 a2(vf - l ) 2 

dx = A(uf - 1) dgi + (Aqi uf' + B) dfii 

= 0 (8) 

(9) 

and 

dY = C(vf - 1) dqi + (Cq1 uf' + D) rift (10) 

for the upper domain, where Vf'(B) and v/"(8) denote the first and 
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2a. 

*-£, 

Fig. 2 The hodograph in the q, ftplane 

second derivatives of the function Vf(8), against its argument, re­
spectively, 

_ cos ( - a f t ) / guy' 
A - — - Vft ~ h 

a [ 9 i ( U / - l ) + l ] M " " u / - l 

sin ( - a f t ) ^ 

[91(0/ - 1) + l ] [ u / - 1] 

- a cos ( - a f t ) , sin (af t ) / guy ' 
B = hi — — ^ , - • hi 

v,-l qi(vf - 1) + 1 v,-l 

n _ sin ( - a f t ) / , guy ' , 
c - « [ , 1 ( U , - i ) + i p r f t " ^ T ^ 

cos ( - a f t ) I/',, 

[ 9 l ( t y - l ) + l ] [ t y - l ] 

- a sin ( - a f t ) cos ( - a f t ) / guy ' 
D = hi + — -—— i>fsv 7 hi 

Vf-1 9 i ( i y - l ) + l Uf-l 

(11) 

(12) 

(13) 

(14) 
and 

<?22 V w + 4>Pv 
2g2

2e/tfe-
1 - I 

/ '<Z2( f t -D 

+ feft! 

1 - 6 / + 92^2 + fft 

l a 2 ( l - 0/)2 

l / g 2 ( f t - l ) 

1 - 1 

(ft - 1) <722 W (1 - 6f) + 2fl/2 

(1 - 0,)2 

cfa = [£ + F 0 / (1 - ft.)] dq2 + F(l - Of) d f t 

dY=[G+H 0/(1 - ft,)] dq2 + H( l - 9/) d f t 

= 0 (15) 

(16) 

(17) 

for the lower domain, where 8j'(v) and 0/"(u) denote the first and 
second derivatives of the function 8f{v), against its argument re­
spectively, and 

cos \-g[8f + (1 - 0/)ft] 

g 2
2a( l - Of) 

fl/(ft ~ Dl 

hi 
s i n j - a ^ + d - g ^ f t ] ! 

ht + lAft 
1 - I 

(-«[»/ + (1 - 0/)ft]l 

-a[0f + (1 - 0/) ft1' 

f<72 + f/32 

92 

' / ( f t - I)' 

(18) 

1 - 1 7 

92(1 - 0/) 

c sin \-a[0f + (1 - 0,0ft]) 

^ 2 (19) 

g 2
2 a( l - 8f) 

^2 + fe 

"Aft 
| c o s l - a ^ - K l - ^ f t j i 

<?2 

1) 

•fl/ 
(20) 

H = - a sin {-a[8f + (1 - 6/)ft]| 9̂2 + ' fe '/(ft-1) 
(1 - 8f) 

(21) 
, cos i-ate, + a - ef)M , 

Ti a~\ ^ 
92(1 ~ 6f) 

Sharp-Crested Weir. The configuration of a sharp-crested weir 
is depicted in Fig. 3, where an initially uniform flow with a hydrostatic 
pressure distribution approaches a weir. The lower streamline stag­
nates at the point B and leaves the weir tangentially afterwards, 
reaching its maximum elevation at the crest D and forming a free 
streamline. The top streamline drops continuously toward the weir 
as a result of acceleration. It should be noted, however, that for a given 
set of upstream flow conditions, there is only one set of the height Yc 

and the angle a of the weir. 
The corresponding hodograph of this problem is shown in Fig. 3(6) 

where the velocity and the streamline angle have been normalized 
already by VA and (—a), respectively. With the given approaching flow 
conditions, Uf(d), vi(8), and vu(8) are all unknown. It is obvious that 
the idea of subdividing the hodograph is needed to solve this problem. 
A simple scheme is to divide the hodograph along the vertical line AD. 
It was learned later [1] that it would be necessary to cut along a hori­
zontal line AC so that the point A became a grid point after the 
transformation to avoid "haunting" pattern during iteration of the 
weir height. The hodograph now consists of three parts; each of them 
can be transformed into a rectangle for the benefit of computation. 

A transformation for the right part of the domain is introduced 
according to 

and 

91 : 

w = 1/v 

•m(6) 
ft 

(22) 

(23) 
o>u(e)-w,(6) ^ TT/2 

where <ou(0) and o;j(0) are the corresponding images of the upper and 
lower free streamlines in the a>, 0-plane (Fig. 4(a)). The hodograph 
in the gi, ft, plane now has the shape of the square as shown in Fig. 
4(6), and equations (3)-(5) would change, respectively, into 
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Fig. 3 A sharp-crested weir and Its hodograph 
Fig. 4 The hodograph In the co,0 and <7i, ft-planes 

tfW 
[co; + qi(uu - CO;)]2 

(au - co;)2 

8(g! - l)w/' - 8cjico,/ 

(c7i - 1)(0/' - <jico„' 

- ( & ) „ - CO;) 

+ tpv 
TT2(cOu - (0() 7T2 + -^ feft 

+ ^ 
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ir2(co„ - co;)2 + -
cou - co; 

+ • 

[(<Zi ~ 1) co,' - ?iWn'] 

r[(Qi - 1) co," - qioiu"} , , , „ , - , - . , . - „ , ; 0 (24) 
ir^ioiu - co;) 

dx = A((J}U - co;) dqi + |A[co;' - qi(wu' - co;'] + S) d f t (25) 

dy = C(co„ - co,) dgi + (C[co,' - Ql(cou ' - co,')] + D) d f t (26) 

where co;', co;", cou', and cou" denote the first and second derivatives 
of functions o>i(6) and u>u(8) and 

-[o>l + qi(o>u ~ co,)]2cos ft 

C 0 U - CO; 

- [co; + qi(wu ~ co;)] sin [ ft 

X WHi ~ fqi 
co;' + <7i(co„/ - co;') 

co„ - co; 

ir 
- s m | vi 

r • 2 >(, , «! ' + <7i(<o„'-(Oi') 
IT 

2 

cou - co; 

[cO, + Ql(cOu - CO;)] COS — f t l/'q 

C0U - CO, 

(28) 

(29) 

-cos ft 
1 1 

TT/2 
^01 ~ iq 

co;' + <7i(coK' - co,') 

cou - co; 

[co; + <7i(cou - co;)] sin - - ft 

co„ - co; 
iqi (27) 
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Upon introducing the transformation for the left-upper part of the 
hodograph according to 

. u ~ vf(B) 

1 - vf(6) 

h = B (31) 

it becomes, in the q% ;82-plane, also a square as shown in Fig. 5(a). The 
governing equations would also change, respectively, into 

,/, »„ , »f V , /I<?2 ~ 1M*1 

+ ^ 2̂1 
2 ( g 2 - l ) V 
a2 (1 - o/) 

+ 1 fe<2 (32) 

+ & J . {92 + 
"/ 2 ( g 2 - l ) ^ 2 , ( < 7 2 - D V 

1 — u/ a 2 ( l — iy)2 a 2 ( l — vf) 
= 0 

rfx = E(X - vf) dq2 + [E(l - q2) vf + F] dfi2 

dy = G(\- vf) dq2 + [G(l - q2)vf + H] dfc 

(32) 

(Cont.) 

(33) 

(34) 

where Vf'(8) and u/*(0) denotes the first and second derivatives of the 
function Vf(8), and 

cos (-a/32) 

• u , 

sin (-g/32) i / ^ 

£ = 
«[u/ + 92(1 ~ Vf)]2 

, (g2 - 1) V , 1 
l-Vf J 

- a cos (-a/?2) , 
-P = : ^ 2 • 

1 - 0 / 

[vf + q2(l - v/)] [1 - vf] 

sin ( - a/32) 

(35) 

U/ + (J2 (1 - Vf) 

fe+c^-w 1 (36) 
l - o / J 

G = 
sin ( -a fo ) 

a[o/ + 92(1 - i>/)]2 fe + —; ^ 
l - o / 

92 

cos (-a/32) ^9 ; 

- a sin (-a/32) , , 
H = ; ife + 

1-Vf 

[vf + q2{l - vf)][l - vf] 

cos (—afi2) 

(37) 

Ly + q2(l - vf) 

x ( ^ + 1T^f M (38) 

No transformation is needed for the'left-lower part of the hodo­
graph. Equations (3)-(5), the original hodograph equations, can be 
directly employed for the calculation of the stream function. 

Methods of Calculations and Results 
It is obvious that values of the stream function are completely 

specified on the boundaries of all the hodographs except along the 
lines of division which are intentionally introduced to facilitate 
transformation. Although the stream function is unknown along these 
boundaries, it is the common boundary to the two adjacent domains 
and must have the same value of the stream function. In fact these 
values are to be determined through the condition that the normal 
derivatives of the stream function in the original hodograph plane 
should be continuous. Taking Fig. 1(6) for the sluice gate as an ex­
ample, one may impose this condition as 

upper lower 

dv dv 
AC AC 

and these partial derivatives may be represented by their corre­
sponding one-sided finite-difference expressions. It may be easily 
shown [1], that the value of the stream function \pc on the boundary 
can be found from 

(39) 

, W i , - jg) Av2 + W d ~ $e)&Vl 

3(Aui + Au2) 
(40) 

where Avi and Au2 are the corresponding numerical grid spacings for 
the upper and lower domains, and \j/d, ype must be obtained from in­
terpolation for this particular situation. Similar schemes are followed 
for all the other common boundaries of the adjacent hodographs. 

To initiate the numerical calculations, values of the stream function 
along these common boundaries must be known, and these values may 
be obtained from a crude interpolation. These values will be revised 
and updated according to the foregoing scheme in the midst of cal­
culations. Methods of calculations for the sluice gate and the sharp-
crested weir are separately discussed as follows: 

1 For the sluice gate, with a given upstream flow condition and 
an arbitrary gate opening, functions Vf(8) and 0f{v) are initially un­
known, and their initial values are estimated through simple poly­
nomial functions. The stream function within the square domains of 
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Fig. 2 may be determined from equations (8) and (15) through the 
Successive-Over-Relaxation scheme (SOR). Once its value at every 
grid point within the domain does not vary more than an arbitrarily 
selected small number (e.g., 10 - 4), the derivatives of xp^, \pp2, \pqv and 
\f/ql may be evaluated along the boundaries AB and DE, and their 
profiles in the physical plane may be traced through numerically in­
tegrating equations (9), (10), (16), and (17). These profiles of the free 
streamline would yield a revised form for Vf(6) according to equation 
(2) for the flow downstream of the sluice gate, and a revised form for 
Bf(v) for the flow upstream of the sluice gate according to 

tan 

Of(v) -

., dye 

dx 
(41) 

where dx was obtained from equation (16) and dYe was obtained di­
rectly from Bernoulli's principle through 

00 

ft, = 0-3 

YD = 0-353 
YE =0236 
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Fig. 8 Free surface profiles for FrA = 0.3, a = 60° 
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dYe = -q2FrA
2dq2 (42) 

The foregoing process of calculations may be repeated until Vf(6) 
and df(v) employed for the calculations agree with that produced from 
tracing within an arbitrarily small margin (e.g., 1 X 10 -3) at every grid 
point along the free streamline. For flows with low Froude number 
FrA, iteration of Vf(6) and 6f(v) is a rapidly convergent process. Figs. 
6 and 7 clearly illustrate this feature. For FTA greater than 0.37, some 
difficulty in convergence of 6f(v) function has been observed. The 
tendency of divergence of 6f(v) function, especially for high values 
of FrA, will be discussed later. 

So far, these calculations are carried out with an arbitrary gate 
opening, and the asymptotic height YE obtained from the free surface 
tracing would in general not agree with the results from equation (1). 
It is natural to expect that the gate opening YD should be adjusted 
until the correct asymptotic height YE is obtained. Again determi­
nation of YD must be based on iterations and it is a rapidly converging 
process. Only three iterations are usually required to determine its 
value within an accuracy of 10 - 3 . Figs. 8-10 present the established 
final profiles of the free surfaces for the cases of FrA ~ 0.3 with a = 
60°, 90°, and 120°. Fig. 11 shows the pressure distribution in the vi­
cinity of the gate for the case FrA = 0.3, a = 90°. It is interesting to 
observe that drastic modification of the hydrostatic pressure distri­
bution occurs only within a relatively small region. Fig. 12 presents 
the established gate opening. Fig. 13 presents the obtained 
0/(u)-values for FrA = 0.1 at different a angles. For small a angles or 
larger FrA-values, sharp variations oidf(v) near the stagnation point 
have been observed. Under this situation, evaluation of 8/(u) and 
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Fig. 10 Free surface profiles for FrA = 0.3, a = 120° 

Fig. 11 Pressure distributions for a sluice gate 
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Fig. 14 Comparison with Southwell and Vaisey's results 

6f"(v) through numerical differentiation may not be accurate, which 
would directly influence the stream function calculations and the 
convergence of 6f(v). Smoothing process of 6/(v) and d/'(v) was in­
troduced to effect convergence by taking average values of 6/ and 8f" 
between two adjacent grid points successively. However, for FrA 
greater than 0.6, it becomes impossible to obtain a stable solution even 
with repeated application of this smoothing process. Thus, within the 
range of FrA between 0.37 and 0.6, results were obtained with mini­
mum number of applications of this smoothing process to Of'(v) and 
8f" (v) for convergence purpose. Fig. 14 presents the free jet profiles 
for FT A = 0.4264 along with previous results by Southwell and Vaisey 
[15]. It is appropriate to remark that in all calculations required to 
solve these problems on the basis of hodograph transformation, the 
unknown functions such as df(v) and Vf(d) must be determined 
through iterations. While these functions including their first and 
secondary derivatives are imbedded in the main differential equation 
of the stream function, it is clear that the exact solution of the problem 
would produce matching and convergence of these functions and their 
derivatives up to any order under the present method of treatment. 
Since the secondary derivatives are the highest order of differentiation 
of these functions directly involved in these calculations, four levels 
of convergence requirement may be imposed; namely, convergence 
to (i) the secondary derivative, (ii) the first derivative, (iii) the 
function itself, and (iv) the integrated profile (e.g., the free surface 
of the present problem) produced from these functions. It is obvious 
that due to the error of numerical differentiation, imposition of con-

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 235 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



0-27 

V, 

0-26-

0-25 

0 2 4 

FrA = 
a = 

© 
X 

s 
N 

= 0-5 
= 90" 

1 

® / 
N 

1 

© 
s 

N . 

-

d _ 
^ _̂ 

-0-5 
9 

0 0 

Fig. 15 Values of v,(d) for a sharp-crested weir at various iterations 

a=45°(Yc=0-56) 

a=90°(V0 5 2) 
. a=l35°(Y,.= 0 45] 

\ • Experiment by 
\ Kandoswamy 8 Rouse 

\ \ (1957) 

W 

\ 
\ 

Fig. 17 Configurations of free surfaces at FrA = 0.2 

X=-0-05„ 

X=OI22 
X = 0 50 

Fig. 16 <t)„{6) and «/(0) at various iterations 

Fig. 18 Pressure distributions for a sharp-crested weir 

vergence of the secondary derivative may not lead to any solution to 
the problem, and the convergence of function itself seems to be the 
reasonable but nevertheless arbitrary choice. It may be anticipated 
that in some of these calculations, convergence of certain integrated 
profiles can be accepted as satisfactory. Southwell and Vaisey's results 
as shown in Fig. 14 are obviously based on such a criterion. 

2 Calculations of the sharp-crested weirs follows essentially a 
similar scheme. For a given upstream flow condition, and an arbi­
trarily selected weir height Yc, Vf(6), cou(8), <i>i(0) were initially as­
sumed as simple polynomial functions. The stream function within 
the subdivided domains may be determined from Equations (3), (24), 
and (32) through the SOR scheme. Once the value of the stream 
function is stabilized for every grid-point, the profiles of the free 
streamlines in the physical plane may be traced by integrating nu­
merically the equations (4), (5), (25), (26), (33), and (34). The corre­
sponding height of the weir may also be determined through these 
tracing procedures. 

The new profiles of the free streamline and the weir height would 
yield revised forms of u/(0), u>i(0), and cou(8) through equations (2) 
and (22). This process is repeated until functions Vf(6), ii>i(0), and 
uu{8) introduced for the calculations also match with those from 
streamline tracing within a margin of 10-3 for every grid point. As 
shown in Figs. 15 and 16, this is clearly a rapidly convergent process. 
Note that variation of ly in Fig. 15 on the vertical axis is a result of the 
adjustment of the weir height. Fig. 17 shows the profiles of the flow 
at different a values at FrA — 0.2. Fig. 18 shows the pressure distri­
bution across the flow. Fig. 19, presents the weir height against FrA 
for the purpose of comparison. 

With a relaxation factor of 1.7, and a 20 X 20 uniform grid, one 
typical case of the sluice gate takes 5 sec on the cyber 175 computing 
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system, while 12 sec are needed for the computation of a sharp-crested 
weir, as a result of more subdivisions of its hodograph. 

Comparison of Results, Discussion 
When a sluice gate is lowered into a stream of an open horizontal 

channel flow, the effects of its obstruction would extend to far up­
stream and downstream distances. The upstream free surface rises 
in the neighborhood of the obstruction and a stagnation point B occurs 
at a height YB above the channel bed. From the experimental results 
of Binnie [16], such a rise of level on the sluice gate was not observed. 
Instead whether the sluice gate is vertical or inclined, in front of it, 
a sharply defined zone of eddy was found. On the surface it appeared 
that flow moves in the direction opposite to the main stream indi­
cating a rolling up motion. Downstream of the gate, the free surface 
should drop sharply and level off subsequently at the mathematically 
infinite but physically finite distance from the gate. In reality, the 
minimum height of the free surface is affected by the growth of the 
boundary layer along the bed and the entrainment of the air along the 
free surface. Accurate comparison of the free surface profiles with the 
experimental data becomes an enormous task where detailed exper­
imental information must be obtained. Additional considerations of 
the viscous effect along the bed has been carried out [1] and will not 
be discussed here. 

Southwell and Vaisey [15] obtained the solution of this problem 
through the relaxation calculations for the case of FrA - 0.4264. 
Present calculations are compared with their results in Fig. 14. The 
difference of free surface profiles between the two calculations is less 
than one percent including the estimated gate opening height. Fig. 
12 presents the gate openings for various approaching values of FrA 

in comparison with the experimental data by Gibson [17] and Addison 
[18]. The limiting expression oi the gate opening when FTA approaches 
zero, was obtained by Binnie [16]. This straight-line relationship, 
(YD/YB - 1.157 FrA), is also plotted as a dotted line and is seen to hold 
well up to relatively large values of FTA- The present results agree with 
the experimental data over the wide range of FrA and is located, in 
general somewhat above Binnie's straight-line relationship. 

A considerable amount of effort went into the study of the effect 
of the free surface upstream of the gate. For all the convergent results 
obtained, it may be observed that the influence of existence of the 
upstream free surface is indeed small. In that sense, a previous results 
[12] obtained for an enclosed channel flow with Cpa = 0 should pro­
vide a crude approximate for the flow field downstream of the sluice 
gate. 

For the sharp-crested weir, the free surface profiles for FrA = 0.2 
are compared in Fig. 17 with the experimental data by Kandaswamy 
and Rouse [19]. Remarkably good agreement between them is ob­
served. Similarly, good agreement between their data and calculated 
results for FrA = 0.7 has also been observed [1] and is not reported 
here. Fig. 19 shows the comparison of the weir height with the data 
from USBR [20] and Kandaswamy and Rouse, whose data on weir 
height is extracted from their presentation of the discharge coefficient. 
Present results generally agree very well with the experimental data 
over a wide range of FrA (0.06 < FrA ^ 0.989. When FrA is less than 
0.06 computed weir-height begins to deviate from the experimental 
data. As a result of a relatively large contraction of the free streamline 
in this case, the profile of uu (6) in Fig. 3(6) increases so rapidly that 
accurate matching along the cut may not be possible. According to 
the experimental results of Kandaswamy and Rouse, the height of 
weir is decreasing rapidly near the critical initial condition and 
eventually the flow approaches a free overfall. Present calculations 
always consider the existence of a stagnation point and thus do not 
produce this limiting configuration as a free overfall. This was the 
subject of an early investigation [13]. It has been mentioned therein 
that a subcritical approaching flow in a free overfall is not likely to 
occur for steady inviscid flow. It is shown in the Appendix that its 
nonexistence is also supported from the numerical calculations. 

On the basis of all evidence presented so far, it is obvious that the 
method of hodograph transformation is very effective in dealing with 
problems when they are strongly influenced by gravitation. Although 
this method invariably involves with the determination of the hodo-
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Fig. 19 Comparison of weir height with the experimental data 

graph boundary function, such as Vf(6) or d/(v), and its derivatives, 
through iterations, the experience obtained up to the present indicates 
that the secondary derivatives of these functions are always small. 
The only situation that a divergent trend has been observed in com­
putations so far is the df(v) associated with the free surface ahead of 
the sluice gate under the conditions of relatively large subcritical FrA 
values. It should be noted that since the free surface streamline must 
stagnate at the gate, the influence of this compression process spreads 
further upstream as FrA assumes larger values and the corresponding 
gate opening also increases. On the other hand, it is known that as the 
approaching flow reaches the critical flow condition, the only possible 
solution is that the gate opening should be unity, so that there is no 
stagnant process and the flow is uniform everywhere-the trivial so­
lution. If the present flow pattern with the stagnant process can be 
extended to high subcritical FrA-values the steady inviscid flow would 
exhibit a discontinuous solution pattern at or near the critical ap­
proaching Flow. This is probably the reason why convergent solutions 
cannot be reached for cases of large subcritical FrA -values. How far 
one may obtain convergent solutions depends upon individual's art 
of smoothing out the irregular variations of the derivative functions 
and the criterion imposed to define a convergent solution. It is be­
lieved that the range of FTA may be extended to higher values than 
reported here, if one imposes agreement of the upstream free surface 
profiles between successive iterations. It is also proper to remark that 
no experimental data in the literature for Fr^-values larger than 0.6 
have been found. 

It has been recently learned that this method is equally effective 
in dealing with flow geometries with curved solid boundaries. 
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APPENDIX 

On the Evidence of the Nonexistence of Subcritical 
Approaching Flow for a Free Overfall 

For an inviscid flow over a free overfall as shown in Fig. 20(a), it was 
shown [13] that the corresponding hodograph can be transformed into 
a square as shown in Fig. 20(b) and the governing stream function can 
be determined through SOR calculations. After its value throughout 
the domain is stabilized (e = 10 - 4) , the location of the top free 
streamline AFC with respect to the lower free streamline BEC can 
be determined by performing a numerical integration of the coordi­
nates along the path BEF in the hodograph plane. This integration 
also provides a check of the accuracy of numerical calculations of the 
stream function. By extending this integration back to the point A 
in the hodograph, the total change of the vertical location from B to 
A in the physical plane should be unity. Indeed, such a check has been 
carried out and the error (deviation away from unity) is shown in Fig 
21. For supercritical and critical approaching flows, the errors seem 
to be tolerable. However, a drastic increase in error occurs as soon as 
the approaching flow becomes subcritical. 

It is well known that for the flow with a given stagnation pressure, 
critical approaching flow condition yields a maximum possible rate 
of flow. While the gravity provides the only motivating force for the 
flow of a overfall, in the absence of any restriction, such as frictional 
force or partial obstruction, the flow would continuously adjust until 
a critical approaching flow is reached. Thus a steady inviscid flow of 
a free oveTfall with a subcritical approaching flow seems to be non­
existent. It is of course rewarding to see that the numerical calcula­
tions produce unacceptable errors under these conditions, and are 
thus compatible with the physical situation. It is nevertheless inter­
esting to observe from the point of view of numerical calculations that 
the error starts to accumulate in such a fashion as soon as FTA becomes 
subcritical, especially after the stream function value has been sta­
bilized throughout the region. 
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Creeping Viscous Flow Around a 
Heat-Generating Solid Sphere 
The velocity field for creeping viscous flow around a solid sphere due to a spherically sym­
metric thermal field is determined and a simple thermal generalization of Stokes' formula 
is obtained. The velocity field due to an instantaneous heat source at the center of the 
sphere is obtained in closed form and an application to the storage of heat-generating nu­
clear waste is discussed. 

1 Introduction 
A solid heat-generating sphere surrounded by an infinite viscous 

fluid will create convective flow due to the thermal expansion and the 
induced buoyancy of the surrounding fluid. In addition the sphere 
itself may be subject to a buoyancy force due to a density difference 
between the sphere and the surrounding medium. A solution is pre­
sented under the assumption of creeping flow. In the limiting case of 
zero heat generation the well-known result of Stokes is recovered. 

First, the field equations are stated and the approximations iden­
tified. Then the flow corresponding to a step function variation of the 
density is derived, and the resulting force on the sphere evaluated. 
This solution is integrated to yield the flow due to a continuous 
temperature distribution, and the flow induced by the temperature 
field from an instantaneous point heat source is considered in some 
detail. 

One of the main results is the equilibrium velocity of the sphere. 
This velocity is of interest in connection with storage of nuclear waste 
in salt, and its magnitude and time-dependence are evaluated for a 
specific set of parameters. 

2 T h e F ie ld E q u a t i o n s 
When only small changes from the reference density po at tem­

perature T0 occur, the density is 

[1 - a(T - T0)]Po (1) 

where a is the volumetric expansion coefficient. 
The assumption of creeping flow (inertial terms neglected) can now 

be used in connection with the Boussinesq approximation (fluid-
density changes ignored except in the buoyancy term) to obtain the 
continuity equation 
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dvi/dxi = 0 

and the equation of motion 

d2U; dp 

dx; 
- a(T - T0)Pogi = 0 

(2) 

(3) 
dxjdxj 

where u,- is the velocity vector, ,u the dynamic viscosity, p the pressure, 
and gi the acceleration of gravity. 

In the present case of spherically symmetric geometry, where the 
equations have been linearized through the assumption of creeping 
flow, the Boussinesq approximation amounts to neglecting the radial 
flow induced by thermal expansion. Due to the spherical symmetry 
of this flow it does not contribute to the resulting force on the sphere, 
and it will therefore not be discussed further here. 

3 Flow for Step Variation of the Density 
The problem under consideration has been reduced to finding a 

solution to (2) and (3) in the infinite domain outside a sphere of radius 
ao corresponding to a spherically symmetric temperature field gen­
erated by heat sources inside the sphere. The general solution is found 
as an integral of a particular solution corresponding to a temperature 
discontinuity AT at a spherical surface of radius a, Fig. 1. 

Let a Cartesian coordinate system jx,|, i = 1, 2, 3, be fixed at the 
center of the solid sphere with radius a0 and the xi-axis pointing 
downwards, whereby gi = (g, 0, 0). The field equations to be solved 
are the continuity equation (2), 

d2u; dp 
p : ~ ^ apoATgi = 0, a0<r<a (4) 

dxjdxj 

and 

d2vi dp 
p. = 0 , a < r 

dxjdxj dxi 

where r2 = xixi. 

The boundary conditions are no slipping at r = ao, 

u,(ao)=0, j' = l ,2,3 

and ui approaching a constant velocity (U, 0, 0) at infinity, 

(5) 

(6) 
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B'=U -
Ka2 

3/" 
3 1 

A = — U/xao + - Ka0(3a2 - a2) 
2 6 

60M 

3 1 
C = - - fi/xao - - (2a3 • 

2 6 
3aoa2 + ao) 

D = - - Ual - — (2a6 - 5a§a2 + 3a§) 
4 60M 

Po = Po 

(18) 

(19) 

(20) 

(21) 

(22) 

(23) 

Fig. 1 Solid sphere and discontinuity surface 

m — 3 lit/, (7) 

The resulting force on the solid sphere r < ao is found by integrating 
(12) over the surface r = ao. Due to symmetry it is clear that only the 
Xi component will be different from zero. Only the factor to <>i, con­
tributes. 

A positive value of U implies that the solid sphere moves upward 
relative to the material at infinity. At r = a, continuity conditions are 
imposed on the velocity and the stress vector, 

P = 6irp.a0U - 2irKa0(a
2 - a0

2) (24) 

If U is considered as the equilibrium velocity, the result may be 
written in the form 

Vi(a+) = i>i(a —) 

aij(a+)xj = aij(a-)xj 

(8) 

(9) 
U = -

1 
• [P + 2TraPogATao(a2 - a0

2)} (25) 

It is noted that (8) does not restrict exchange of material between 
the two domains of different temperature. This exchange does not 
change the temperature field, because the convective terms have been 
assumed small in the final solution. 

The solution is easily constructed by use of particular solutions 
given by Lamb, [1, Section 337], for domains inside and outside a 
spherical boundary. For ao < r < a, contributions from both types of 
solution must be represented. 

, % (A'r6 Ar2 A d />i 
1 30M 6M d*, r 3 

67Tftao 

where P is the buoyancy of the solid sphere. For AT = 0 or a = ao 
Stokes' result is recovered. 

4 Cont inuous T e m p e r a t u r e F i e l d s 
The equilibrium velocity U due to a continuous temperature dis­

tribution follows from (25) by integration. 

U = - P - 2irapoga0 j (a2 - a§) 
Girnao 

After integration by parts the result is 

1 

^dT(a) , • 
*> da 

da 

+ 
„ (A'r2 2A\ u--

<r<a (10) 
P+ 2irapogao j aT(a)da 

»/ao 

(26) 

(27) 

The radial flow takes the simple form 

(A'r2 

V'(XJ) 
10^ fir r3l\r, 

ao < r < a (11) 

and the stress vector on a spherical surface is 

ari(xj) •• A> 3x4' K\ A A 6/xB 
r4 + Ar - -Jt~ 

10 3 / r 
i>x; IH, 

( Kr A\ 
~ -X a0<r<a (12) 

67TMao 

The influence of the temperature field is an increased buoyancy 
proportional with the first moment of the temperature. Thus a finite 
equilibrium velocity requires T(a)a2 -» 0 for a -* *> and thereby ex­
cludes consideration of the steady-state temperature field. 

It is convenient to represent the heat flux from the sphere by su­
perposition of the fluxes from a continuous distribution of instanta­
neous point heat sources at r = 0 in an infinite medium with homo­
geneous thermal properties. The instantaneous release of the amount 
of heat q at the time t = 0 at r = 0 leads to the temperature field, [2, 
p. 256], 

Here K has been introduced as 

K = apagAT 

Outside the discontinuity the solution is of the form 

«*>~(£-D)£B)+M-$ -
The radial flow is 

and the stress vector on a spherical surface 

.,(*,) = -po(7] + ( 0 - — ] — y - « u -

The conditions (6)-(9) can all be satisfied leading to 

T(a, t) = — (27TKt)-3/2e-a2/4" 
Poc 

(28)-

C 

A ' = - K 
3 

(13) 

(14) 

(15) 

(16) 

(17) 

where K = k/poc, c is the specific heat and k is the thermal conduc­
tivity. Substitution of (28) in (27) yields the equilibrium velocity 

•U(t) 
1 

67TMOO 
P + £ !M_52_ e -«8 /4 . t 

C \/wKt 
(29) 

It is interesting to compare the time development of the heat gen­
erated velocity, U, with the temperature, T, and heat flux, h, at r = 
ao- In terms of the dimensionless time 

the expressions are 

al 

U(T) = l , aqg
 T-l/2e-V* 

3ws'2 Cfia0 

T(ao,r) = ^ - ^ L
1 r - " 2 e - ^ 

(30) 

(31) 

(32) 
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Fig. 2 Time-dependence of heat flux and temperature at r = a0 and thermally 
induced velocity 

h(a0, T) =-
qk 

.3/2 
T - 5 / 2 e - l / r (33) 

p0ca0 

The time-dependent factors are shown in Fig. 2. It is seen that the 
release of heat from the domain r < ao is concentrated within the time 
interval 0 < r £ 1.5, while the heat generated velocity prevails for a 
much longer time. When calculating the velocity it may therefore be 
an acceptable approximation to represent the heat generation inside 
the solid sphere by a point source. 

The flow field due to a continuous temperature field is found by 
integration of the step function solution from Section 3. It is conve­
nient to separate the part of the flow which is proportional to U. This 
part of the solution is proportional to Stokes' solution but with the 
velocity U given by (27). 

In terms of the dimensionless coordinates £; = x,/ao and r] = r/ao 
this part of the solution is 

»F(&) = u 4 
1): + &u 

7 , - 1 
(34) 

Hi \VI V 

The remaining part of the flow field is found by integrating 
(17)-(20) from r to infinity and (21), (22) from a0 to r. The result 

vj{xj) •• 
apog [1 

ix 16 
-(r2-al)aQ f" aT(a)da 

+ rir^-a*)TMda\— te) + * 4 [ - raT(a)da 

- C~ aT(a)da~- Ca*T{a)da 
Jr r <Ja0 

(35) 

When the temperature field (28) is used in (35) the result can be 
expressed in terms of elementary functions and the error function, 
erf( ). 

Mb) ' 
1 ctqg J 

(25r)3 /2C A t a o l 
_ T l / 2 e - l / r + VT M'lp-rPh 

+ 7 r 172,_ 
13 

3 - - T] (erf (r)T-1'2) - erf ( T " 1 / 2 ) ) 
J a& W 

4 TT1/2 

- Su - Z ! — (erf (jjr"1/2) - erf (T'1'0-)) 
3 r) 

(36) 

The radial velocity from (34) and (36) is proportional with cos 8 = 
£i/?; but is otherwise only a function of ?j and r. It is therefore a simple 
matter to determine the stream function l/^i;;, T) , which is —(2TT)_1 

times the flux through the spherical cap r\ = (£,£,)1/2, 0 < 8 < arccos 
(£i/ij). The result follows immediately from (36) by replacing the 
factor cos 8 with 

o 

in the radial velocity. 

arccos (fi/i?) 
• j r' Sin 

20 (37) 

I 1 II 
t=0.5 1=2.0 x=200 

Fig. 3 Streamlines for instantaneous point heat source 

T a b l e 1 S a m p l e p a r a m e t e r s 

Density 
Thermal expansion 
Specific heat 
Thermal conductivity 
Viscosity 
Canister density 
Radius 
Heat-generation rate 

Po = 2150 kg/m3 

a = 1.2-10-VK 
c = 900 J/kgK 
k = 4.5 WVmK 
/i = 5.0-1014 Ns/m2 

pc = 4100 kg/m3 

a0 = 0.665 m 
qo = 3.5 kW 

Mi, T) = - U(T) 
2r)3-3i)2+ 1 

1 ctqg 

ir cp.ao 

27) 

I 
V 

— ( e _ 1 / r - j j e -" 2 / T ) 
27T 

V2r? 
•(erf(7jT-1 / 2)-erf(T-1 /2)) °« • 2fl 

— sin1*» 
(38) 

The stream function corresponding to a situation with the sphere 
moving with velocity — U(T) and the medium at rest at infinity follows 
from (38) by addition of the stream function 

<M&. r ) = i [ / ( r )a 2 7, 2 s in 2 0 (39) 

Fig. 3 shows the normalized stream function for T = 0.5, 2.0, 200. 
The figure clearly shows the concentration of the velocity field around 
the sphere, while the velocity of the sphere is increasing, i.e., T < 
2.0. 

5 N u c l e a r W a s t e E x a m p l e 
As an example the formula (27) is used to evaluate the velocity of 

a heat-generating nuclear waste canister deposited in rock salt. This 
problem has been treated by Dawson and Tillerson [3] using finite-
element calculations in a finite geometry. A set of typical parameters 
is given in Table 1. 

The heat generation is assumed to be of the form 

q(r) = q 0exp - I n 2—— = q 0exp - In 2 (40) 

where 

T l / 2 : 
4 K T 1 / 2 

1.99 • 104 (41) 

corresponds to a half-life T1/2 = 30 years for the parameters of Table 
1. In view of this large time scale the approximation with a point 
source is quite adequate for the evaluation of the equilibrium velocity, 
and the result follows by integration of (29). 

U(T) = - (p0-
9 n 

Pc) 

aq0poga0 

I2w3/2fik r - l / 2 p - l / s exp 
Tl/2 

In 2 ds (42) 
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Numerical evaluation is facilitated by using the fact that due to the 
large value of r i / 2 the interval of integration may be divided into two 
parts, an interval 0 < s < T* where the last factor is nearly constant, 
and the remaining interval T t < s < T where e~lfs ^ 1. The first in­
tegral can then be evaluated in closed form by use of formula 3.461-5 
from [4], and the second is simplified. 

/ =* exp ( - — In 2) f T" s-1,2e-l/*ds 

+ f T s - 1 / 2 e x p [ — I n 2 c/s 
J-" \Tl/2 / 

= 2 exp I - — In 2 A/T„ e~llr' - V x erfc \~J=r-\ 

+ f ^ e x p f — In 21 dp (43) 
*^>/% IT 1/2 / J 

The integral including the factor (127r3/2)_1 is shown in Fig. 4 for rm 
given by (41) and T* = 100. For these parameters the relative error 
involved in the approximation (43) is less than 0.005. 

Fig. 4 shows both the thermal and the buoyancy contribution in the 
unit pm/s (10~12 m/s) and the time scale in years. The actual velocity 
is the difference between the two full curves. After a few years the 
thermally induced upward velocity will dominate for about 185 years. 
The maximum upward velocity is 3.36 pm/s = 0.106 m/1000 years. 
Although this velocity may be somewhat overestimated due to the 
infinite geometry, it is well below the steady-state velocity 26.5 pm/s 
obtained by Dawson and Tillerson [3] using finite elements. 

The sensitivity of the velocity to the time scale of the heat genera­
tion is illustrated by the two dashed curves corresponding to T^/2 = 
40 years and the heat generation either with the same initial rate of 
production (the upper curve) or the same total production (the lower 
curve). 

t years 
0 75 150 225 300 375 

— , I r 1 : 

°0 5 10 15 20 25° 
t xMT ' 

Fig. 4 Thermal and buoyancy velocities for nuclear waste canister 
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Stability of Developing Flow in a 
Pipe—Nonparallel Effects 
A theoretical investigation into the linear, spatial instability of the developing flow in a 
rigid circular pipe, incorporating the effects of nonparallelism of the main flow, has been 
made at several axial locations. The velocity profile in the developing flow region is ob­
tained by a finite-difference method assuming uniform flow at the entry to the pipe. For 
the stability analysis, the continuity and momentum equations have been integrated sep­
arately using fourth-order Runge-Kutta integration scheme and applying selectively the 
Gram-Schmidt orthonormalization procedure to circumvent the parasitic error-growth 
problem. It is found that the critical frequency, obtained from different growth rates, de­
creases first sharply and then gradually with increasing X, where X = x/aR - X/R; x 
being the streamwise distance measured from the pipe inlet, a being the radius of the pipe, 
and R the Reynolds number based on a and average velocity of flow. However, the critical 
Reynolds number versus X curves pass through a minima. The minimum critical Reynolds 
number corresponding to g^,(X, 0), the growth rate of stream function at the pipe axis, 
to gE(X), the growth rate of energy density, and to the parallel flow theory are 9700 at X 
= 0.00325, 11,000 atX = 0.0035, and 11,700 atX = 0.0035, respectively. It is found that 
the actual developing flow remains unstable over a larger inlet length of the pipe than its 
parallel-flow approximate. The first instability of the flow on the basis of g^,(X, O), gE(X) 
and the parallel flow theory, is found to occur in the range 30 < X < 36,35 < X < 43, and 
36 < X < 45, respectively. The critical Reynolds numbers obtained on the basis of g^,(X, 
O) are closest to the experimental values. 

Introduction 
It is well known that the fully developed flow in a rigid circular pipe 

is theoretically found to be stable to all infinitesimal disturbances 
[1-3], and the experimentally observed instability of the Hagen-
Poiseuille flow is attributed either to the finite amplitude of the dis­
turbances [4] or to the instability of the boundary layer inside the pipe 
in the developing flow region [5,6]. While Tatsumi [5] and Huang and 
Chen [6] considered the temporal stability of the developing flow in 
a pipe, Gupta and Garg [7] have recently compared the spatial sta­
bility results for velocity profiles obtained from the methods of 
Hornbeck [8] and Sparrow, et al. [9], and have found that stability 
results for the velocity profile obtained from the Hornbeck method, 
hereafter referred to as the Hornbeck profile, are closer to the ex-
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perimental results of Sarpkaya [10]. However, the critical Reynolds 
numbers for the Hornbeck profile, though much smaller than those 
for the Sparrow, et al., profile, are higher than the corresponding 
values obtained experimentally at all axial locations. This difference 
may be attributed to the fact that Gupta and Garg [7] assumed the 
flow to be parallel which is really not true in the developing flow re­
gion. 

It may be noted that while Sparrow, et al., linearized the inertia 
terms in the Navier-Stokes equations for the developing flow in a 
pipe, Hornbeck carried out a finite-difference solution of the 
boundary-layer equations for the developing flow. Besides yielding 
a more accurate velocity distribution [11,12], the latter is also at least 
one order of magnitude faster (computationally) than the former. 

For the developing flow in a pipe, Shen, et al. [13], did consider the 
effect of the radial component of velocity on the otherwise parallel-
flow temporal stability analysis of the Sparrow, et al., profile and 
found that the minimum critical Reynolds number dropped to 19,670 
from the value of 19,900 for the parallel-flow theory. In comparison 
to this, Gupta and Garg found a minimum critical Reynolds number 
of 11,700 for the Hornbeck profile. Since Shen, et al., did not consider 
all nonparallel effects, e.g., the effects of streamwise variation of the 
wave number, eigenfunction, and growth rate, it is not surprising that 
they found only small differences from the parallel-flow stability 
characteristics. The flow in the developing region is essentially one 
of boundary-layer type, and we know that for the boundary-layer flow 
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over a flat plate, the parallel-flow theory predicts a critical Reynolds 
number that is about 30 percent larger than the experimentally 
measured value [14,15]. Shen [16] has shown, theoretically, that the 
effect of nonparallelism of the flow is, in general, to widen the unstable 
region and to reduce the critical Reynolds number. Therefore, we 
investigate here the stability of the developing flow in a rigid circular 
pipe while retaining its true nonparallel character. The analysis fol­
lows that of Saric and Nayfeh [17] but some details are given since 
cylindrical geometry is involved here. 

Analys i s 
We consider the flow of an incompressible, viscous fluid in the inlet 

region of a rigid, circular pipe of radius a and define the following 
nondimensional variables: 

The disturbance stream function can be taken as 

u = —,v--
Ua 

Y = -,T--
a 

n 
-,P = -

tua 

,R = 
uaa 

PU"a 

(1) 

where y is the radial distance measured from the axis of the pipe, u 
and v are the streamwise and radial components of velocity at any 
point (x, y) in the flow field and at any time t, ua is the average velocity 
of the flow, p is the pressure at any section, x, and p and v are, re­
spectively, the density and kinematic viscosity of the fluid. Spielberg 
and Timan [18] have shown that Squire's theorem [19] is not appli­
cable in the case of axisymmetric flows. However, the following 
analysis is carried out for an axisymmetric disturbance since the re­
sults of Huang and Chen [6] show that very near the entry section (up 
to X =i 0.0038) the developing flow is more unstable to axisymmetric 
disturbances. This happens because the main flow in this region is 
of the boundary-layer type for which Squire's theorem does hold. 
Therefore, an axisymmetric, infinitesimally small disturbance with 
nondimensional velocity components u(X, Y, T) and v(X, Y, T) and 
dimensionless pressure p(X, Y, T) is superimposed on the main flow. 
Substituting for the resultant flow in the Navier-Stokes equations, 
using continuity and momentum equations for the main flow and 
neglecting the nonlinear terms in u and v, we get the following single 
equation: 

•+U h V \-u \-u 
dT 

where 

dX dY dX dY 

d2ri 3 ^ j ) V 

dY2 YdY dX2 

(2) 

1 Idu 

' Y\dY 

du 

dX, 
and H=±m-*Y\. 

Y\dY dX) 
It is well known that for the developing flow in a pipe U(X, Y) and 

V(X, Y) are slowly varying functions of X. To express this slow 
variation we introduce another independent variable Xi along X-
direction such that 

X i = (X, (3) 

where £ is a small dimensionless parameter which characterizes the 
nonparallelism of the flow; its value depends upon the geometry and 
Reynolds number of the flow. For truly parallel flow e is zero. The 
dependence of e on the Reynolds number for any given geometry of 
the flow may be obtained from the order of terms expressing the 
boundary-layer effect on the velocity field [17, 20]. From the series 
expression for the velocity at the center line of the pipe [21], we note 
that £ = R~112. The other reason in support of this choice is that in 
the initial entry length, where the effect of nonparallelism of the flow 
is most expected, the flow is more or less of the bounday-layer type 
and for boundary-layer flow, e = R~112 [17, 22]. Though e and R are 
related, we may treat them as independent in the expansions that 
follow. By doing this we are, in fact, solving the problem on e-R plane 
instead of on a single curve and thus the real solution is contained in 
the family of fictitious extensions over all £ and R. 

i/<(Xi, Y, T) = [0o(Xi, Y) + e«MXi, Y) + . . .]eifl, (4) 

where 

— = fio(Xi), — = -co, 
dX dT 

with a; real. Here a> is the dimensionless frequency of the disturbance, 
the real part of ko is the wave number and its imaginary part is the 
spatial growth rate. Substituting equation (4) into equation (2), and 
equating coefficients of like powers of £ we obtain 
Order £°: 

L(0o) = D* - 2k2D2 + ki--D3 + —D2 + 
Y2 Y3, 

D 

-iR (k0U - co) D 2 •k0YD(DU/Y) 0 0 = 0 , (5) 

with the boundary conditions [6] 

c60 = Dc60 = 0 at Y = 0 and Y = 1. 

Order £: 

L(*i) = R 
dXi d X i l 

'i>o- — D<j>0 

BA „ \ dkn 
+ \B^0-^D4>o + Bj:'2*oh^-

+ B5c60 + BeD<l>0 + B7-D
2*o + VD34 

with the boundary conditions 

<t>!=D(Pi = 0 at Y = 0 and Y= 1, 

(6) 

where 

DU Aikl 
Bi = 2fe0o) -3k2

0U- D2U + — - + — - , 
Y R 

B2 = 

B3 = 

B4 = 

s6 = 

B6 = 

, r 4'fco 
R ' 

w - 3Uk0 + Sikl/R, 

- 2i/R, 

-kiv, 
Y 

-D2V--DV-kl 
Y 

(7) 

klV + 
4V 

Y 2 ' 

Bt=--V, and D = d/dY. 

The eigenvalue problem defined by (5) is the familiar Orr-Som-
merfeld problem for the parallel flow. In equation (6), which gives 
first-order corrections over the parallel flow theory, we note that the 
first two terms on the right-hand side represent the effects of the axial 
variation of the amplitude of the stream function for the disturbance, 
the third accounts for the axial variation of the wave number and of 
the spatial growth rate, and the remaining four terms represent the 
effects of the radial velocity component of the main flow; the last being 
the only effect considered by Shen, et al. [13]. 

For given values of co, R, and U(Xi, Y), the solution of the eigen­
value problem (5) may be expressed as 

UX1: Y) = A(X1)^(Y;X1) , (8) 

where /3 is the eigenfunction, and the amplitude function A(Xi) is 
given by 

dA 

dXx 
•• ikiiXJA, 

where 
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iki = b2(X1)/b1(X1), 

biiXr) = - £ * k / J + B2 (D^ - ^D/jj P*dY, 

* * ) - / / ! Bi~y2 + D*U+±DU\p* 

+ \2DU + —\ D/3* + B2D
2f3* 

+ B6I8 + BgD/3 + B7D
2jS + VD3/? 

dXi 

dfe0 

|8*dY, (9) 

where /3*(Y; Xi) is the adjoint eigenfunction corresponding to the 
eigenvalue ko- The solution of equation (9) is 

AiXx) = A0exp[iSk1(X1)dXl], (10) 

where AQ is an arbitrary constant of integration. 
Equations for evaluation of dfi/dXi, and dko/dX\ (required for 

finding b2(X\)) are 

L M^-) = Ai + A2 (dko/dXi), 
\0X1I 

(11a) 

with the boundary conditions 

dX 

where 

L = Z ) | - ^ H = 0 at 7 = 0 , 1 , ( l ib) 
1 \<>Xil 

•• iRko K^+f+w 

A2 = 4k0 \p2fi - kl$ - - DM + iR U(D2P--DP 

and 

dko 

dX 

+ P\2k0a-3Ukl-D2U + -DU 

- = - C1 Aifi*dY / f1 A2p*dY. 
1 Jo 1 Jo 

( l ie ) 

(12) 

Knowing dko/dXy from (12), d/3/dXi can be evaluated from the in­
tegration of equation (11). 

We note from this analysis that the effects of nonparallelism of the 
flow are to make the eigenvalue ko a function of Xi, to produce a 
correction ek\(X\) to ko and to make the mode shape ft vary in the 
axial direction. 

Computa t iona l P r o c e d u r e 
For the reasons given in Antia [23], we solved the following three 

equations: 

Dv -\—• + ikn u = 0, 
y 
Du 

D2u + • Au- RvDU - ikoP = 0, 

DP+Au + ikoDu = 0, (13) 

where 

A = kl + iR(koU - « ) , ? = ftp, 

with the boundary conditions 

v = Du = 0 at Y = 0, 

it = i; = 0 at Y = l , 

instead of the equation (5) for the eigenvalue ko. These equations are 
obtained by taking the infinitesimal disturbance as 

0.2 -

0 0 
U 

0.4 0 8 1.2 

Fig. 1 Velocity profiles at several axial locations 

[u, v, p] = [u(Y), v(Y),p(Y)] exp \i(k0X - uT)\ (14) 

and assuming the flow to be parallel. 
The main flow velocity field (Fig. 1) was found using the Hornbeck 

method and equations (13) were integrated using the fourth-order 
Runge-Kutta method. The eigenvalue, ko, was found in an iterative 
procedure using Muller's method [24] for fast convergence. With ko, 
fi and its derivatives known, a procedure similar to the foregoing one 
was used to solve the adjoint equations 

Dv* + — + ikdu* = 0, 

Du* _ / i7*\ 
D2u* + Au* + ikoP* - ik0 \Dv* + — = 0, 

DP* - Au* + Ru*DU = 0, 

with the boundary conditions 

Du* = o* = 0 at Y = 0, 

u* = v * = 0 at Y = 1 (no-slip condition). 

(15) 

(16) 

Since the eigenvalue for the main and adjoint problems is the same, 
no iteration is necessary while solving equations (15) and (16). 

With ko, ft and /3* known, dko/dXi is calculated by using fifth-
order composite Newton-Cotes quadrature formula [25] for finding 
the integrals in equation (12) numerically. The values of dfilbX\ are 
then given by the integration of equation (11a). It may be noted that 
the integrands in equation (12) vanish at Y = 0. 

From the solution of equations (13), ko(X\), /3(Y; X\) and its Y 
derivatives were also obtained for a given u> and R at three axial lo­
cations X — bX, X, and X + bX; bX taken as 10~6. Using central 
differences, bko/bXi and bfilbX\ were then obtained. It was found 
that the values of bko/bXi and dko/dXi were in agreement within 
computational accuracy; also dfl/bXi and bfi/bXi were in agreement 
at every point in the domain. 

Calculations were performed on a DEC 1090 computer that carries 
17 digits in double precision mode. Step size for the Runge-Kutta 
method was taken as 0.0025 and selective application of the Gram-
Schmidt orthonormalization technique was used to keep the solution 
vectors linearly independent during numerical integration; details 
being available in Garg [26]. 

G r o w t h R a t e s and Modif ied W a v e N u m b e r 
Shen [16] has suggested use of the growth rate based on the energy 

density E for determining the neutral stability characteristics of the 
nonparallel flows. This growth rate is given by 

gE(X)^-E-^~= ~(ko + tkl)i + ^ - ~ , 
dX 2cdXi 

(17) 

where 

= r1I[ |D j8|*+|fc0 |2 | /J |8 ldY', (18) 
Jo Y 
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27rY(u2 + i ; W , (19) 

and subscript i denotes the imaginary part of the complex quantity. 
It is well known [20] that for a nonparallel flow the growth rates are 
functions of both the streamwise and radial coordinates. Also, the 
different flow quantities have different growth rates and, therefore, 
will have different neutral curves. Apparently, one may choose any 
of the growth rates for the purpose of finding the critical Reynolds 
number and other stability characteristics but if the experimental data 
for comparison are available, one must obviously use the growth rate 
of the same flow quantity as that which was observed. The only ex­
perimental work on the stability analysis of the developing flow in 
rigid circular pipe is due to Sarpkaya [10]. Though he mentions that 
the streamwise component of the disturbance velocity was measured 
at different radii, he neither reported its magnitude nor the radii at 
which measurements were made. Since these details could not be 
obtained [27], it was decided to compute several growth rates. Neutral 
curves were found on the basis of gE and values of g^ and gu at the 
pipe axis since g^ and gu are functions of Y also. Here, g$ is the growth 
rate for disturbance stream function and gu is that for the streamwise 
component of velocity. It can be easily seen that at the pipe axis, gu (X, 
0) = gx/,(X, 0). Further, since the velocity field was obtained at a given 
X instead of X, all growth rates have been obtained for a given X 
value and, therefore, they are, hereafter, referred to as function of X. 
The modified wave number for any disturbance property Q is ob­
tained from 

wave number = d[arg (Q)]/dX, (20) 

where arg (Q) represents the phase of Q. One, therefore, gets different 
wave numbers for different disturbance properties. The modified 
wave numbers are, however, little different from the parallel-flow-
wave number feor- Therefore, the modified wave numbers, though 
computed, are not reported here. 

Results 
Growth rates based on u, \p, and E were obtained at X = 0.0005, 

0.001, 0.002, 0.0035, 0.005, and 0.007. Fig. 2 shows the growth rate 
based on i// as a function of Y for different combinations of X, R, and 
co. It is observed that in the region near the pipe wall the dependence 
of g^ on Y is quite strong, the maximum growth rate occurs at the pipe 
axis, and while g$ decreases gradually and uniformly with Y up to the 
boundary-layer edge for all combinations of X, R, and o>, its variation 
beyond the boundary-layer edge depends upon the value of X and 
upon the position of the (u> — R) point relative to the neutral curve 
on the a> — R plot. If the selected combination lies close to the neutral 
curve, g^ decreases suddenly near the boundary-layer edge and then 
increases near the pipe wall; the magnitude of the depression de­
creases as X increases or as one goes into the stable region away from 
the neutral curve. Maximum depression in the growth rate curve at 
any X and R is found to occur at frequencies midway between those 

X 
4) 
6 

5 
o 

C3 

PIPE 

RXIO = 14 

0.5 0.7 0.9 I.I 

Fig. 4 Various growth rates at X = 0.0035 and different R. ——, g^(X, O); 

corresponding to the upper and lower branches of the neutral curve. 
The location of this depression shifts with R and to at a fixed X. 

Figs. 3-5 show the variation oig^iX, 0) and gE(X) with o> at X = 
0.0005, 0.0035, and 0.007, respectively, for differentReynolds num­
bers. Similar curves were obtained at other values of X. It is observed 
that for any a> at a given X and R, g^(X, 0) is greater than gE and is 
positive for the widest range of frequencies. One can also obtain from 
these figures the neutral curves for the different flow quantities. Fig. 
6 shows these neutral'curves, at differentX, based on (i) g^iX, 0); 
(ii) gE(X); (Hi) the parallel-flow theory (i.e., when the imaginary 
part of ko is zero). It is observed that the neutral curves are different 
for different flow quantities. In comparison to the results for the 
parallel-flow theory, the nonparallel effects make the flow unstable 
at lower Reynolds number and for a wider range of frequencies. The 
actual amount of such an effect depends on the choice of the growth 
rate used for determining the neutral curve. The growth rate gf(X, 
0) gives the minimum critical Reynolds number at all X., 

Fig. 7 shows the variation of the critical frequency, a)c, and the 
critical Reynolds number, Rc, as obtained on the basis of g^ (X, 0), gE, 
and the parallel-flow theory against X. It is observed that the critical 
frequency, obtained from the different growth rates, decreases first 
sharply and then gradually with increasing X in the entry region; <oc 
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gE; — , based on parallel-flow theory 

obtained from g$(X, 0) being maximum and that from the parallel-
flow theory being minimum. However the Rc versus X curves pass 
through a minima. The minimum critical Reynolds number corre­
sponding to g^,(X, 0),gE(X), and to the parallel-flow theory are 9700 
atX = 0.00325,11,000 atX = 0.0035, and 11,700 atX = 0.0035,_re-
spectively. In comparison to the results based on g<p(X, 0) and gjs(X), 
the parallel flow theory overpredicts the critical Reynolds number 
by 29.8 percent and 3.7 percent, respectively, at X = 0.0005, by 20.0 
percent and 6.4 percent, respectively, at X = 0.0035, and by 26.5 
percent and 12.0 percent, respectively, atX = 0.007. This implies that 
the Rc versus X curves obtained on the basis of nonparallel theory 
are flatter than those corresponding to the parallel-flow theory; Rc 

does increase beyond X = 0.0035 but not so sharply as for the paral­
lel-flow theory. Physically, it means that the developing flow is un­
stable over a larger inlet length of the pipe. The first instability of the 

X x icr 

Fig. 7 Variation of Rc and 0)o with X. — , based on g^,(X, O); - - -, based 
on £fEi — > based on parallel-flow theory; 0 experimental data [10] for Rc 

flow, on the basis oig^(X, 0), gE, and the parallel-flow theory, is found 
to occur in the range 30 < X < 35, 35 < X < 43, and 36 < X < 45, 
respectively. 

Also shown on Fig. 7 are the critical Reynolds numbers obtained 
experimentally by Sarpkaya [10] for axisymmetric disturbances. The 
first instability was experimentally observed to occur in the range 45 
< X < 75. We note that Rc versus X curve obtained on the basis of 
g$(X, 0) is closest to these data; the experimentally obtained critical 
Reynolds numbers being lower than those obtained from the non-
parallel theory. As Sarpkaya himself noted, his critical Reynolds 
number may be low due to the superposition of some nonaxisymmetric 
disturbances on the axisymmetric disturbance as well as due to a 
higher initial disturbance level than that warranted by the linear 
theory used here. Moreover, the radii at which the streamwise com­
ponent of the disturbance velocity was measured by him is not known. 
There is, therefore, the need for a more carefully conducted experi­
mental study before any meaningful comparison can be made with 
the theoretical results presented here. 

Conclusions 
Nonparallel effects on the-stability of developing flow in a pipe have 

been studied at several axial locations. The results are found to be 
quite different from those obtained from the parallel flow theory. 

It has been found that the critical frequency, obtained from dif­
ferent growth rates, decreases first sharply and then gradually with 
increasing X. However, the critical Reynolds number versus X curves 
pass through a minima. The minimum critical Reynolds number 
corresponding to g^{X, 0), gE(X), and the parallel-flow theory are 
9700 atX = 0.00325,11,000 aiX= 0.0035, and 11,700 a tX= 0.0035, 
respectively/In comparison to the results based on g^(X, 0) and 
gE(X), the parallel-flow theory overpredicts the critical Reynolds 
number by 29.8 percent and 3.7 percent, respectively, at X = 0.0005, 
by.20.0 percent and 6.4 percent, respectively, a tX = 0.0035, and by 
26.5 percent and 12.0 percent, respectively, at X = 0.007. The Rc 

versus X curves obtained on the basis of nonparallel theory are flatter 
than those obtained from the parallel-flow theory and, therefore, the 
actual flow remains unstable over a larger inlet length of the pipe than 
its parallel-flow approximate. The first instability of the flow, on the 
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basis ofg^ffC, 0), £ E ( X ) , and the parallel-flow theory, is found to occur 

in t h e range 30 £ X < 35 ,35 < X < 43, and 36 < X ^_45, respectively. 

T h e Rc versus X curve ob ta ined on t h e basis oig$(X, 0) is closest t o 

t h e expe r imen ta l d a t a of S a r p k a y a [10]. 
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Rotating Compressible Flow 
Over the Edge of a Finite Disk 
Numerical and asymptotic solutions of the similarity equations governing the laminar 
compressible rotating flow near the edge of a finite disk are presented for a wide range of 
the Prandtl and Eckert numbers and the disk-to-external flow ratios of azimuthal veloci­
ty and temperature. By appropriate transformations, the compressible flow is reduced 
to a formulation similar to that of the incompressible flow. Wall heating and dissipation 
effects are shown to be equivalent to an increment of the velocity of the disk in the sense 
opposite to that of the outer flow. In the limit of small velocity or temperature difference 
between the disk and the outer flow, the solutions show how an Ekman layer is started at 
the edge. 

Introduction 
The boundary-layer equations governing the incompressible, 

laminar, rotating flow over a finite disk can be reduced near the disk 
edge to a set of similarity equations which determine the initial growth 
of the boundary layer [1, 2]. The conditions under which such simi­
larity solutions fail to exist for a disk rotating in the opposite sense 
to that of the external flow were considered by Bodonyi and Stew-
artson [3]. Numerical solutions of these equations were used in studies 
of the boundary-layer development on a finite disk in a rotating fluid 
[4-6]. For the compressible isothermal flow the solution was shown 
by the present authors [7] to be quite similar to that of the incom­
pressible flow. However, neither the heat transfer in incompressible 
flow, nor the fully compressible flow have been examined in any sys­
tematic way. In particular, it is important to know the conditions 
under which initial (edge) similarity solutions do exist, especially in 
view of the nonexistence of solutions of the terminal (axis) similarity 
of the energy equation for an infinite rotating disk [8,9] when the axial 
velocity component is directed away from the disk. Even in such cases 
the edge similarity solution is needed for starting the solution (not 
necessarily of boundary-layer type) for the flow and temperature field 
over the whole disk. 

In this paper we consider the generalization of the initial similarity 
problem for the fully compressible, laminar flow with heat transfer 
for the whole range of the governing parameters, namely, the Prandtl 

1 During 1980-1981, EPRI, P. 0. Box 10412, Palo Alto, Calif. 94304 
Contributed by the Applied Mechanics Division ofTHB AMERICAN SOCIETY 
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time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, May, 
1980; final revision, September, 1980. Paper No. 81-APM-19. 

and Eckert numbers, tr, a and the disk to outer flow ratios of the azi­
muthal velocity Vw and temperature Tw. Numerical solutions of this 
two-point boundary-value problem are presented together with as­
ymptotic analytical solutions for high, low, and unity Prandtl num­
bers, Eckert numbers of order one, and velocity ratios from zero to 
almost unity (small perturbation). We consider first the uncoupled 
flow and energy equations describing heat transfer in an incom­
pressible flow. In this context particular attention is paid to the 
small-perturbation flow of a disk rotating slightly slower than the 
outer flow. The solution of this case shows that the boundary layer 
thickness and the radial mass flow depend upon the Rossby number 
to I power. This initial boundary-layer flow should eventually develop 
into the Ekman layer as it moves radially inwards toward the axis. The 
solution of the energy equation for the incompressible flow exhibits 
the trends of the classical boundary-layer theory for high, unity, and 
low Prandtl numbers. The heat-transfer coefficient is proportional 
to the Rossby number to \ power, thus illustrating the analogy be­
tween momentum and heat transfer. Further, the fully compressible 
flow (coupled equations) is considered and the influence of dissipation 
and wall heating is analyzed for different values of the Prandtl 
number. For most of these cases the compressible flow can be reduced 
by suitable transformations to that of an equivalent incompressible 
flow, thus showing clearly the influence of compressibility on the flow 
field and heat transfer. Wall heating and dissipation effects are shown 
to be analogous to a negative increment of the disk rotation in the 
equivalent incompressible flow. Due to an increase in temperature 
the density is decreased near the disk surface and the effect of the 
externally imposed pressure gradient is enhanced, resulting in an 
acceleration of the fluid radially inward. The solutions presented here 
can be used in the study of heat and mass transfer in shrouded disk 
systems for both compressible and incompressible flows. 

Governing Equations 
The boundary layer equations for rotating, steady, axisymmetric, 

laminar, compressible flow over a finite disk of radius a are 
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The bar denotes dimensional variables. In these equations r and 
z are cylindrical coordinates in a stationary frame with the origin at 
the center of the disk. The radial, axial, and azimuthal velocity com­
ponents are u, w and V, respectively; p , p, and T denote pressure, 
density, and temperature. We assume an ideal gas with gas constant 
R, constant heat capacity cp , Prandtl number <r, and dynamic vis­
cosity jl & T. _ _ 

The angular velocity of the disk Qw and its temperature Tw are 
prescribed. The boundary conditions at the disk surface are thus 

z = 0: 0; V=V„ = Qulr; T=TW (7) 

Far from the disk the fluid is isothermal at temperature T\ and ro­
tating with a constant angular velocity Qi, 

= w = 0; V = Vi = fiir; T = Tx (8) 

Thus the pressure in the outer flow is given by dp/dr = pirflf = 
PiVj/r. We now use a Dorodnitsyn-Howarth transformation of the 
axial coordinate 

y= rz(p/p!)d2= r (TjT)dz 
Jo Jo 

and introduce a stream function \j/ such that 

_ _ lp\d\j/_ 1 dtp 

r p dz f dY 

Thus (l)-(4) may be written as 

l d * _ d n di/A _ 1 d^_d_ [1 d^\ _ V^ 

fdYdr\rdY) rdrdY\rdY) r 

(9) 

(10) 

_^Zf+?1-5i(lM) (11) 
Ti r d Y 2 \ r d Y / 

1 di/- dV 1 df dV 1 ty = _ d2V 

r dY dr r dr dY 
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r d Y dr 
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r dr dY r 2 dYcpTi 

? i d 2 T 

T 
— v\ 

a dY2 cD dY\ 

l d ^ \ 2 /dV\: 

rdY/ +ldYJ 

(12) 

(13) 

where v = JI/p. We note that the radial pressure gradient term on the 
right side of (12) is enhanced by the factor TIT\ representing a change 
in density due to temperature variations. Finally, we introduce an edge 
similarity transformation of Stewartson type [2], and dimensionless 
variables 

/fil\l/2 
— Ytm; 

\vil 

£ = 1 - r/a 

4* = aHQxh)1'2^4^) 

V = flJ2iV(5j)=afii[l-u(jj)] 

T=T1[l + t(^)] 

(14) 

(15) 

In the following we shall use both V—the azimuthal velocity ratio and 
v—the azimuthal velocity difference, where V = 1 — v. In terms of 
these variables the momentum and energy balances become 

V ~ UV + bp'2 = l + t-V2 

V" - %1/V = 0 

t" - l<nf/t' + aaV'2 = 0 

(16) 

(17) 

(18) 

where' = d/drj, and a = Qja 2/cpTi — (y — 1)M2 is the Eckert number, 
closely related to the Mach number M. The boundary conditions 

WO) = ^'(0) = 0; V(0) = Vw = 1 - uw; t(0) = tw = Tw - 1 
^(a . ) = 0; V(<=) = 1; t (») = o (19) 

where Tw = TJTi and Vw = VJaQi. 
The momentum equations (16) and (17) are quite similar to those 

of the incompressible case [6], the only difference being in the pressure 
gradient term 1 + 1 in the radial equation (16) which reduces to unity 
for an incompressible flow. This term couples the energy equation 
with the momentum equations. Thus compressibility effects are due 
to changes in density caused by temperature variations across the 
boundary layer, driven by wall heating or cooling (when tw ^ 0) or 
by dissipation (when a ^ 0) through the energy balance which con­
sists of heat diffusion, convection, and dissipation. Note that tem­
perature changes due to pressure work do not appear in the edge 
similarity transformed equations. Thus the isothermal compressible 
flow defined by zero dissipation with no wall heating (tw = a = 0) is 
identical with the incompressible flow field in this transformation. 

In equations (16)-(19) the four governing parameters are: the 
disk-to-external flow velocity ratio Vw (or the difference vw = 1 — Vw), 
the temperature difference tw, the Eckert number a, and the Prandtl 
number a. Some significant values of these parameters and their 
physical meaning are given as follows: 

Velocity Ratio: Vw < 0, disk rotating in opposite sense to the 
outer fluid, not considered here in 
detail; 

= 0, stationary disk; 
~ 1 - e, e « 1, small perturbation (velocity); 
> 1, outward radial flow, no initial simi­

larity. 
Temperature tw < 0, wall cooling 

Excess: 
h = e, \e\ « 1; small perturbation 

(thermal); 
= 0, disk at the same temperature as the 

outer fluid. 
> 0, wall heating. 

Dissipation: a = 0, no dissipation; 
= e, 6 « 1, small perturbation (dissipa-

tive); 
= 0(1), moderate dissipation; 

Prandtl a « 1, thick thermal layer; 
Number: 

= 1, equal thermal and viscous boundary-
layer thickness; 

» 1, thin thermal layer. 

The most interesting results of the solution, beside velocity and 
temperature profiles, are the momentum and heat fluxes at the solid 
boundary and mass flux in the boundary layer, which are related to 
xp"(0), V'{0), \p(<°), and t'(0). The effect of compressibility on these 
quantities and on the very existence of the edge similarity solutions 
are of both theoretical and practical interest in the solution of 
shrouded disk problems. 

A double integration of (16), following [6], shows that 

- ^ ( - H C" dr,' C 
! Jo Jo 

V2-l-t+-i/'2 

4 
dr, = 0 (20) 

and from (17) we see that V is monotonic. For zero dissipation a = 
0, (18) shows that the temperature is monotonic also and in this case 
there are no solutions of the boundary-value problem when V\ > 1 
+ tw. This condition should be compared with the equivalent condi-
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Fig. 1 Incompressible flow 

tion for the incompressible case, i.e., Vw > 1. We note that in the 
compressible case with zero dissipation, a solution is possible even 
if the azimuthal velocity of the disk is higher than that of the outer 
flow, provided the disk is sufficiently heated (,tw > 1)! 

In the following we first briefly review the incompressible flow and 
present solutions of the heat transfer problem, dealing separately with 
wall heating and dissipation effects. Then, the fully compressible flow 
is solved for small and finite perturbations and different values of a, 
using classical methods [10, 11] of boundary-layer theory. All nu­
merical solutions were obtained by an optimization algorithm for 
boundary-value problems. 

I n c o m p r e s s i b l e F l o w 
The momentum equations (16), (without the compressibility term 

t) and (17) are uncoupled from the energy equation (18). Solutions 
of these equations for different values of Vw = 1 — vw both positive 
and negative, which were published before [2-6], were reproduced as 
a check of the numerical method. The transformation: 

(21) 

(22) 

(23) 

(24) 

In the small perturbation limit (uw —• 0), this transformation re­
moves vw from the equation (22) and from the whole system. The 
numerical solution for this case yields 

in 

i = u]>*F(v); v = 

(16), (17), and (19), yields 

P"' — IFF" + IF'2 = 

G"-\ 

G(0) = 1 

F(0) = F'(0) 

UiuG(rj); ri 

2G -uwG2 

FG' = 0 

G(°») = 0 

= 0; *"(») = 

= V~U 

( ' -

| 
-o) 

1/4, 

did 

Vw . 0: i?(<x>) = -1.759; G'(0) = - 0.4769; F"(Q) = -1.527 

This describes the initial growth of the boundary layer which will 
develop eventually into the classical Ekman layer for a slower disk 
as we move radially inward. We note that the initial similarity solution 
is still nonlinear (as opposed to the Ekman solution) and that vw plays 
the role of a Rossby number. In general, the dependence of stress 
components and mass flux on vw is 

!/<"(0) = F"(0)vsJ4; i/(0) = G'(0)v6J'; f (») = F(<»)vlJ4 

Thus the mass flux is of the order of the Rossby number vw to the \ 
power. 

-

-

_ 

1 

Eq(27L 

1 

1 

EqJJOl 

i 

I I I I 
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Fig. 2 Heat transfer in incompressible flow over a stationary disk (Vw = 0); 
— Numerical solution of the complete system (16)-(19); Asymptotic 
solutions 

Numerical results of the system (22)-(24) are shown in Fig. 1. 
(Stewartson's stationary disk is represented by 

uw = 1: F(°°) = -1.6916, G'(0) = -0.43985, F"(0) = -1.0681). 

These results, presented in [6] in terms of unsealed variables equiv­
alent to our \p,v,r), were recomputed here and are presented in terms 
of the vm—scaled variables F, G, 5j. Note that in the present scaling 
F{<*>) and G'(0) are nearly independent of vw and all three variables 
fall on almost straight lines. 

Heat Transfer in Incompressible Flow. The energy equation 
(18) is linear and its solution can be written as 

t = tw6h{n) + a6d(v) (25) 

Here 6h, 8d represent wall heating and dissipation contributions. The 
separation of the equations for #/, and 6d and their formal solutions 
in terms of integrals of \p are straightforward. Numerical results for 
a wide range of a are shown in Fig. 2, together with asymptotic solu­
tions for limiting values of a as listed in the following. 

Wall Heating Effects, a = 1. The azimuthal momentum and 
energy equations are identical in this case and the temperature is 
linearly dependent on the azimuthal velocity 

:±: 0 ; ( O ) = ^ = G ' ( O ) ^ (26) 
Uw Vw 

and the dependence of 0j,(O) on uw is closely related to that of 
u'(0)—see Fig. 1. 

a —- 0. The thermal layer is much thicker 0(er-1) than the viscous 
layer, therefore we can assume \j/~ip(a>) and the solution is 

dh = exp [frtMr,]; 4 ( 0 ) = ^ ( » ) = fru^F^) (27) 

a —<• «>. The thermal layer is much thinner 0(cr~1/3) than the vis­
cous one, therefore we can assume )p ~ bp"(0)v2 a r , d the solution is 

6h = l - p ( i ; - ^ , 
13 8 r W ; (4(0) 

T l / 3 

2r(4/3) 
[**«>)] 1/3 

T l / 3 

21X4/3) 
i/4 \F" (0)] i/3 vT[F»(0)\ (28) 

Here P(a,x) is the incomplete Gamma function [12]. 
From (26)-(28) and Fig. 1 it is seen that (4(0) is roughly propor­

tional to vH* for all values of a because G'(0), F(») , and [F"(0)]1/3 are 
weakly dependent on uw. Note the momentum and heat transfer 
analogy in this case. The asymptotic behavior for both high and low 
a is shown by dashed lines in Fig. 2. 

Effects of Viscous Dissipation, a = 1. The solution is 

6d = b(vw -v) = K G ( 1 - G); 
U0) = -h>wV(0) = - K / 4 G ' ( 0 ) (29) 
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The dependence of d'd(0) on vw is closely related to that of v'(0)—see 
Pig. 1. Due to the fact that G'(0) is a weak function of vw, 6'd(0) is 
roughly proportional to v^j4; this result should be compared with that 
of (26) which shows that 8'h(0) °= uj/4. 

a —* o. In this case two regions must be considered: an inner layer 
i] = 0(1) in which convection is negligible and an outer layer r\ = 0(o"~1) 
in which dissipation is negligible. Thus 

0 » = a f " rft/u'2 = <rv9J4 f " dr,G'Hv) 
Jo Jo 

(30) 

For a stationary disk a numerical integration yields vw = 1:6*'d(0) = 
0.322 a. 

<r —• °°. Again two layers are matched to obtain the solution. The 
outer layer r\ = 0(1) is characterized by negligible heat conduction. 
Matching the layers we obtain: 

e'M - -V/'(o) 

- - r -p/V„, / 4[F"(0)]1 / 3G'2(0) (31) 

The main factor of the functional dependence of 0^(0) on vw from (29), 
(30), and (31) is vl/4. The asymptotic behaviour of Bd(0) for both high 
and low a is shown by dashed lines in Fig. 2 for stationary disk (uw = 
1). 

C o m p r e s s i b l e F l o w F i e l d 
We consider now the coupled system of equations (16)-(19). We 

present numerical and analytical solutions for a = 1, 0, •» obtained 
by reducing the problems to incompressible flows using suitable 
transformations. Special attention is paid to small perturbation 
cases. 

a = 1. Small Perturbation tw, vw « 1. The centrifugal term—u2 

in (16) and the dissipation term a m / 2 in (18) are negligible (the latter 
provided a is not too large). Due to the fact that the energy and azi-
muthal equations are identical in this case, one can use a generalized 
(temperature plus azimuthal velocity) variable of the form 

X = u + k (32) 

This satisfies 

t _X_ 

Xw vw tw 

Combining the energy and azimuthal momentum equations we ob­
tain 

V ~ IW + W2 = 2X (33) 

X" - | f X' = 0 (34) 

f(0) = f'(0) = 0; X(0) = Xw = vw + \tw 

,/,<(«,) = 0; X ( » ) = 0 (35) 

The problem is thus reduced to that of an equivalent incompressible 
flow over a disk rotating with an azimuthal velocity difference (relative 
to the outer flow) larger than that of the original disk by an amount 
Uw, i.e., Uu,,eq = Xw = uw + \tw (or V„,,eq = 1 - Xw). The physics be­
hind this compressibility effect due to wall heating is quite clear. Wall 
heating (tw > 0) will cause an increase in temperature and a decrease 
in density near the disk surface. Thus the centrifugal force is reduced 
near the disk surface and the driving force of the boundary-layer flow, 
i.e., the difference between the externally imposed pressure gradient 
and the centrifugal force is increased relative to the incompressible 
case. In other words wall heating is equivalent to a reduction in the 
velocity of the disk in a way quite similar to the corresponding Ekman 
layer [8]. Cooling the disk has of course the opposite effect. 

A transformation similar to (21), with Xw replacing vw, i.e., 

i> = X)>AF%; X = Xu,G(r,); v = X*WV (36) 

us to use the solution of (22)-(24) obtained for the incompressible flow 
with small vw and shows that wall heating will increase the radial mass 
flux and the boundary-layer thickness by the factor (1 + i(£u,A>„J))

1/4, 
Moreover, the stress components and the heat transfer at the wall are 
increased by compressibility, as shown by 

iHO) = X3J*F"(0); t/(0) = X i \ G ' ( 0 ) ; t'(Q) = Xl>4twG'{0) 

(37) 

This solution shows how a compressible Ekman layer is started at the 
edge. The condition under which the small perturbation solution fails 
to exist is found easily from the equivalent incompressible flow field 
which states that there is no similarity solution if the velocity of the 
disk exceeds unity, i.e., the velocity difference is less or equal to zero. 
In terms of physical variables this means that for 

Xw = vw + ltw<0 or TW < 2Vw - 1 (38) 

no solution of the edge similarity type is possible. The physical sig­
nificance of (38) is that cooling (tw < 0) has an effect similar to in­
creasing the velocity of the disk. Therefore, above a limiting value of 
cooling, tw = — 2vw, the radial mass flux is reversed as for the flow over 
a faster disk. For vw = 0, i.e., a disk rotating with the same velocity 
as the fluid, a boundary-layer flow is induced by thermal driving only 
if tw > 0. 

Finite tw, vw. No Dissipation, a = 0. With the generalized variable 
X defined in (32) and the transformation (36) the problem is again 
reduced to the solution of the incompressible flow (22)-(24) with vw 

replaced in (22) by vw,eq = vl/Xw = vw(l + h(tw/vw))~l. Thus, in ad­
dition to the compressibility effect defined by the transformation (32) 
which was explained before, we find also a decrease of the centrifugal 
term in the radial momentum balance. In terms of the corresponding 
incompressible case, it is equivalent to an increase of the azimuthal 
velocity of the disk—an effect opposing the first one described by 
(36). 

Thus nonlinearity tends to decrease the main compressibility effect 
due to wall heating. The existence condition (38) is still valid. It is 
interesting to note that for wall cooling (tw < 0) the velocity of the 
equivalent disk in incompressible flow is reduced (vWil!q increased) 
and eventually it may become negative (t)Wieq > 1), i.e., the equivalent 
disk is rotating in opposite sense to the original one! Clearly, the 
rotation in the physical space does not change. Let us illustrate the 
solution by means of a numerical example: We consider a stationary 
disk uw = 1 heated to a temperature 50 percent higher than that of 
the external fluid, i.e., tw = 0.5. In this case the velocity difference of 
the disk in the equivalent incompressible flow is uWim = 0.8 (Vw 

0.2) and the generalized variable at the wall is Xw 

merical values of interest are 

'-'ly.eq — u . o ^ v wteq — 
. 1.25. The nu-

$(<*>) = -1.8036, \p"(0) = -1.3763, 

u'(0) = -0.4738, t '(0) •• -0.2368. 

These values (confirmed by a fully numerical computation) should 
be compared with those given in the foregoing for an incompressible 
flow over a stationary disk. It is clear that the first effect is stronger 
than the second; thus the overall effect of compressibility and wall 
heating is to increase mass, heat, and momentum transport in the 
boundary layer. It is possible to solve in a similar way the general case 
with dissipation. 

Finite tw, vw With Dissipation. The generalized variable now takes 
the form 

X = u + it + iav2 (39) 

and the relation between temperature and azimuthal velocity is 

t= — v + iau(uw-u) (40) 
Vw 

The transformation (36) with Xa i + htw + \CLV\, will reduce also 

reduces the system (33)-(35) to the form of (22)-(24). This enables 
this problem to the solution of an equivalent incompressible flow of 
the type (22)-(24). The velocity of the equivalent disk is now 
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Fig. 3 Compressible flow — a = 0; • 

l + ha 

1 i I
 w i I 

1 + 2 + i<XI>u> 

(41) 

The influence of dissipation is equivalent to an additional wall 
heating, i.e., an increase of the wall temperature by the amount JaoJ,. 
For a —• 0 this solution reduces to that of wall heating without dissi­
pation. For highly dissipative systems or when the wall heating is 
negligible vwfiti may exceed unity, i.e., the "equivalent disk" is rotating 
in an opposite sense to that of the physical problem. Let us consider 
a numerical example: a stationary disk (uw = 1) without wall heating 
(tw = 0) and unit Eckert number (a = 1). The equivalent disk velocity 
is now u,„ieq = 1.2, i.e., the equivalent disk is rotating in the opposite 
sense with VWlBq = -0.2. Using the numerical results of Bodonyi and 
Stewartson [6] for opposite rotating incompressible flow we obtain 

f (oo) = -1.7728; \p"(Q) = -1.1115; 

v'(0) = -0.4558; t'(0) = 0.2279 

These values were checked by a fully numerical computation of 
(16)-(19). This example illustrates that the equivalence between 
thermal and shear driving in this rotating flow can be extended to the 
"opposite rotation" range. In other words a sufficiently high heating 
(due to dissipation in this case) will be equivalent, from the point of 
view of the second (nonlinear) compressibility effect, to applying an 
additional counter-rotation to the disk. 

Numerical results are presented in Fig. 3 for a = 0 and 2 as plots 
of the mass, momentum, and heat-transfer coefficients versus wall 
temperature tw. From these graphs it is seen that the effect of cooling 
or heating the disk to 50 percent and 150 percent of the fluid tem­
perature, respectively, is almost linear for all transport coefficients, 
and from other numerical results (not shown) the same is true for 
dissipation effects up to a = 2. The heat-transfer coefficient is the 
most affected by compressibility and the tangential stress is only 
slightly changed by wall heating and dissipation. 

The existence conditions for the general case with u = 1, obtained 
•om the 

< 0, i.e., 

Xw = uw + \tw + zauw < 0 

there will be no boundary-layer solution of edge similarity type. For 
a disk rotating with the same velocity as the external fluid (uw = 0) 
a boundary-layer flow exists if the disk is heated. Another limitation 
to be considered—again from the equivalence with the incompressible 
flow—is that found by Bodonyi and Stewartson in [6] for an opposite 
sense of rotation of the disk, which states that for vw X; 3.066 (Vw < 
-2.066) there will be no similarity solution. Applying it to the general 
case we obtain the existence condition 

l + ha 

1 + \ V \avw 

• < 3.066 

which states that the solution exists when the disk is cooled up to a 
certain limit, depending upon its velocity and Eckert number 
value. 

a —• 0. We have two layers: an inner, viscous, layer rj = 0(1) and 
an outer, thermal layer y\ = 0(<r-1). Within the inner layer temperature 
changes are 0(<r) and therefore negligible in the momentum equations. 
The solution of the inner layer must satisfy the boundary conditions 
at T] = 0. 

In the outer layer we define a new coordinate ?/o = ot) to obtain the 
equations which constitute a geostrophic momentum balance and a 
thermal conduction—convection balance. 

2v — v2 + t = 0; \p = constant 

t" - Iff = 0 (42) 

with the boundary conditions at ?jo ~* °°- Matching with the inner 
layer yields the boundary conditions at T)Q = 0 for the outer layer and 
those at r/ —- <» for the inner one. These conditions for the inner layer 
read 

,//(«,) = 0; u(oo) = 1 - (1 + fJ i /2 ; t(<=) = tw+ O(o-) (43) 

Note that the azimuthal velocity has an overshoot at the edge of the 
inner layer. The inner solution can now be found by reducing the 
problem to an equivalent incompressible flow (34)-(37): 

f = (1 + tw)V*vl%F(rj); v = 1 - [1 • 

v = m + tw)-iMv-$ 

vw,m = 1 - (1 - vw)(l + U ~ 1 / 2 

,G(^)](l + t w ) 1 

(44) 

(45) 

Compressibility effects on the flow field in this case come mainly from 
wall heating because dissipation effects are 0(a) and their influence 
is limited to heat transfer at the wall. Increasing wall temperature is 
equivalent to a decrease of the velocity of the disk and correspondingly 
an increase of the mass and momentum transport in the boundary 
layer. Cooling (£„, < 0, Tw < 1) has an opposite effect, i.e., it is 
equivalent to an increase of the velocity of the disk. 

The existence conditions are found from the equivalent incom­
pressible flow which requires that vWteq ^ 0, i.e., 

1 - vw < (1 + i j 1 / 2 or VW<TU2 

(Although (17) does not hold in this case for the equivalent flow and 
the azimuthal velocity is not monotonic, the existence condition is 
still valid.) The solution of the energy equation is quite similar to that 
of the incompressible case. The temperature is obtained by matching 
inner and outer values of the function t(ri) and its derivative at 77 —• 
<«>, ?7fj ^ 0. The final result for the heat transfer at the wall is 

t'(0) = lo-Cl + tw)^VlJ^F(«>)tw 

-«<r(l + tw)5'4vi%§J dr,G'Hri) (46) 

The first term on the right-hand side of (46) is contributed by wall 
heating and the second by dissipation. Thus the inner layer is almost 
isothermal (at wall temperature) in this case, the main compressibility 
factor being the wall heating, while dissipation affects only the heat 
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transfer at the disk surface. The outer layer is characterized by a 
geostrophic (momentum) balance and its main function is to adjust 
the azimuthal velocity overshoot at the edge of the inner layer and 
the temperature difference between the disk and outer fluid. 

a -* oo. Wall Heating, No Dissipation. The solution is quite 
similar to that of the incompressible case. In the outer layer i\ = 0(1) 
the energy equation is reduced to t' = 0 with the boundary condition 
£(°°) = 0 i.e., the outer layer is isothermal which means, in our case, 
incompressible. The temperature variations take place within the 
inner layer T\ = 0(<7_1/3). Using the inner layer variable rn = a1/ari and 
the definition (25) of 8t,, the incompressible flow and its solution (28) 
are recovered. Formally, the flow variables are obtained from an ex­
pansion in negative powers of o-, viz., 

f = <r-«f1(,i)+<r-
1W,i) + ... (47) 

v = vw + a-^vMi) +... (48) 

The solution of the first-order flow equations is 

<h = bP"(0W\ v1 = u'(Q)n (49) 

and the solution of the leading order energy equation is identical with 
that of the incompressible case. In conclusion, for large Prandtl 
number, compressibility effects due to wall heating are not felt in the 
first-order solution due to the fact that the outer (momentum) layer 
is isothermal (i.e., incompressible), the inner (thermal) layer is very 
thin and its flow values are imposed by the outer layer. 

Concluding Remarks 
Compressible edge-similarity solutions were found for a wide range 

of the governing parameters Vw, Tw, a, and a and existence conditions 
were established. These solutions can be used to start computations 
of the rotating flow field over a finite disk; even in cases for which the 
solutions for the central part of the disk are not of boundary-layer 
type. This applies also to heat transfer problems in shrouded disk 
systems for both compressible and incompressible flow. 

For the small-perturbation, incompressible case, the viscous 
boundary-layer thickness and the radial mass flow are related to vw

 1/4. 
In our case vw is the Rossby number and the solution shows how an 
Ekman layer starts at the edge of the disk. It turns out that for finite 
perturbations, the flow variables (stresses at the disk surface, radial 
mass flow) when normalized by suitable power of vw in the same 
manner as the small perturbation case, show an almost linear de­
pendence on vw up to uw ~ 2 even when the disk is rotating in opposite 
sense to the fluid. 

For a compressible flow, wall heating and dissipation effects are 
equivalent to a decrease in the velocity of the disk thus increasing 
stresses and mass flow. Wall heating and dissipation effects are 
equivalent to a negative increment of the velocity of the disk in a 
virtual incompressible flow. Thus thermally driven flows can be 
produced even when the disk is rotating with the same or higher ve­
locity than the outer fluid provided the disk is heated to a sufficiently 
high temperature. Cooling the disk has an opposite effect, equivalent 
to an increase of the velocity of the disk thus suppressing the boundary-
layer flow. 

Acknowledgment 
This research was partially supported by the Technion Fund for 

the Encouragement of Research (Grant No. 030-278). 

References 
1 Schultz-Grunow, F., "Der Reibungswiderstand rotierender Scheiben 

in Gehausen," Zeitschrift fiir Angewandte Mathematik und Mechanik, Vol 
15,1935, pp. 191-204. 

2 Stewartson, K., On Rotating Laminar Boundary Layers, Freiberg 
Symposium Boundary Layer Research, Springer-Verlag, 1958, pp. 59-71. 

3 Bodonyi, R. J., and Stewartson, K., "Boundary-Layer Similarity Near 
the Edge of a Rotating Disk," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
42,1975, pp. 584-590. 

4 Mack. L. M., "The Laminar Boundary Layer on a Disk of Finite Radius 
in a Rotating Flow—Part 1," Jet Propulsion Laboratory, Pasadena, Calif., T.R. 
32-324, May 1962. 

5 Rogers, M. H., and Lance, G. N., "The Boundary Layer on a Disk of 
Finite Radius in a Rotating Fluid," Quarterly Journal of Mechanics and Ap­
plied Mathematics, Vol. 17, Part 3,1964, pp. 319-330. 

6 Belcher, R. J., Burggraf, O. R., and Stewartson, K., "On Generalized-
Vortex Boundary Layers," Journal of Fluid Mechanics, Vol. 52, Part 4,1972, 
pp. 753-780. 

7 Toren, M., and Solan, A., "Laminar Boundary Layer on a Finite Disk 
in a Rotating Compressible Isothermal Flow," ASME Journal of Fluids En­
gineering, Vol. 101, June 1979, pp. 166-172. 

8 Riley, N., "Thermally Induced Boundary-Layer Flows in a Rotating 
Environment," Journal of Fluid Mechanics, Vol. 29, Part 2, 1967, pp. 241-
257. 

9 Olander, R. D., "Unsteady Heat and Mass Transfer in the Rotating-
Disk—Revolving—Fluid System," International Journal of Heat and Mass 
Transfer, Vol. 5,1962, pp. 825-836. 

10 Stewartson, K., The Theory of Laminar Boundary Layers in Com­
pressible Fluids, Oxford Mathematical Monographs, Oxford, 1965. 

11 Riley, N., "The Heat Transfer From a Rotating Disk," Quarterly Journal 
of Mechanics and Applied Mathematics, Vol. XVII, Pt. 3, 1964, pp. 331-
349. 

12 Abramovitz, M., and Stegun, J., eds., Handbook of Mathematical 
Functions, Dover Publications, Inc., New York, p. 260. 

254 / VOL. 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



J. N. Tokis 
Professor, 

Department ol Physics, 
Higher School of Engineering 

Technologists of KATEE, 
Koukoull, Patras, Greece 

G. C. Pande 
Visiting Professor, 

Department of Mechanics, 
University of Patras, 

Patras, Greece 

Unsteady Hydromagnetic Flow 
Near a Moving Porous Plate 
Unsteady two-dimensional flow of a viscous incompressible and electrically conducting 
fluid near a moving porous plate of infinite extent in presence of a transverse magnetic 
field is investigated. Solution of the problem in closed form is obtained with the help of 
Laplace transform technique, when the plate is moving with a velocity which is an arbi­
trary function of time and the magnetic Prandtl number is unity. Three particular cases 
of physical interest are also discussed. 

1 Introduction 
The study concerning the effect of fluctuations of the external 

stream on unsteady hydromagnetic boundary-layer flow has stimu­
lated considerable interest due to its important applications in cosmic 
fluid dynamics, meteorology, solar physics and in the motions of the 
Earth's core (Cramer and Pai [1]). 

This important phenomenon was studied by many authors by 
formulating simple models and studying the behavior either for hy-
drodynamic or magnetohydrodynamic case. Some of the authors are 
Rossow [2], Watson [3], Ludford [4], and Axford [5]. 

Recently, Puri and Kulshrestha [6] investigated the motion of 
unsteady hydromagnetic boundary-layer flow in a rotating medium 
ignoring the effect of induced magnetic field. This problem in the 
absence of rotation has been studied by Tokis [7]. Pande, et al. [8,9], 
studied similar problem by formulating a simple idealized model 
system in which the induced magnetic field is not neglected, and it 
is shown that how does the induced magnetic field affect the mo­
tion. 

In the present paper, we generalize the works of Pande, et al. [9], 
and Tokis [7] for the case in which we envisage two distinct effects of 
the magnetic field and the porosity (injection/suction) as a coupled 
moving system. General solution of the problem is obtained with the 
help of the Laplace transform when the magnetic Prandtl number is 
unity. Further, in order to demonstrate the application of the results 
obtained here, we consider three cases, e.g., impulsive motion, ac­
celerated motion, and decaying oscillatory motion. These motions 
prescribe physically acceptable different time-dependent forms to 
arbitrary velocity — Uaf(t) of the porous plate or of the arbitrary ve­
locity Uof(t) of external stream, where Uo is a constant velocity and 
fit) a nondimensional function of the time t. Finally, the results thus 
obtained are discussed in Section 6. 
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2 Mathematical Analysis 
We take the coordinate origin 0 at an arbitrary point on an infinite 

porous plate, which is taken to be an electrical insulator. Cartesian 
coordinate system has been used with axes Ox' and Oy' along and 
perpendicular to the plate, respectively. We consider an electrically 
conducting, viscous, incompressible fluid filling the semi-infinite space 
y' > 0; which is in contact with the plate at y' = 0. The plate is initially 
at rest and then it is suddenly accelerated with a velocity —t/n/(t'), 
in its own plane along the negative x'-axis (Puri and Kulshrestha [6]). 
On the physical ground of the problem all the quantities are assumed 
to be functions of the space coordinate y' and time t ' only; so that the 
velocity V and the magnetic field B' are given, respectively, by 
(u',v'fi) and (B^'.By'.O). 

The equation of continuity, on integration, gives 

v' = constant = vo' (say), 

where Do' is the constant normal velocity of suction or injection at the 
plate according as un' < 0 or >0, respectively. Also, the divergence 
equation for the magnetic field gives 

where So' is the externally applied transverse magnetic field. Under 
these assumptions the basic equations relevant to the problem are 
(Ludford [4]). 

d V . Bo' dBx,' du' du' 
1- Do' : 

W dy' - + 

dB*. 
+ v0'-

,dBx 

dy'2 pno dy' 

1 d2Bx 

dy' 

1 dBx/ 

- + B0 
,du' 

dy' 

(1) 

(2) 

(3) 
Mo dy' 

where j ' denotes the component of electrical current density in z'-
direction, p the fluid density, v the kinematic coefficient of viscosity 
of the fluid, and jto and a are the permeability and the electrical 
conductivity of the fluid, respectively. 

Assuming that no slipping occurs between the plate and the fluid, 
the appropriate initial and the boundary conditions are (also, see Puri 
and Kulshrestha [6]) 
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u'(y',0) = 0 for y > 0, 

u'(0,t') = -U0f(t'), 

u'(<*>,t') — 0, 

(4a) 

(46) 

(4c) 

where f(t') is an arbitrary function of time and Uo is a constant ve­
locity. The appropriate boundary conditions on B' are 

Bx>'(0,t') = 0, By'(0,t') = B0', (5a,b) 

Bx.'(c°,t')-+0, By ' (=» , t ' ) - f lo ' . (6o,6) 

On using the following nondimensional transformations 

- y , > 

Bx, 

Uo , 
y = — y , 

V 

t 

B 
U o W 1 ' 2 ' 

•t', v = — , 
v Uo 

. v tfioW* ., 

Bx 

p,q 

mi,m2 ' 

Uo U0(Pno)m 

v0' , B0' 

= u±B, 

= vQ± Bo, (10a,b) 
Uo UQ(pno)m 

and assuming that the magnetic Prandtl number Pm(=vafi0) - 1, 
which is a plausible assumption in most of the hydromagnetic prob­
lems, equations (1) and (2) then become 

d2p dp dp 
• m2 

dy1 dy dt 
•0, 

d2q 

dy2 

d<7 d<7 „ 
•mi = 0. 

dy dt 
which are to be solved under the boundary conditions 

p(0,t) = q(0,t) = -f(t), 

p(°°,£)-*0, q(°°,t) — 0. 

( ID 

(12) 

(13) 

(14) 

With the aid of (9) solving the equations (11) and (12) under the 
boundary conditions (13) and (14) with the help of the Laplace 
transform technique, we obtain 

ufl = --](*) exp 
[mi 

— + s 

± exp lm2 -(fH'1 (15a,b) 

where a bar over a quantity denotes its Laplace transform defined 
as 

J o 
"f(t)dt. 

In order to determine u and B, we must find out the inverse Laplace 
transform of (15). We note that the right-hand side of the expression 
(15) is the product of the two functions of s; one of which, f(s) has a 
known inverse f(t). Thus u and B are best obtained by using the 
composition product rule (also known as Duhamel theorem), namely, 
that 

u(y,t)= \ u*(y,z)f(t-z)dz, 
Uo 

B(y,t) = J ' B»(y,z)f(t-z)dz, 

(16a) 

(166) 

where 

u*(y,t),B»(y,t) •• 
H(t) 

4\/7r 
yt -3/2 

exp 
\m\y mi2t 

[m& m2
2t\] I y2\ 

e x p l~r~~) | e x p ("W' (17a'b) 

H(£) is the Heaviside Unit function. The expressions (17) have been 

obtained by taking the inverse Laplace transform of (15) for the case 
when f(t) = 8(t); 8(t) is the Dirac delta function. 

To demonstrate the applications of the results obtained in this 
section, we shall now consider three particular cases, in the subsequent 
three sections, by perscribing physically acceptable forms to f(t). 

3 Impul s ive M o t i o n 
The case of a single impulse is considered. This corresponds to 

f(t) = H(t). (18) 

On substituting (18) into (16), we obtain the expressions for the ve­
locity and the magnetic field as 

y mitll2\ 

2ti /2 2 j 
la,b,c) 

(8a,b) 

(9a,b) 

u(y,t),B(y,t) = - ^ 
4 

exp (rt 

\2t1'2 2 / 
± e x p ( m 2 y ) e r f c ( ^ i + ^ - | 

+ erfc 
m2t 1/21 

2tJ/2 (19a,6) 

Knowing u(y,t) and B(y,t) from (19), we can now calculate expres­
sions for the skin-friction and the electrical current density, in their 
nondimensional forms, as 

pC/o2 

H(t) 

4 

H(t) 

4 
mi erfc + m2 erfc 

( r t ) 1 ' 2 

} / mx2t\ / m2H\ 

j e x p | __J + expL___j 
TOlt1/! 

(20) 

mi exp (miy) erfc | ^ + ^ 

• m2 exp (mjy) erfc M ^ + ^ | — j 

(7ri)1/2 

[y2\\ ( mi2t\ M 

• exp 
m2H\ 

4 j - E l (21) 

4 A c c e l e r a t e d M o t i o n 
Considering now an accelerated plate motion which corresponds 

to 

f(t)=-H(t), 
to 

(22) 

where to is a constant. In this case the expressions for the velocity and 
the magnetic field are given with the aid of (22) and (16), by 

u(y,t),B(y,t) •• 
H(t) 

4t0 

t + — exp (miy) 
mil 

X e r f c , ^ L : + - i t l / ; 

,2fi/2 2 

y \ 
t -i exp (m^y) erfc 

m2/ 

l y m2t"
2\ 

U1 /2 2 ] 

m2l W'2 2 /[ 

mjti/2!] 

(23a,6) 

The expressions for the skin-friction and the current density are 
then given, respectively, by 

H(t) 

4to I 
mit erfc 

-rh(-^+-(-^i (24) 

256 / VOL 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



1=li7 I t mi y ) e x p (miy) e c fc55 ~ n Xerfc - ^ - ( a 2 + i&2)t1/2 

+ 
m2< 

mit - y 

mi 

( m i t + y ) / m t
2t + y2/t 

" mi(7rt)1/2 6 X P \ 4 

" t+ m2t + yjexp (m2y) erfc few + "T") 
• 2 t + y ) x / m 2

2 t+y 2 / t \ 1 c r f / 

exp jy |—- + a2 + J'62 

z e x p j - — a 2 t — £62n / t 
(irt)1/2 I 12 ) I \ 

I m 2 j . J . •>, 1- a2 + JO2 

Xerfc 
2t1« 

+ (02 + (62)t1/2 

1/2' 

' \2t1/2 

^ t ) m 
exp 

(y / t 1 / 2 -mi t 1 / 2 ) 2 ' 1 , / y m 2 t ^ 
H erfc — — 

m2 l2£1/2 2 i 

-^ e x p ( - |+ a 2 t +H7|. ' (31) 

{Cont.) 

mtf-y 
H exp 

m2(7Tt)1/2 

( y / f i ^ - m a t ^ 2 ) 2 

(25) 

5 Decaying Oscillatory Motion 

We consider the case of decaying oscillatory velocity of the plate. 

This corresponds to 

f(t) = Re[H(t)e-<x2- i" , t], (26) 

where X and co are real dimensionless constants. On using (26) into 

the equations (16), we get 

H( t ) „ 
u(y,t)„B(y,t) = - — - R e 

(exp y I—- - ai - ibA 

g-(X2-ia,)i 

erfc 

+ exp y [—+ oi + i61}f erfc 

^ - ( a 1 + ^ W 

Z _ + ( a i + i 6 l ) t i /2 

6 Conclusion 

When the plate is started impulsively the expressions for velocity, 

magnetic field, skin-friction, and electrical current density are given, 

respectively, by (19a,b), (20), and (21). We observe that in the absence 

of the magnetic field, and with a slight adjustment, the expressions 

(19a) and (20) are identical with those of Watson [3]. Also, it is in­

teresting to note that for large values of t, the expression for the ve­

locity is not affected by the presence of the magnetic field. 

In the case of accelerated motion, the discussion of the results of 

steady-state solution is the same as has been discussed earlier. Since 

these results and discussion are similar to those of Watson [3], we feel 

that any further discussion here about them is, therefore, unneces­

sary. 

Finally, in the decaying oscillatory motion, the steady-state solution 

is obtained by taking X = 0; which corresponds to the problem of flow 

near an oscillating porous plate. In this case the expressions for the 

velocity and the magnetic field (27a,6), respectively, reduce to 

u(y,t),B(y,t) = • exp £-)') 
(expHT' • a2 - ibi | erfc - Z _ - ( a 2 + i b 2 ) t ^ X cos (cot — biy) ± exp l(?-4 

•H + exp \y (— + a2 + ibi 

where a\, bi, a2, and b2 are constants and are given by 

, (27o,6) X cos (cot - biy) , (32a,b) 

a 2 

,b) 

(29a ,b) 

Now, the nondimensional forms of the skin friction and the current 

density are, respectively, given by 

H(0. 
T = — R e 

2 
(ai + iftiJerfKai-HWt1/2) 

+ (02 + ib2) erf j(a2 + ib2)t1/2j - v0 

; = — — Re 
4 

+ — i — jexp [-(ai + i b ^ t ] + exp [-(a2 + ib2)
2t]\ 

(7Tt)1/2 

X exp (-(X2 - i'co)t) 

/mi 
y ~ _ a i ~l°i 

^ - ( a i + ifci)t 

and also, the skin-friction and electrical current density for this case 

are given by 

T = - [(ai + 02 — fo) cos cot — (&i + 62) sin cot], (33) 

1 [/mi \ [/mi \ 
j = - exp j I— - ail y I— - oil cos (cot - &iy) 

+ 61 sin (cot — &iy) 

(m2 \ 
a2 cos (cot - b2y) 

+ 62 sin (cot - b&) . (34) 

1 
— exp 

2 

m 2 
• - 0 2 y 

(30) 

exp j-(X2 - iu)t) exp 

I T " 0 1 " ' ' " 1 ) 
^»exp{-|-ait-HVt 

" (Trt)1/2 

+ exp 

Xerfc — |—+ ait + ibit m 
- exp ly a 2 - i ' 6 2 jl a2 - 162 (31) 

We observe that the expressions (32)-(34) are identical with those 

obtained by Pande, et al. [9]. 

Here we see that two boundary layers (or hydromagnetic boundary 

layers, since Pm = 1) exist whose thicknesses depend on the velocity 

of suction/injection and the strength of the applied magnetic field 

besides depending on some other parameters as well. In the absence 

of magnetic field the two boundary layers coalesce into one. We also 

observe that the oscillations of the plate produce wavelike distur­

bances within the boundary layers and the velocity decays exponen­

tially as the distance from the plate increases. Other conclusions and 

discussions regarding the behaviors of the induced magnetic field, the 

skin friction, and the electrical current density inside the boundary 

layers are self-evident from the foregoing expressions and hence any 

further discussion about them seems to be redundant. 
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Infiltration of a Fluid Into a Dry 
Poro-Elastic Body 
The infiltration of a fluid into a dry poro-elastic body, of infinite extent, from its cylindri­
cal or spherical cavity and the resulting mechanical behaviors are investigated. Since the 
problem is a moving boundary problem, and therefore, an essentially nonlinear one, the 
finite-difference scheme with the aid of the boundary fixing method is applied to obtain 
the solution. The results thus obtained for sandstone are compared with those for a porous 
rigid body as well as with those in a situation where a fluid pervades the whole body from 
the outset. These comparisons show that the extent of the infiltration front into the body 
is adequately predicted by the rigid skeleton model and that the actual stress distribution 
is remarkably different from that which exists if fluid pervades the whole body from the 
outset. 

Introduction 
The mechanical behaviors of a poro-elastic material containing a 

fluid has attracted considerable attention in various fields such as soil 
mechanics, ground water hydrology, geophysics, seismology, biome­
chanics, the theory of filtration and purification, the study of machine 
elements, and so forth. Many basic theories [1-6] have been proposed 
to describe these behaviors. Among these theories, Biot's theory [2, 
3] is comparatively simple and it suffices to describe the various 
phenomena in the field just mentioned. 

As far as the authors know, all previous papers on poro-elasticity 
dealt with the case in which the fluid pervades the whole body, and 
no work has been done on the injection and infiltration of a fluid into 
a part of the poro-elastic material which does not yet contain the fluid. 
As regards infiltration problems, the effect of the elastic deformation 
of a porous matrix on the infiltration process has been neglected. It 
has not been established whether the rigid matrix theory is acceptable 
or not for the purpose of calculating the moving front of the injected 
fluid. 

The present paper thus investigates how a fluid injected from a 
cylindrical or spherical cavity infiltrates into an infinite poro-elastic 
body and what deformation and stress fields the infiltration brings 
about. Such fluid injection and infiltration have become practical for 
the disposal of noxious liquid waste by pumping it into a permeable 
underground layer of, for instance, sandstone or limestone through 
a pipe. Recently, such a disposal technique is used to a considerable 
and broad extent by industry. 

Regarding this fluid infiltration problem, the referential field is 
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divided into two regions: one is the region where the injected fluid 
flows through the pores; namely, it is the region of a mixture consisting 
of a fluid and a solid matrix, and another is the one where the fluid 
has not yet penetrated into the pores. The material is regarded as 
homogeneous and elastic. Moreover, the boundary of separation be­
tween these two regions moves with the infiltration of the injected 
fluid. This problem is characterized distinctively by the possession 
of the moving boundary, and mathematically it belongs to the so-
called moving (or free) boundary problem. Such a problem becomes 
perfectly nonlinear because the positions of the moving boundary are 
neither fixed in space nor known a priori. Due to this nonlinearity, 
the analytical solution can be found only in limited situations, for 
example, in Neumann's solution for the one-dimensional Stefan 
problem [7]. 

Up to now, several methods of tackling moving boundary problems 
have appeared. These methods can be roughly classified into three 
categories: analytical methods, approximate methods, and numerical 
methods. Using the analytical method [8, 9], the moving boundary 
is usually represented by the solution of a nonlinear, singular, inte-
gro-differential equation, which is not tractable. The scope within 
which the approximate method is applicable is restricted. However, 
with the recent remarkable advance of digital computers, many nu­
merical methods based on the finite-difference scheme have been 
proposed. Among these methods, the boundary fixing method [10], 
in which Landau's transformation was adopted to immobilize the 
moving boundary, seems to be the most practical and superior 

. method. 

In this paper, formulating the aforementioned infiltration problem 
on the basis of Biot's theory, we obtained the numerical solution by 
using the boundary fixing method and the Crank-Nicolson finite-
difference scheme. A sample calculation was performed by using 
material constants for sandstone infiltrated by kerosene [12]. Also, 
a similar infiltration problem into a porous rigid body was likewise 
solved for the purpose of comparison. This comparison shows that 
one can estimate roughly how far the moving boundary or a fluid in­
filtration front penetrates from the cavity into the infinite body using 
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Region ( I I ) 

Fig. 1 Infiltration of a fluid into a poro-elastic body, of infinite extent, from 
its cavity of radius r0; the fluid infiltration front is r = R(l) 

the rigid skeleton model. Furthermore, we compared the results for 
the moving boundary problem under consideration with those in the 
situation where the fluid pervades the whole infinite body with a 
cavity from the outset. This comparison shows that the moving front 
has a great influence on the distribution of fluid pressure and matrix 
hoop stress. 

S t a t e m e n t of P r o b l e m and G o v e r n i n g E q u a t i o n s 
A schematic diagram with a coordinate system for the fluid infil­

tration problem is shown in Fig. 1. Consider an infinite poro-elastic 
body enclosing fluid in its cylindrical or spherical cavity, but without 
fluid in its pores. When hydraulic pressure is applied to the fluid in 
the cavity, the pressure injects it into the porous wall of the cavity and 
begins to infiltrate it through the surrounding porous body. At this 
stage, the relevant field can be divided into the two regions shown in 
Fig. 1. Region (I) already has fluid penetration but Region (II) does 
not. The former is regarded as a mixture composed of a solid and a 
fluid, while the latter is regarded as a homogeneous elastic body. The 
boundary of separation between these two regions moves with the 
infiltration of the injected fluid and its positions are not known a 
priori, depending upon the solid displacement field and the fluid 
dilatation field. 

The cylindrical cavity and spherical cavity will be denoted by Cases 
1 and 2, respectively. 

As examples of practical situations, these cases may be regarded 
as follows. Case 1 is the situation in which the fluid is pumped through 
a cavity into a thick permeable layer which is confined by two slippery 
impermeable layers. This type of model assumes that the confining 
layers do not offer shear stress at their interfaces. The effect of gravity 
is neglected. Case 2 is similar but with the absence of the impermeable 
layers. 

Fluid infiltration and mechanical behavior will be modeled by using 
Biot's theory. We neglect inertia terms. 

In infiltration theories, in addition to fluid pressure, capillary 
pressure associated with surface tension works as the driving force 
for fluid motion. We neglect the capillary pressure since it is much 
smaller than applied fluid pressure. Furthermore, we neglect the 
driving force due to fluid concentration gradient which is significant 
only in conditions of low fluid content. 

In 1955, Biot [3] proposed the linearized theory for infinitesimal 
deformations of a homogeneous poro-elastic medium saturated with 
an ideal fluid and for flows of the saturating fluid through the porous 
medium. Biot and Willis [11] examined the material constants in­
volved in that theory in 1957. The basic equations in those works can 
be summarized with some slight changes as follows, with the use of 
the notations: 

Oij, T = partial stresses of the solid and fluid, 
respectively. 

7T; = force per unit volume exerted on the solid 
by the fluid or, as a reaction against it, 
diffusion force. 

= displacement of the solid. 
= velocity of the fluid. 
= infinitesimal strain of the solid. 
= dilatation of the solid and fluid, 

respectively. 
= velocity of the fluid relative to that of the 

solid. 
A, N, Q,S,b = material constants. 

Ui 

m 

e, ( 

Vi 

Kinematic Relations: 

eij = l(u-i,j + Uj,i), 

V,- = Vi - dui/dt, 

(1) 

(2) 

(3) 

where, and in what follows, the sum is taken from 1-3 with respect 
to the repeated indices and ( ),; denotes partial differentiation with 
respect to a Cartesian coordinate x;. 

Motion and Continuity Equations: 

ojij + T; = 0, 

T,i ~ TTi = 0 , 

de/dt. 

Constitutive Relations: 

an = Aebij + 2Neij + QeBij, 

r = Qe + Se, 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

where 5;y is the Kronecker delta. The constants N, A, Q, and S can be 
expressed as 

A- =fi, 

A y/K+P + (l-2f)(\-b/K) 2 
A = u, 

7 + 5 - b2k 3 

f{X-f-bU) 
y + S-SVn' 

n 1 

7 + 5 - 82/K ' 

where / is the porosity and 7 is given as 

7 = f(c ~ 8), 

(10) 

(11) 

(12) 

(13) 

(14) 

where c is a compressibility coefficient of the fluid. The constants fi, 
K, 8, and 7 are the shear modulus of the bulk material, a coefficient 
of jacked compressibility, an unjacked compressibility coefficient, 
and a coefficient of fluid content, respectively. All these constants are 
measurable. The porous matrix is homogeneous, isotropic, and elas-
tically linear. 

Substituting equation (7)-(9) into equations (4) and (5), and using 
kinematical relations (l)-(3), gives the Navier (displacement type) 
equation in the form: 

JVV2u + (A + N) grad div u + Q grad £ + fcv = 0, (15) 

Q grad div u + S grad e - b\l = 0. (16) 

F o r m u l a t i o n of t h e P r o b l e m 
To the aforementioned problem, we will seek solutions for Cases 

1 and 2. Due to the symmetric characteristics of the problem, we can 
assume 

ur = u{r, t), vr = v(r, t), c = e(r,t) in Region (I), (17) 
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u r = U(r, t) in Region (II), (18) 

with respect to the cylindrical polar coordinate system (r, 6, z) for Case 
1 and with respect to the spherical polar coordinate system (r, 8, <j>) 
for Case 2. 

Now, substituting equations (17) and (18) into equations (15), (16), 
and (6), we are able to obtain a set of field equations for Region (I) as 
follows: 

(A + 2N)d\r'nd(rnu)/dr\/dr + Qde/dr + b(v - du/dt) = Gy (19) 

Qd\r~nd(rnu)/dr}/dr + Sde/dr - b(v- du/dt) = 0, (20) 

r~ni)(rnu)/dr - de/dt = 0, (21) 

f o r r o O <R(t), where ;-o denotes the inner radius of the cavity and 
R(t) denotes the position of the fluid infiltration front at time t. n 
assumes values 1 and 2 in Cases 1 and 2, respectively. 

The stress-displacement relations in Region (I) are 

a n = Ar-"d(rnu)/dr + 2Ndu/dr + Qe, (22) 

0-22 = Ar-nb(rnu)/br + 2Nu/r + Qe, (23) 

(733 = Ar-"d(rnu)/dr + 2N(n - l)u/r + Qe, . (24) 

r = Se + Qr-nd(rnu)/dr, (25) 

for ro < r<R(t), where an, a-i% and (733 are 

<7n = <7/r, (722 = cee, (733 = azz, (26) 

for Case 1, and 

C l l = Grr, (722 = (788, 033 = O>0, (27) 

for Case 2. 
Since Region (II) has no fluid, the field equation for a linear elastic 

body holds. 

(A0 + 2N)d\r-nd(rnU)/dr}/dr = 0, (28) 

for R(t) < r < + °°, where Ao is the material constant of the poro-
elastic material which contains no fluid. 

The stress-displacement relations, being the same as those of an 
elastic body, are 

2 n = AQr-nd(rnU)/dr + 2NdU/dr, (29) 

222 = A0r-nd(r"U)/dr+ 2NU/r, (30) 

233 = A0r-"d(rnU)/dr + 2N(n - l)U/r, (31) 

for R(t) < r < + «>, where 2 n , 222, and 233 are as follows: 

2 n = 2 r r , 222 = 2fle, 233 = 2 2 2 , (32) 

for Case 1, and 

2 n = 2 r r , 222 = 2e8, 2 3 3 = 2^^, (33) 

for Case 2. 

Let us assume that the fluid in the cavity is suddenly pressurized, 
and thereafter, varies as a continuous function of time p(t). On the 
moving boundary or at the fluid infiltration front, the displacement 
and the traction should be continuous, and the fluid velocity should 
coincide with the velocity of the moving boundary. Furthermore, the 
solid displacement should vanish at infinity. Thus the initial and 
boundary conditions for equations (19)-(33) are reduced to 

u- = 0 {r0<r <R(0)) at £ = 0, (34) 

(7u = - ( 1 - f)p(t), T = -fp{t) at r = r0, (35) 

u = U at r = R(t), (36) 

(7ii = 2 U , T = 0 at r = R(t), (37) 

dR/dt = v at r = R(t), (38) 

( 7 = 0 at r —+00. (39) 

Nondimensionalization 
Here, we introduce the nondimensional variables to facilitate the 

analysis: 

S 
u = u, 

''oPo 

r = r/r0, t 

S _ r0b S 
• — e, v = — v, U U, 
Po Po ''0P0 

r0
2b 

t, R = R/r0, (40) 

(Cll. ff22, C33. T, 2 n , 222, 233) 

= ((711, <722, (733, T, 2 n , 222, 2s3)/po. 

For simplicity, the bars on the nondimensional quantities will be 
omitted in the following. Using these nondimensional variables, the 
field equations are rewritten as 

(E + G)d\r~nc>(rnu)/dr\/i>r + Hdt/dr + (u - du/dt) = 0, 

(41) 

Hd\r-"d(rnu)/dr\/dr + de/dr - (u - du/dt) = 0, (42) 

r-"d(.rnv)/dr - de/dt = 0, (43) 

for K r <R(t), 

(E0 + G)<)\r-"d(rnU)/dr\/dr = 0, (44) 

forfl(t) <r <+•» . 
The constitutive relations are rewritten as 

cru = Er-nd{r"u)/dr + Gdu/dr + He, (45) 

(T22 = Er-nd(rnu)/dr + Gu/r + He, (46) 

(733 = £ r - " d ( r " u ) / d r + G(n - l)u/r + He, (47) 

T = e + Hr-nd(rnu)/dr, (48) 

fo r i <r <R(t), and 

2 n = EQr-nd(r"U)/dr + GdU/dr, (49) 

2 2 2 = E0r-"d(r"U)/dr + GU/r, (50) 

2 3 3 = E0r-ni>(r"U)/<>r + G(n - l)U/r, (51) 

for R(t) < r < +<=. Furthermore, the initial and boundary conditions 
are 

u = 0 (Kr<R{0)) a t t = 0, (52) 

(7ii = - ( l - / ) p ( t ) / p o , T = - / p ( t ) / p 0 a t r = l, (53) 

u = U at r = R(t), (54) 

(7ii = 2 n , T = 0 at r = R(t), (55) 

dR/dt=Pv at r = R(t), (56) 

U=0 at r ^ + » , (57) 

where po is the reference pressure. The nondimensional constants 
appearing in equations (41)-(51) and P in equation (56) are defined 
as 

E = A/S, G = 2N/S, H = Q/S, E0 = A0/S, P = p0/S. (58) 

Reduction of the Field Equations to a Single Equation 
and the Fixing of the Moving Boundary 

It is convenient to reduce the system of the simultaneous partial 
differential equations (41)-(43) for Region (I) to a single equation. 
In order to do so, let us express the solutions of that system in terms 
of a scalar function $(r, t): 

(H + 1 ) 2 

E + G-H2 / •""$ - rh(t)/(n + 1) - /2(t)A-n, (59) 

(E + G + H)(H+l) 

E + G -H2 - r - " d * / d / - - / i ( t ) , (60) 
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Fig. 3 Distribution of circumferential stress <r22
 a t various times for Case 

1 

V . (E+_G\H){H+l) , - . , * / * - r/l(t)/(B + 1, - mir*. 
E + G-H2 

(61) 

with f\(t) and /2(f) being unknown functions, where the dots denote 
differentiation with respect to the nondimensional time t. These so­
lutions satisfy the continuity equation (43) automatically. From the 
remaining field equations (41) and (42), we obtain the following single 
equation for the function €>(/•, t): 

d 2 * / d r 2 • 
n ^ , E+G + 2H+1 ^ , 

• - d * / d r = — - — —— d*/dt. 
r E + G-H2 

The field equation (44) for Region (II) has a general solution 

U = rFx(t)l(n + 1) + F2(t)/r
n, 

(62) 

(63) 

where F\(t) and F2(t) are also unknown. The unknown functions f\(t), 
f'2(t), Fi(t), and F2(t) are determined by the boundary conditions 
(53)-(57) as follows: 

0, fi(t) 

f2(t) = -

Fdt) = 0 

F2(t) 

nG 
p W / p o • 

(H + 1)2 

E + G-H-
* ( l , t ) , 

(H+l)2 1 

E + G-H1 nG 

(64) 

(65) 

(66) 

(67) 

The solutions (59)-(61) and (63) with (64)-(67) are easily proved to 
satisfy the boundary conditions (54) and (57) automatically. Using 
equations (45), (48), and (49), the remaining initial and boundary 
conditions can be expressed in terms of $(/•, t). Thus the equation 
system for $(r, t) is obtained as follows: 

d29>(r, s) /dr 2 di>(r, s)/br = d$(r , s)/ds, 
r 

d * ( l , s ) / d r = - -
/ 

1 

n+ 1 

H+l 

d$(fl, s)/i>r = 0, 

(E + G + HHH+l) 

p(s)/po, 

E + G-H2 * ( f l , s) 

1 (H + l ) 2 1 1 

E + G-H2 nG J n + 1 

# ( r , 0 ) = 0 ( K r < f l ( 0 ) ) , 

fi(0)n 

(68) 

(69) 

(70) 

(71) 

(72) 

E + G-H2 

' E + G + 1H + 1 ' 
(73) 

In order to avoid the complexity of the finite-difference procedures 
due to the moving boundary, let us introduce the following variable 
transformation [10]: 

7) = (r - l)/(fl - 1). (74) 

This transformation fixes the moving boundary on the ^-coordinate. 
Making use of the foregoing variable, the reduced equation system 
(68)-(72) is changed into: 

d$(?/, s)/ds 
(R - l ) 2 

d2$(?7, s)/dri2 

R-l 1 + T](R - 1) 

d*(0,s)/dij = 

-r,R d*(?;, s)/dij (0 < 1} < 1), (75) 

/ 
(R - l )p(s) /p0 , 

P(n + 1) 

H + l 
d $ ( l , s)/i>ri = 0, 

fl"+1 = * ( 1 , *) 
E + G-H2 

(H+l)2 1 1 
+ ^ ' *(0, s) + — p(s) /p 0 + 

E+G-H2 nG P(n+1) 

*(j),0) = 0 (0 < 7j < 1). 

R(0)n +1 

(76) 

(77) 

(78) 

(79) 

with 

N u m e r i c a l E x a m p l e 
In order to examine some features of the problem of the fluid in­

filtration into a poro-elastic body, we solve numerically the equation 
system (75)-(79) by applying the Crank-Nicolson finite-difference 
scheme. Because of the characteristics of the finite-difference scheme, 
we need to start from the stage where the fluid slightly penetrates into 
the surrounding porous solid from the cavity wall. We started by 
putting fl(0) = 1.1. 

For the numerical calculations, it is sufficient to specify the nu­
merical values of/, c, C/K, 8/K. We used the following values, which were 
computed from the data given for sandstone and kerosene by [12,13]: 
/ = 0.26, v = 0.2, C/K = 4.2, 8/K = 0.18. The fluid dilatation caused by 
the reference pressure po was taken as poc = 5 X 10 - 2 , and the input 
function p(t)/Po was specialized to the form: p(t)/po = 1 — e-™'* with 
a = 10. 

The results are shown in Figs. 2-8, where the bars on the nondi­
mensional quantities are resumed. 

Figs. 2-4 show the spatial distribution of the radial stress <rn, and 
hoop stress <r22 for the solid, and the fluid stress T, respectively, for 
Case 1 with the nondimensional time t taken as the parameter. In the 
first two figures, each curve has discontinuity in its gradient at the 
fluid infiltration front. The curves behind the infiltration front show 
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Fig. 5 Position of a fluid Infiltration front for Case 1 in comparison with the 
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Fig. 6 Distribution of radial stress tr-n for Case 2 in comparison with that in 
a situation where a fluid pervades the whole body from the outset 

the stresses in Region (I), and the curves ahead of the front show the 
ones in Region (II). 

Pig. 4 shows the distribution of fluid stress f for Class 1. The fluid 
stress increases monotonically from the negative value f = —0.26 and 
vanishes at the fluid infiltration front. 

The time history of the position of the fluid infiltration front for 
sandstone and kerosene is compared with that for a porous rigid body 
and kerosene in Fig. 5 as to Case 1. As mentioned before, C/K = 4.2 and 
&/K ~ 0.18 for the former case, while the limiting case of the rigid 
skeleton is obtained by putting C/K —•+<«> and 8/K = 1. The input 
function p(t)/po and the reference fluid dilatation poc are the same 
for both cases. 

Initially the front progresses rapidly and later it does steadily. The 
front in the sandstone goes ahead of that in the rigid body, but the 
difference is rather small. Therefore, to estimate roughly how far the 
front penetrates into the body, even the rigid skelton model may be 
a sufficient alternative to the poro-elastic model for the sandstone. 

In Figs. 6-8, the stress distributions in the solid and fluid at I = 38.7 
for the situation considered here are contrasted with those for situa­
tion where the fluid pervades the whole infinite poro-elastic body from 

Cll 
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Fig. 7 Distribution of circumferential stress <r22 for Case 2 in comparison 
with that In a situation where a fluid pervades the whole body from the 
outset 
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Fig. 8 Distribution of fluid stress r for Case 2 in comparison with that In a 
situation where a fluid pervades the whole body from the outset 

the outset as to Case 2. The analytical solution for the latter situation 
can be easily obtained and is shown in the Appendix. 

The difference in the radial stress distribution between the situa­
tion considered here and the situation where the fluid pervades the 
whole body from the outset is rather small, while the differences in 
the hoop stress and fluid stress distributions are remarkable. 
Therefore, the analytical solution given in the Appendix cannot be 
an alternative to the solution for the infiltration problem, no matter 
how simply the analytical solution is obtained. 

Conclusion 
The infiltration of a fluid into a dry poro-elastic body with a cy­

lindrical or spherical cavity has been examined by the boundary fixing 
method and Crank-Nicolson finite-difference scheme. The following 
conclusion can be drawn: 

1 The stress distribution in the body has discontinuity in its gra­
dient at the fluid infiltration front. 

2 The extent of the infiltration front into the body is adequately 
predicted by the rigid skelton model. 

3 The actual stress distribution is remarkably different from that 
which exists if fluid pervades the whole body from the outset. The 
stress solution obtained using the latter model is not a good solution 
for the infiltration problem. 
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APPENDIX 
W e can easily ob ta in a n analy t ica l solut ion for a p rob lem similar 

t o Case 2 excep t where a fluid pe rvades t h e whole body from the 

ou tse t . T h e equa t ion t o be solved is t h e s a m e as in (68) and the 

b o u n d a r y condi t ions a n d ini t ial condi t ion are 

"u = - ( 1 -f)p(t)/po, T = -

e n = 0, T = 0 a t r -* + °°, 

u = 0 a t t = 0 for 1 < 

T h e solut ion for t h e equa t ion sys tem (68) and (80)-(82) is 

r - 1 

fp(.t)/po at r = 1, 

r < + °°. 

(80) 

(81) 

(82) 

*(r,s) = / / ( # + ! ) f" (1 - e-«u 
) erfc 

,2y/7=u, 
du 

+ r J (l - e~"") exp 
o 

(r - l )2 

/ V T ( S 
4{s - u) 

where erfc ( ) is t h e c o m p l e m e n t a r y error funct ion and 

_ E + G + 2H+1 
a = —a. 

E + G-H2 

u)du (83) 

(84) 
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A Finite-EIement Singular-
Perturbation Technique for 
Convection-Diffusion Problems 
Part 1: The One-Dimensional Case 
Approximation procedures for the solution of convection-diffusion equations, occurring 
in various physical problems, are considered. Several finite-element algorithms based on 
singular-perturbation methods are proposed for the solution of these equations. A method 
of variational matched asymptotic expansions is employed to develop shape functions 
which are particularly useful when convection effects dominate diffusion effects in these 
problems. When these shape functions are used, in conjunction with the standard Galerk­
in method, to solve convection-diffusion equations, increased solution accuracy is ob­
tained. Numerical results for various one-dimensional problems are presented to estab­
lish the workability of the developed methods. 

Introduction 
In fluid mechanics problems in which convection effects dominate 

diffusion effects, standard numerical techniques—centered finite-
difference models and finite-element Galerkin methods—have failed 
to produce reasonable solutions. Convergence at optimum rates can 
be obtained with these approximation procedures; however, if normal 
mesh spacings are used, the absolute error is large and often physically 
unreasonable oscillatory solutions are obtained. 

In order to overcome these difficulties, techniques of "upwinding" 
[1] have been introduced by practitioners of the finite-difference 
method. These procedures produce noncentered finite-difference 
schemes in which the bias in the algorithm depends on the direction 
of the flow. Since finite-element Galerkin procedures, used in con­
junction with standard shape functions, result in centered discreti­
zations and corresponding poor numerical results, it has become 
necessary to develop finite-element equivalents of the upwind dif­
ference algorithms. 

A technique using the weighted residual method, in conjunction 
with upwind weights, has been proposed in [2-5]. Hughes [6, 7] has 

Presented at the Symposium on Finite-Element Methods for Convection 
Dominated Flows, at the 1979 Winter Annual Meeting, New York, N.Y., De­
cember 2-7, 1979 and contributed by the Applied Mechanics Division for. 
publication in the JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial; 
Department. Manuscript received by ASME Applied Mechanics Division,, 
December, 1979; final revision, September, 1980. 

introduced a method of solution in which reduced integration, in 
conjunction with a moving quadrature point, is used to produce an 
upwinding effect. Kikuchi [8] has introduced an artificial viscosity 
technique for this type of problem, and Barrett [9] has developed a 
procedure in which exponential basis functions are used in finite-
element algorithms. 

In this paper a solution technique, based on the standard Galerkin 
method, is introduced for the convection-diffusion problem. The 
approach advocated here is traditional in all respects except for the 
choice of shape functions to be employed in the analysis. The shape 
functions are constructed by a procedure which can be characterized 
as a finite-element method of matched asymptotic expansions. These 
shape functions can account for variable coefficients and zeroth-order 
terms in the differential equations. In addition, they can be used in 
conjunction with distorted elements and multidimensional prob­
lems. 

As the diffusion effects in the problem increase or as the mesh 
discretization parameter decreases, the constructed shape functions 
approach the standard forms. However, when convection effects are 
important and when normal mesh spacings are employed, the shape 
functions are quite different as compared to those used in classical 
finite-element approximations for self-adjoint problems. The use of 
these special shape functions produces an upwinding effect in the 
discrete equations and a corresponding increase in solution accu­
racy. 

The Physical Problem 
Consider a one-dimensional domain / = [a, b]. Let x denote the 

coordinate of a particular point in / . Then the convection-diffusion 
problem in one-dimension can be stated as follows: 
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/ d20 d(l> 
<TT + u - f + £0 = 0 
dxl dx 

(1) 
0(a) = p 

,0(6) = g 

Normally, the parameter e is a diffusion coefficient, u is related 
(through a minus sign) to velocity, and g is associated with transient 
or linearized convective effects. 

Singular-Perturbation Procedures 
The problem (1) is a singular-perturbation problem. If the value 

of the diffusion coefficient t is small compared to the coefficient u, 
this problem is of boundary-layer type with boundary layers occurring 
either at * = a or at x = b, or at both positions, depending on the 
variation of u with x. A method of analysis which combines the fi­
nite-element discretization technique and the singular-perturbation 
method can be introduced to solve this type of problem. In this pro­
cedure, the spatial domain / is first subdivided into finite elements 
Ie. Then, singular-perturbation methods are used in the construction 
of the discrete equations on the local elements. When the local 
equations are assembled and the resulting system is solved, the entire 
finite-element solution is obtained. 

In this paper, this approach, involving the application of singular 
perturbations on a local level, is employed. It will be assumed in this 
development that e is a small, positive constant, while coefficients u 
and g are variable. Let the typical element be defined by Ie = [xe, xe 

+ h]. Let a natural coordinate system be established in the element. 
The natural coordinate is denoted £ and is defined on the mapped 
element Ie = [ -1 , 1]. The mapping between the natural coordinate 
£ and the physical coordinate x takes the following form: 

x = xc + (£ + 1) - (2) 

The local problem, equivalent to the original formulation (1), can be 
established by making use of the transformation (2). If 0(£), u(£), and 
g(£) denote the transformed dependent variable and variable coeffi­
cients, the following problem can be formulated: 

/ d 20 dd> 
fT7J + u ( ? ) 3 7 + g(£)0 = O on Ie 

d£z dt 
(3) 

0 ( - l ) = p 

.0(1) = g 

where 
€ 

4 

Clearly, the mapped local problem (3) has a different character as 
compared to the original global problem (1). If e is small compared 
to u, the solution of the original global problem (1) will be of bound­
ary-layer type. Similarly, if € is small compared to u, the local problem 
(3) will have a solution with a boundary layer. However, f varies in­
versely with h, and g is proportional to h. Thus, if the element size h 
is large and if e and u have values which would lead to a boundary-
layer-type global solution, the local element will have a solution of 
boundary-layer type. However, no matter how small e is compared 
to u, as h approaches zero, the element boundary layer disappears. 
In fact, in the limit as h approaches zero, the local solution becomes 
a harmonic function. 

On the typical element, there exist three solution regions. A 
boundary layer may occur on the right-hand side of the element if u 
is negative there. In addition, a boundary layer may occur on the 
left-hand side of the element if u is positive at that end of the element. 
Thus two "inner" boundary-layer regimes exist near the element 

boundaries. In addition, an "outer" solution region exists away from 
the boundary layers. Essentially, this region occupies the center of 
the element. Grasman and Matkowsky [10] have introduced an 
asymptotically valid solution for a differential equation with three 
similar solution regions. In the notation employed in this paper, the 
solution of Grasman and Matkowsky can be stated as follows: 

0(£) = c0o(j)_+ (p - C0o(-D) g-" (-»"+t ) /L 
outer left boundary-
solution layer solution 

+ (q -c0o(D) e" ' 1" 1"^ (4) 
right boundary-
layer solution 

In this equation the outer solution and boundary-layer solutions are 
defined by perturbation methods. In particular, the outer solution 
0o(£) satisfies the following equation: 

"(£)^77 + g(£)0o = O. 
dk 

Thus 

0o(£) = exp - j —-ds] 
\ J° u(s) I 

The constant c in expression (4) must be defined in such a way that 
the boundary-layer solutions match the outer solution in some ap­
propriate sense. 

An assumption implicit in the use of the matched asymptotic ex­
pansion solution (4) is that u(—1) > 0 and u( l) < 0. In this case 
boundary layers exist at each end of the element. However, if u ( - l ) 
< 0 and u{l) < 0, a boundary layer exists on the right-hand side only, 
and the following matched solution is a valid restriction of (4): 

0(£) = c0Q(£) + i (1 - £)(p - c 0 o ( - D ) + (q- c0o(l))e" (1 ) (1-« ) / ; 

(5) 

Similarly, if u(—1) > 0 and u(l) > 0, a boundary layer exists on the 
left-hand side of the element only, and the appropriate matched as­
ymptotic solution is defined as follows: 

0(£) = c0o(£) + (P - c0o(- l ) )e-"<-»< 1 +«* + I (1 + &(q - c0o(D) 
(6) 

In the remainder of this paper numerical algorithms will be con­
structed using a procedure which is based on the general solution (4). 
When appropriate, similar algorithms can be obtained using the 
special formulas (5) and (6). The techniques, required to analyze those 
special cases, are a straightforward modification of the methods to 
be presented here. 

The Definition of Finite-Element Shape Functions Via 
Singular Perturbations 

The singular-perturbation solutions discussed in the previous 
section can be used in the construction of shape functions for finite-
element convection-diffusion models. The use of these solutions seems 
appropriate since they are asymptotically exact on the elements and, 
thus, should provide accurate results. However, there are certain 
difficulties involved in using these functions in finite-element anal­
yses. Asymptotically, as e -* 0 the singular-perturbation solutions 
satisfy the boundary conditions at the ends of the elements. However, 
for large t these boundary conditions are not satisfied. This is a 
problem since in finite-element work finite values of f are often used. 
In fact, as h -*• 0 in a finite-element model, ?—•<». 

To overcome these difficulties alternate singular-perturbation 
solutions can be defined. An alternate version of (4), satisfying the 
appropriate boundary conditions, takes the following form: 

0(£) = c0o(£) + i (p - c0o( - l ) ) ( l - f)e-|n<-i)|<i+«>/? 

+ i (q - c0o(D)(l + $e-\wna-t)r, (?) 

It should be noted that, in this expression, the absolute value of u was 
employed. This change was incorporated in order to insure that a 
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potential boundary layer exists at each end of the element. Because 
of this modification, the solution (7) can be used even when IZ(—1) < 
0 or u(l) > 0. The matching criteria, to be introduced subsequently, 
will effectively determine which of the potential boundary layers is 
real, and it will give the real boundary layers more weight in the so­
lution. 

The interpolation functions for the one-dimensional problem can 
be obtained by defining p and q in (7) in such a way that the following 
condition is satisfied: 

where \k - (—1)*, k = 1, 2. The resulting shape functions take the 
following form: 

fait) = Xu(&d + Xatt) 1,2, (i not summed) (8) 

where 

1 2 

Xii(& = <h(& -~E *o(X*)(l + A*f) exp 
2fc=i 

|«(X*)|(1-A*£)1 

|g(X.-)|(l - Xi{) X2i(̂ ) = - (1 + X^)exp 

Variational Matching Procedures 
The finite-element interpolation functions defined in (8) involve 

undetermined constants c,. These parameters define the relative 
importance of the outer and boundary-layer solutions in the overall 
local element solution. These parameters could be chosen in many 
different ways. However, a useful criteria to use in defining ci and C2 
is to require that, in some approximate variational sense, i^i(£) and 
fazdi) satisfy the differential equation (3)i within the element. This 
is, in a finite-element setting, the analog of the variational matching 
criteria first proposed by Grasman and Matkowsky [10], in the context 

;of analytical singular perturbation methods. 
In order to provide a concise notation for the discussion of the 

variational matching procedures certain integral expressions can be 
introduced. Let the L2 inner product (.,.) be defined in the following 
way: 

(u,w) = f\(t)w(l)dt 

In addition, certain bilinear forms denoted <z(. ,.) and b(.,.) will be 
utilized in subsequent developments. These bilinear forms have the 
following definitions: 

( _d2v _dv _ _d2u> 
t \-u \r gu.e — - + 

d£2 d£ d£2 

_dw _ \ 

C1\-dvdw w(£) / dw dv 
blu.w) = I £ 1 \u \-w — 

J - i [ d£ d£ 2 \ d£ d£ 

ti? 
(J)2 , lrfg(0 

2 d£ 
-g(&\vw exp I- j u(s)ds d£ 

Many different variational techniques can be employed to match 
the inner boundary-layer solutions with the outer solution in the sense 
previously defined. In this analysis, the following four techniques have 
been found to be useful: 

1 Averaging Method. The differential equation (3)i is satisfied 
in the average sense over Ie. 

l-d2xu , _dxu , _ 
i . l j c = - € 2i , l ) 

d2X2i , _dX2i , _ 

Wu~dT+sx 

i = 1, 2, (i not summed) (9) 

2 Point Collocation Method. The differential equation (3)j 
is satisfied at a collocation point £* (£* = 0 seems to produce the best 
results). 

d j 2 d^ 

e ^ T «•) + ««**>%* ( f ) + ?(f*)X2i(f*) 

i = 1, 2, (i not summed) (10) 

3 Least-Squares Method. The differential equation (3)i is 
satisfied in the least-squares sense. 

a(Xii. Xii)ci = -a(xii , X2i) i = 1, 2, (i not summed) (11) 

4 A Method Based on a Variational Principle for Singular 
Perturbation Problems. The differential equation (3)i is an Euler 
equation of 6(0, <p) [10]. Thus the constants c; can be defined by in­
sisting that 6(^£, fa) take on a stationary value as the scalars are 
varied. 

b(xii>Xii)a = -6(xi;.X2i) i = 1, 2, (i not summed) (12) 

The Finite-Element Galerkin Method 
The local shape functions fa(l-) can be converted to global shape 

functions ^i(x) using standard assembly procedures. Then the scalar 
function $ can be defined in terms of the global shape functions ^ , 
and the nodal values of the scalar $, by 0 = ^ , $ , . Finally, the fi­
nite-element Galerkin procedure can be used to develop the following 
system of discrete equations defining the $, variable: 

Kj&i = 0 

The global stiffness matrix Kji is obtained by the assembly of local 
stiffness matrices Keji defined as follows: 

Ke, 
Jie I dx dx dx 

X 

dx 

2(dfadfa dfa gh 

nT'dJ-dJ-^'dJ-T^ 
d$ (13) 

Consider a particular class of problems. This class of problems is 
obtained from (3)i by settings = 0 and making u a constant. Shape 
functions which represent exact solutions to this type of problem can 
be easily constructed [9]. A typical shape function I/^ is defined as 
follows: 

fa(x) = 
1- 0u(h-x)/t 

1 _ euh/. 
(14) 

If shape functions of the form of (14) are employed to solve the class 
of constant coefficient problems with g = 0, the resulting solutions 
are exact. For this reason these shape functions could be called the 
"exact shape functions." The terms in the "exact" local matrix Kej; 
can be constructed by introducing (14) in (13). For example, the term 
in the first row and first column, denoted Z\, of the exact coefficient 
matrix, is 

ueuhlt 

Zi-\ — —• 
1 _ guh/c 

An expression, similar to Z\, can be obtained when the singular-
perturbation shape functions (8) are introduced in (13). The term in 
the first row and first column, denoted Wi, of the singular-pertur­
bation coefficient matrix is defined as follows: 

where 

JBi = -

Wx = ElCl
2 + E2ci + Es 

2 + 4A + - sinh (2A) + (2 + 4A) cosh (2A) 

E2 = 2eSe-4[sinh (A) + cosh (A)] - • 

•i(l + A)2 + -A2 

3 

2 + 4A 
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+ 4S + - sinh (2/1) + (2 + 4A + 4S) cosh (2A) 

E3 — • 

- 4 ( 1 + A)2 + - A 2 

3 

2A + 2S + — + 11 sinh (2/4.) + (2A + 2S 

+ 1) cosh (2A) 

S = ult; A 

In order to evaluate the error in the approximations, it is useful to have 
an expression for the optimum constant c\. This is the constant c\ opt 
which produces exact solutions at the nodes of a finite-element mesh. 
As a criteria to define ci op t, it is sufficient to require that the term 
in the first row and first column of the coefficient matrix (this is the 
term associated with ^i(ij) and, thus, with ci) be the same when either 
the singular perturbation shape functions or the exact shape functions 
are used in the analysis. The use of this criteria implies that, when c 1 
= ci opt, the following relationship must hold: 

£ici2„pt + Eid opt + E3-Zi = 0 (15) 

This equation has two roots. The values of the two roots depend on 
the magnitude of u but not on its sign. The parameter c 1 opt must be 
identified with one of the roots. The particular root, with which ci „pt 

should be identified, depends on the sign of u, according to the fol­
lowing rule: 

Cl opt : 

c l opt : 

-E2 + y/E2
2 - 4Ei(Es 

2£ , 

-Ei - y/E2
2 - 4 £ i ( £ 3 

-Zi) 

~Zy) 

2EX 

u<0 

u>0 (16) 

A similar analysis can be used to define ci opt. In this case, the pa­
rameter C2 opt is defined in a way such that the term in the second row 
and second column of the coefficient matrix is exact. It has been found 
that as long as g(£) = 0, the following relationship holds: 

C2 opt - 1 — Cl opt (17) 

The constants, determined by variational matching, can be com­
pared to the optimum constants to assess the workability of the ap­
proximate matching procedures. A particular case was chosen for the 
comparison. In this case u = — 1. In Fig. 1, the optimum and approx­
imate values for c\ are plotted versus f. It has been found that oscil­
latory solutions can occur when ci values less than the optimum ones 
are utilized. For this reason, the averaging procedure has been judged 
to be the most effective technique. Using the averaging method the 
computed c\ values are always close to but greater than the optimum 
values. 

The shape functions which can be obtained using the cx and c% 
parameters can take many forms. Suppose the coefficients in (3)i are 
constant with g = 0 and u = —1. Then, the shape function \j/\, defined 
using the optimum constant in conjunction with (8), takes the form 
shown in Fig. 2. If the problem has a variable coefficient quite dif­
ferent shape functions are obtained. Consider the case when u(£) = 
—£ and g(£) = 0. In this variable coefficient situation, the values of 
ci and C2 must be defined by some approximate procedure (the op­
timum constants are not known for this case). In this particular 
problem, all four variational matching procedures give the same 
constants (ci = C2 = 0.5). The resulting shape functions are pictured 
in Fig. 3. In this particular variable coefficient case boundary layers 
appear on both ends of the element. 

N u m e r i c a l I n t e g r a t i o n T e c h n i q u e 
When u and g are variable coefficients, it is useful to employ nu-

OPTIMUM VALUE 
AVERAGING CRITERIA 
COLLOCATION CRITERIA 
LEAST SQUARES CRITERIA 
VARIATIONAL CRITERIA 

Fig. 1 Comparison of optimum and approximate values for c1 (u = - 1 
9 = 0) 
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Fig. 2 Singular-perturbation shape functions for various values of e (u = —1, 
S = 0) 

I.O -.8 .8 I.0 

Fig. 3 Singular-perturbation shape functions for various values of e (u(£) 
= -t,9 = 0) 
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Fig. 4 Global L2 error for various methods (e = 0.05) 
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Fig. 5 Global L2 error (or various methods {( = 0.01) 

merical integration techniques in the evaluation of the entries in 
matrix Kej;. In this work a quadrature rule, which is exact in the case 
when u and g are constant, has been employed. This technique is 
based on a two point Gaussian quadrature formula [11] for integrals 
of the following form: 

In = £ $"e«td£ 

In this quadrature rule the Gauss points £1,2 and weights u>\,i are 
defined as follows: 

d±Vd 2 -4 r 

-«rs&H--

<t> 

o 3 ELEMENTS (CONSTANT MESH) 
+ 3 ELEMENTS (VARIABLE MESH) 

€ = .001 
u(x) = 1. 
g(x)= 1. 
f (x) = 0 . 

.1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 
A 

Fig. 6 Singular-perturbation solutions—a constant coefficient case 

w2 "iAl(io"4 - < Y $ 2 

where 

, Ioh-hh hh-h2 

a = ; r : 

/0/2 - h2 

, l-e-2" r -

•h-
2 / I 

I0I2-

l + e~ 

ae'P 

r,+ '° 

h2' 
2" h 

a 

- 3 / 2 

For /? > 5, multiply by e 0 to avoid overflows and use asymptotic 
formulas in the analysis. 

Numerical Experiments 
In order to assess the accuracy of the finite-element algorithm, the 

problem (1) was solved on the interval / = [0,1], Various choices of 
the parameters e, u, and g were employed, and in all cases the 
boundary values were defined by p = 0 and 9 = 1. Initially the con­
stant coefficient case with g = 0 was considered. When optimum 
values were employed for the constants, c,-, the singular-perturbation 
algorithm produced exact solutions at the nodes. This occurred no 
matter what values were used for e, u, and h. The approximate vari­
ational matching schemes produced inexact finite-element solutions; 
however, the answer obtained using these techniques were quite 
reasonable. 

While the computed solutions for the constant coefficient problem 
(with g = 0) were exact at the nodes, they were not exact within the 
elements. The global Li error was used to define the error in matching 
the solution within the elements. In Pigs. 4 and 5 the global Li error, 
for various choices of e, is plotted for the standard Galerkin method, 
the Petrov-Galerkin method [2], and the singular-perturbation 
technique defined with optimum constants. The singular-perturba­
tion shape functions produce a significant reduction in the error 
within the elements. 

In Fig. 6 the solution to a problem with constant coefficients and 
a nonzero g term is presented. In Fig. 7 a solution for the constant 
coefficient differential equation e<j>" + u0 ' + g<j> = / is pictured. In Figs. 
8-11 the solutions to various problems with variable coefficients are 
presented. In these variable coefficient solutions the averaging pro­
cedure was used to determine the constants e,. 

The most difficult variable coefficient problems seem to be those 
in which u changes sign within the domain. In these cases the slope 
of the u curve seems to have a great effect on the accuracy of the sin­
gular-perturbation finite-element solutions. A case in which u has a 
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Fig. 7 Singular-perturbation solutions—a nonhomogeneous equation 
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Fig. 10 Singular-perturbation solutions—a case with variable g term and 
right-hand side boundary layer 
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Fig. 8 Singular-perturbation solutions—variable coefficient cases with in­
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Fig. 9 Singular-perturbation solutions—variable coefficient cases with 
external boundary layers 

positive slope is pictured in Fig. 8. In this case the solution has an 
interior boundary layer centered at the point of change in sign of u. 
The corresponding singular perturbation shape functions have a 
corresponding boundary layer in the center region of the elements. 
As can be seen from Fig. 8, the finite-element procedure works very 
well in this positive slope case. However, when the slope of u is neg­
ative, the situation is quite different. A typical case of this kind is 
pictured in Fig. 9. From Fig. 9, it can be seen that, when the slope of 
u is negative, slight changes in the point at which u changes sign cause 
large changes in the solution, and a movement of the boundary layer 
from one end of the domain to the other occurs. The problem is very 
sensitive to changes in u, and this sensitivity manifests itself as error 
in the numerical solution. 
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A Finite-Element Singular-
Perturbation Technique for 
Convection-Diffusion Problems 
Part 2: Two-Dimensional Problems 
Approximation procedures for the solution of two-dimensional convection-diffusion prob­
lems are introduced. In these procedures finite-element techniques are utilized. The de-

| veloped solution algorithms are based on a variational method of matched asymptotic ex­
pansions. When these techniques are used in conjunction with standard Galerkin meth­
ods, to solve convection-diffusion equations, highly accurate solutions are obtained. Nu­
merical results for certain two-dimensional problems are presented to establish the accu­
racy of the proposed procedures. 

In troduc t ion 
In Part 1 of this paper [1], singular perturbation techniques were 

used to develop finite-element approximations for certain convec­
tion-diffusion problems. In particular, a method of variational 
matched asymptotic expansions was employed to construct shape 
functions which, within the elements, are almost exact solutions to 
the homogeneous convection-diffusion equations. These shape 
functions were used, in conjunction with the standard Galerkin 
method, to solve various one-dimensional problems. In this second 
part of the paper, the previously developed singular perturbation 
techniques are extended to two-dimensional cases. 

T h e P h y s i c a l P r o b l e m 
Consider a domain U c R 2. Let (x, y) be the coordinates of points 

in 0. Let <p(x, y) be a scalar function defined on fi. In addition, let dfi 
denote a boundary on il with normal n. The boundary segment dfii 
denotes a portion of dfl on which <p is specified, and the boundary 
segment dfi2 is a portion of dfi on which b<p/bn is specified. The 
boundary dfi = dfii u dfl2- Then, the convection-diffusion problem 
is posed as follows: 

Presented at the Symposium on Finite-Element Methods for Convection 
Dominated Plows, at the 1979 Winter Annual Meeting, New York, N.Y., De­
cember 2-7, 1979 and contributed by the Applied Mechanics Division for 
publication in the JOURNAL OP APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
December, 1979; final revision, September, 1980. 

/ /d2,i d20\ d</> dd 
£ I—" + — 1 \ + U — +V — + t bx2 

<f> = ti 

\bn 

by bx by 
•0 on n 

on dfii (l) 

on 61^2 

where i i represents the specified 0 values on dfii and t<i represents 
the specified values of flux on dQ2- Normally, the parameter e is a 
diffusion coefficient, u and v are related (through a minus sign) to 
velocity components in the x and y-directions, and g is associated with 
transient or linearized convective effects. 

S i n g u l a r - P e r t u r b a t i o n S h a p e F u n c t i o n s for T w o -
D i m e n s i o n a l P r o b l e m s 

Singular-perturbation shape functions for two-dimensional 
problems can be defined in various ways. In this work, two methods 
will be employed. In the first method, two-dimensional shape func­
tions are defined as a tensor product of the one-dimensional shape 
functions introduced in [1], Generally, the resulting finite-element 
approximation is nonconforming. However, in the limit as the element 
size approaches zero, this model is conforming. Thus it could be called 
asymptotically conforming. The second technique involves matching 
boundary layer and outer solutions for the two-dimensional problem 
using various variational matching procedures. This method is an 
extension of the technique introduced for the one-dimensional 
problem. It allows the development of conforming shape functions 
in two dimensions, regardless of the size of the particular element 
being analyzed. _ 

Consider a mapped element Qe as shown in Pig. 1. The standard 
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Fig. 1 Mapped element Qe 

bilinear shape functions yu;(£, r;), defined on fie, take the following 
form: 

Mi(€.u) = J ( i - 0 ( i - u ) 

/t2(f,i?) = 1(1 + ^ ( 1 - 1 ? ) 

MaCf,»>) = I (1 + S)(l + V) 

(2) 

In addition, consider a four node quadrilateral element fie defined 
in the physical plane. The coordinates of the tth node of fie are de­
noted (xi, yi). A mapping between the physical element fle and the 
mapped element fie can be constructed using standard isoparametric 
techniques 

y (3) 

As a measure of the element sizes in the * and y- directions, a natural 
definition can be introduced 

/ J v 
ay 

f.o = 2 ^ ( 0 . 0 ) ^ 

: 2 — (O.Ob/i 
O?) 

,=o 

,=o 

Finally, the following parameters can be defined in terms of hx and 
hy: 

6 

hx 

e 

hy 

«(£>»)) = 

v(l V) = 

2 

v(t V) 

2 

g(£, q)fe* 
8 

g(£. J?)^ 

(4) 

where e is the positive constant diffusion coefficient defined in (1), 
and u(£, ?;), u(£, ?;), andg(£, r)) are the mappings of the variable coef­
ficients introduced in (1). 

Two sets of shape functions are utilized in modeling the dependent 
variable 0 on the two-dimensional element. The first set of shape 
functions is denoted ft. They are associated with the £ coordinate and 
are defined as follows: 

where 

X u ( € ) - * ( € ) - ; ; £ *(A*)(1 + X*{) 

|tr(xA, o) | ( i — Xfcgy 
X exp 

m . l r i , l t > | |g(A,-,0)|(l-A,-f)l X2i(?) = - ( l + X ; £ ) e x p { - J -_ 
2 I 6v 

X* = (-1)* 

v(0 = exp 
«g*(s,_0) 

0) 
f ' g i U , 

J o U(s, 
ds 

The ft (£) expressions are designed to be singular-perturbation shape 
functions, in the sense defined in [1], for the following problem: 

d2d> dd> 

a £ z a£ 
• 0 (6) 

These shape functions depend on the values of the variable coeffi­
cients evaluated on the t] = 0 line crossing the center of the element. 
If the variable coefficients are, for example, known only at the nodes 
of the element, they can be computed on the rj = 0 line by interpola­
tion, prior to the construction of the shape functions. The constants 
e n and C12 in (5) can be defined by insuring that, in some sense, the 
ft(£) shape functions satisfy (6) within the element. The techniques, 
defined in [1], involving variational matching and optimum constants 
are useful in this regard. In particular, if gx(£, 0) = 0, if u(£, 0) is a 
constant, and if the following identification of parameters is em­
ployed: 

e = ?x 

u = u(£, 0) 
the optimum values for e n and cu can be obtained using equations 
(16) and (17) in [1]. 

The second set of shape functions is denoted T,-. They are associated 
with the i) coordinates and are defined as follows: 

Tj(v) = Mi;(i?)c2j + fi2j(v) i = 1> 2, 0' not summed) (7) 

where 

MyO?) = OL(I)) 
1 2 

• - £ a(XA)(l + Xfc?))exp 
2*=i 

\u(0,Xk)\(l-XhV) 

H2j(y) =~ (1 + Xyij)exp \u(o,Xj)\a-hv) 

a(ri) = exp 
"gy(0,s) 

s) 

r"gy(U 
Jo u(0, 

ds 

The Tjit]) shape functions are designed to be singular-perturbation 
shape functions, in the sense that, on the element level, they satisfy 
the following equation approximately: 

_ d2<p d<)> 
ey T T + ^ ° . n)-r + gy(0, n)<l> = o 

dip drj 
The TJ(T)) shape functions depend on the values of certain variable 
coefficients on the line £ = 0 passing through the center of the element. 
If necessary, these coefficient values can be obtained from nodal 
values of the variable coefficients by interpolation. The C21 and c22 

parameters must be defined by variational matching procedures, etc. 
These techniques are the same as those introduced for the one-di­
mensional problem. 

Two-dimensional shape functions 7&(£, rj), associated with the four 
nodes of the element pictured in Fig. 1, can be defined as a tensor 
product of ft(£) and 77(77). The following model results: 

7i(£> v) : 

72(£, y) : 

0 I « ) T I ( I J ) 

ft(£) = Xii(|)ci> + X2i(£) i = 1, 2, (i not summed) (5) 

73«, V) = /82(£)T2(r,) 

74«, n) = I8 I« )T 2 (U) (8) 
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As hx — 0 and hy -» 0 (or e* — » and ty -> ») , 7fe(£, ij) — /z*(£, TJ). 
That is, the two-dimensional singular perturbation shape functions 
approach the bilinear shape functions. Thus the functions yk are 
asymptotically conforming. However, for large values of hx and hy, 
these shape functions are nonconforming, relative to the solution 
space associated with the variational problem. 

A second method can be utilized to develop shape functions suitable 
for the two-dimensional finite-element analysis. In this technique, 
two-dimensional inner boundary-layer solutions, corresponding to 
the four nodes of the element, and a two-dimensional outer solution 
are defined. The outer solution is denoted cu(£, ij) and the inner so­
lutions are labeled a>,-(£, rf). The inner and outer solutions can be 
matched, using variational matching procedures, to obtain realistic 
shape functions for the two-dimensional problem. Utilizing the same 
notation as was employed in discussing the tensor product formular 
tion, the shape functions, defined by two-dimensional variational 
matching, are denoted yk(£. v)- The typical function 7i(£, ri), asso­
ciated with the first node in the element, takes the following form: 

7i($, V) = ciw(£, TJ) + i (1 - cM-1, - D ) ( l - £)(1 - i7)o>i(£, V) 

cia>(l, - 1 ) 

4 

c i«( l , 1) 
(1 + £)(1 + jj)a>3(£, v) 

cia)(- l , 1) 
(l - S)U + r))aJ4(i y) 

t 

Various choices are possible for the outer solution co(£, rj) and the 
boundary-layer solutions cu;(£, TJ), to be used in forming 7k(£, ij). The 
inner and outer solutions could be defined so as to mimic, as closely 
as possible, the corresponding terms in the tensor product model. The 
following expressions, for u> and <o;, result from this type of anal­
ysis: 

«(£• V) = v(£)a(i)) 

&)!(£, 7j) = e-|3(-W)l(i+f)/^e-l"(-i.-i)|U+iWy 

«2(£, 77) = eH"(i,-i)|(i-{W*e-|«<i.-i)|(i+>,)/1, 

co3(£,7j) = eHn(i,i)|(i-{Wie-IW,i)|<i->!>/^ 

C04(£, ?;) = e- |n(-U)|(l+»/« l e- |B(-l , l) |( l- ,)/(y 

In order to obtain the final form of 7i(£,)?), the constant ci must be 
defined. This constant can be identified using a two-dimensional 
approximate variational matching technique. A similar procedure can 
be employed to obtain the remainder of the shape functions 7* (£, >)). 
For finite hx and hy, the resulting model is not conforming. However, 
the model is asymptotically conforming, and, in the limit as hx and 
hy approach 0, yk (£, v) ~* V-h (£. */)—the bilinear shape functions. 

An alternate model can be obtained by defining the outer solution 
co and the inner solutions co,- so that, in the case when git;, r?) = 0, the 
shape functions are conforming for any values of hx and hy. The fol­
lowing expressions seem to preserve the character of the solution, 
while yielding a conforming element: 

OJ(£, TJ) = exp I - • 
g(0,0) 

2H(0 ,_0 ) 2u(0,0) 
• K + U ] | 

co2(£, TJ) = e-n(i,-i)(i-«(l+>!) 

^ ( 1 , n) = e-n(-i,i)(i+t)(i-^) 

! 

.0 

X 

$=0, 

X 

•e
-

<f>=0 . 

- 1.0 -

<£ = y 

-1.0 —• 

MODEL A MODEL B 

Fig. 2 Physical models employed to test the two-dimensional algorithms 
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Fig. 3 Two-dimensional finite-element solutions for 4> on the line y = x (hx 

= h, = 0.25, Model A) 

T w o - D i m e n s i o n a l F i n i t e - E l e m e n t Ga lerk in 
T e c h n i q u e s 

The problem (1) can be solved by the finite-element Galerkin 
procedure, using the shape function yk (£, T)) to define <j> and using the 
shape functions /i*(£, ?/) to define the_geometric mappings. The local 
shape functions 7k(£, ?)) defined on Qe can be mapped to local shape 
functions yk(x, y) defined on Qe by using the isoparametric trans­
formation (3). Global shape functions Vk(x, y) defined on Q, can be 
obtained from the local shape functions Jk (x,y) using standard as­
sembly procedures. The finite-element Galerkin model for problem 
(1), defined in terms of the global shape functions, takes the following 
form: 

M (d
24> d24 

>n \€ \dx2 + dy
2 + u(x,y) 

dx 

dc6 
+ v(x,y) — + g(x,y)<p 

&y 
Tkdxdy = 0 (9) 

For simplicity, it is assumed that dfi2 = 0. Thus only kinematic 
boundary conditions are applied, and Fk = 0 on dfl. The dependent 
variable <j> can be defined in terms of the singular perturbation shape 
functions Fj as follows: 

r,*, (10) 

where $,• is the dependent variable at global node ;'. Introducing (10) 
in (9) and using the Green's theorem to simplify the resulting ex­
pression, the following algorithm is obtained: 
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Fig. 6 Two-dimensional finite-element solutions for <f> on the line y = x (h„ 
= h, = 0.10, Model S) 

integrals similar to (11) from fle to Qe, the transformation (3) involving 
the bilinear shape functions is employed. 
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Fig. 5 Two-dimensional finite-element solutions for <t> on the line y = x (hx 

= h, = 0.25, Model B) 

Khj% = 0 (11) 

where 

*-XKff- arfe diy 
dy dy 

ar, 
•uU,y)r f e—^ 

dx 
dTj -u(x,y)rk—^-g(x,y)TkTj 
by 

dxdy 

This system of equations defines the values of <t> at the global nodes 
of the mesh. Normally the matrix Kkj is defined by assembling similar 
local coefficient matrices constructed on the elements ile. These local 
coefficient matrices are normally determined using numerical inte­
gration techniques in the mapped plane Qe. In transforming the local 

Numerical Experiments for the Two-Dimensional 
Problem 

In order to evaluate the accuracy of the two-dimensional finite-
element algorithm composed of (8) and (11), two typical problems 
were solved. These problems are denoted A and B. In these calcula­
tions fl was assumed to be a square region with unit area, and the 
boundary conditions were defined as shown in Pig. 2. In this figure, 
Xx = u/e and Ay = t>/«. 

The coefficients were assumed to be constant with e = 0.05, u = v 
= — 1, and g = 0. A uniform mesh of finite elements was constructed 
on the square domain fl. The algorithm composed of (8) and (11) was 
used to obtain the approximate solutions for various values of hx and 
hy. In Figs. 3 and 4, the approximate solution defined by singular 
perturbation is compared to the standard Galerkin solution. In these 
figures, the approximations for 0, on the diagonal line y = x in the 
domain fi, are plotted versus x. 

The exact solution for this problem takes the following form: 

0 = 
•gM*-l) — g-X: 

l - e - x * 

gXy(y-l) _ g-Xjl 

1-

For the problem A, the singular perturbation finite-element solution 
matched the exact solution at all nodes of the mesh. Similar results, 
for problem B, are presented in Figs. 5 and 6. The exact solution for 
problem B was not determined; however, it is clear that the finite-
element singular perturbation model is not exact for this choice of 
boundary conditions. Even though, for model B, the finite-element 
singular perturbation algorithm was not exact, the resulting solution 
is considerably smoother and more reasonable than the one obtained 
using the standard Galerkin method. 

In these calculations, typical isoparametric techniques were utilized. 
The numerical integrations were carried out employing the Gauss 
quadrature formulas for exponentials defined in [1]. 
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A Theory of Multiaxial Anisotropic 
Viscoplasticity 
A theory of anisotropic viscoplasticity is developed. It is compared with and shown to re­
duce to existing theories under appropriate restrictions. The theory accommodates aniso­
tropic hardening laws which, by means of Lagrangian mappings in stress space, incorpo­
rate experimentally observed yield surface distortion as well as kinematic and isotropic 
flow-induced changes. The theory is applied to the prediction of flow surfaces in tension-
torsion space. 

1 Introduction 
The classical plasticity and rheological theories recognize exclu­

sively the path-dependent and rate-dependent nature of inelastic 
deformation, respectively. In general, both dependencies are manifest. 
However, for specific materials subject to a restricted range of envi­
ronmental conditions the basic hypotheses of one or the other of the 
foregoing theories may be approximated with sufficient accuracy for 
a given application. To address the problems where such approxi­
mation is not obtained a variety of more ambitious constitutive the­
ories have been proposed: among them, the theory of viscoplasticity. 
Perzyna [1] identifies theories which attempt to describe two classes 
of behavior: elastic/viscoplastic and elastic-viscoplastic. The former 
represents inviscid elastic response, while the latter, for which Naghdi 
and Murch [2] use the more descriptive label viscoelastic/plastic, 
assumes viscoelastic behavior for all stress states. The viscoplasticity 
theories to be discussed are restricted to the elastic/viscoplastic 
class. 

The theory, rooted in the works of Bingham [3] and Hohenemser 
and Prager [4], has been extensively developed and popularized by 
Perzyna in a series of papers dating to 1963 [5). It is assumed that 
there exists a yield function 

F = fU - 1 (1) 

where F, f, and K are scalar functions of inelastic strain, cfy = e;; — tlj, 
and possible internal state variables which summarize the history of 
deformation. The functions F and / also depend upon stress <r,;- such 
that 

F&O, f£K (2) 
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define in stress space the region of elastic response. The inelastic 
strains are then obtained by integrating 

e?j=yo($(,F))(df/daij)<T'pq 

where < > are Macaulay brackets, 70 and <j> are scalar material re­
sponse functions, and a'pq is the point in stress space at which the 
derivative is defined. 

The viscoplasticity theory, to be completed, must address the fol­
lowing questions: 

How are <£ and 70 to be determined? 
How shall aPq be defined? 

(A) 
(S) 
(C) What is the form of the initial quasi-static yield surface? 
(D) How does the quasi-static yield surface translate, rotate, 

and/or deform as the inelastic deformation proceeds? 

Questions (A) and (S) are treated in Sections 2 and 4 in which the 
uniaxial response and the multiaxial generalization thereof are dis­
cussed. Questions (C) and (D) are treated in Sections 3 and 5, in which 
the problem of hardening is discussed and specialized results are 
given. In Section 6 the theory is specialized to the tension-torsion 
space, and in Section 7 surfaces of constant offset strain and constant 
stiffness are calculated. 

2 Uniaxial Flow Rules 
Consider a quasi-static stress-strain curve (Fig. 1, OA'BE)a* = 

g*(ep), which is obtained by loading at extremely slow stress rates. 
That is, each increment of stress is applied after the total plastic strain 
due to the previous stress increment has had time to develop fully. 
Thus the quasi-static stress-strain curve may be interpreted as a se­
quence of equilibrium states such that plastic flow occurs at finite 
loading rates when the flow condition a > g*(tp) is satisfied. Ob­
viously, the equilibrium stress-strain curve coincides with the upper 
bound of the elastic region, which is bounded from below by the curve 
(FA"CG), a** - (P. 

To describe the rate effects we may use the constitutive equation 
proposed by Malvern [6] for the uniaxial work-hardening case 

Ei = 6- + *(<r, t) (4) 
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Fig. 1 Schematic illustration of rate-dependent uniaxial stress-strain re­
sponse 

where E is the elastic modulus and e? = $ / £ . When the quasi-static 
stress-plastic strain curve is used as a relaxation boundary or reference 
curve, (4) may be rewritten in the form 

Ei = b + # ( / / ) (5) 

H = <j-<T*=<j-g*(eP) (6) 

where H is the overstress, i.e., the excess of the instantaneous stress 
over the stress on the quasi-static curve evaluated at the same plastic 
strain.1 The stress state a*, which corresponds to a, is called the 
quasi-static loading point. For simplicity, we consider the special 
case 

i = if IE + k(H)" (7) 

where k and n are material constants. The quasi-static stress rate or* 
is related to the plastic strain by 

jp = a*IEP (8) 

where the quasi-static plastic tangent modulus E? is the derivative 
ofg*. 

In Fig. 1, OAD represents the stress-strain curve at a given strain 
rate, a A — oA is the overstress at time t^., and curves OO'O" and 
FA"G represent the change in the "center" a and the lower bound 
a** of the elastic region with strain. They may be computed, re­
spectively, by 

a = if* - d* (9) 

and 

ir** = a*-D* (10) 

where d* and D* (see Fig. 2) are the forward part of the width (in the 
loading direction) and the width of the elastic region. The definition 
of the center a is discussed in the next section. 

1 In [6] the overstress is defined by the total strain. 

Journal of Applied Mechanics 

a i j , a i j 

Fig. 2 The deformed yield surface in deviatoric stress space 

At a particular loading point A in Fig. 1, the corresponding quasi-
static loading point A', the center of the yield surface 0, and the lower 
bound of the elastic limit A " are determined by the plastic strain t % 
If at point A the stress is gradually decreased, the overstress H = a 
— a* decreases while the plastic strain continues to increase until the 
point B is reached. If, at point B, the strain rate imposed during the 
segment OA is reimposed, the new stress-strain path will have an 
initial slope equal to the elastic modulus, and the curve will approach 
the original path OAD gradually, while the quasi-static curve follows 
the original path OBE. From Fig. 1 other features of viscoplastic flow 
such as creep and relaxation can be seen to follow from (7). 

3 Hardening Rules 
Before generalizing the flow law to the multiaxial case it is appro­

priate to discuss the representation of the yield surface and its 
translation, growth, and distortion during the flow process. Hence­
forth all second rank tensors which represent stress or strain-like 
quantities shall be assumed to represent deviatoric quantities unless 
otherwise indicated. 

For the purpose of describing the modification of subsequent yield 
surfaces during plastic flow, let Sy and sy be corresponding deviatoric 
stress states on the initial and the subsequent yield surfaces, respec­
tively. If a Lagrangian description of the yield surface is used, then 
the motion «y = sy (SJW, t) gives the position sy at time t occupied by 
a point on the subsequent yield surface whose initial position is at S;y. 
Thus the elastic domain, bounded by the yield surface, can be envis­
aged as a deformable continuum in stress space. 

Let the current stress deviator be <ry and let the quasi-static stress 
deviator be o-y. Two equally plausible definitions of a\j are pos­
sible, 

a)y. The point on the yield surface closest to <ry. That is, the line 
of action of the normal (if defined) to the yield surface nij(ifii) passes 
through an; 

a*'j : The intersection of the yield surface and the radial line seg­
ment aij — aij, where ay represents the position of the center of the 
yield surface in deviatoric stress space. 
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Trajectory of Yield Surface Center 

(al (h| 

Fig. 4 A schematic representation of the deformation and translation of the 
yield surface 

f(Sij)=i^jSij=K2
0 (12) 

(b) 
Fig. 3 Geometric interpretations of the quasi-static loading points for (a) 
regular yield surface and (b) corner of singular yield surface 

The locations of o-y are denoted by points Q on Figs. 3(a) and 3(b) 
for regular and singular yield surfaces, respectively. For most surfaces 
there is little difference in the positions calculated by the alternative 
definitions. For our immediate purposes let the loading be quasi-static 
so that Oij and <T]J coincide. 

To describe both deformation and translation of the yield surface 
during the plastic flow, the subsequent yield state s;y (see Fig. 4) may 
be referred back to its initial yield state Sij by 

sij ~ aa + Rij - Sij ( ID 

where Rij is a measure of the deformation of the yield surface. In 
general, Rij is a function of S;y and the history of material deformation. 
Fig. 4(a) represents a typical deformation and translation of a yield 
surface. The subsequent yield surface, S(1), has been created from the 
initial yield surface, S<0), by loading very slowly along the path OP. 
The path of a "material" stress point on the yield surface is given by 
ab. In accordance with Lagrangian description, the stress states at 
points o and 6 are denoted by Sy and sy, respectively. In Fig. 4 the 
two surfaces are superposed by subtracting a;y from s;y. For an initial 
Mises surface 

where KO represents the size of the initial yield surface. From (11) and 
(12) 

i (sij - ctij + Rij)(sij - dij + Rij) = KI (13) 

For the special case of combined kinematic and isotropic hardening, 
the isotropic deformation (expansion or contraction) of the yield 
surface with respect to its center may be represented by defining the 
tensor fl;;- in (11) to be proportion to Sij. Thus (11) becomes 

(1 + &)(Sij - an) = Sij 

Now, the subsequent yield surface becomes, from (13), 

| (1 + S)2(sij - aij){sij - ctij) •• KI 

(14) 

(15) 

where KQ is the initial size of the yield surface and 5 is a scalar func­
tional of the history of plastic deformation. The current size K of the 
yield surface is given by K = KO/(1 + 5). The pure kinematic hardening 
and pure isotropic hardening models may be obtained by setting R^ 
= 0 and ctij = 0, respectively. 

To complete the hardening rule one must determine the rate of 
change of size by specifying 5 as a function of the deformation. If the 
direction of motion of the center is parallel to a specified unit vector 
va,then 

imi (16) 

where the scalar quantity jx may be determined from the consistency 
condition [7], For the special case (15) 

(<r*y - aij)a-j + 
1 + 5 

(alj - aij)((Tij - ctij) 

{a'h, - aki)vki 
(17) 

The direction of e;y may be defined in a variety of ways [8, 9], all of 
which are equivalent to the loading direction in deviatoric stress space 
for proportional loading of an initial Mises surface. 

The general form of the hardening law (11) is capable of describing 
not only the translation and dilatation (or contraction) of the elastic 
region but the experimentally observed distortion [10-15] as well. 
Generally, the yield surface deformation includes the development 
of a region of high curvature on the forward part (the part directed 
toward the loading point) of the yield surface; a flattening of the rear 
part of the surface; and a reduction of the width of the yield surface 
in the direction of monotonic loading. Usually zero cross effect is 
observed. That is, the yield strengths in directions orthogonal to the 
direction of loading do not change. To incorporate such phenomena 
we generalize a rule proposed by Phillips and his coworkers [11,12, 
16]. 

Let 

Rij = -Xuy (18) 

where Uij is a unit vector whose possible directions are the same as 
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those of Vij and where X is a scalar functional representing the non­
uniform deformation of the yield surface. From (18) and the material 
derivative of (11), 

A = (Sy - (Xij)Uij (19) 

Let the yield surface be divided in two parts separated by the hy-
perplane in Fig. 2, which contains the center of the yield surface aij 
and is perpendicular to the direction of deformation uy-. The points 
on the forward and rear parts of the yield surface obey the inequali­
ties 

(sij - oiij)uij > 0 and (s„- - «„)«(,- < 0 (20) 

respectively. Thus the distances d and e (see Fig. 2) measured from 
typical stress points on the forward and rear parts of the yield surface 
to the dividing plane are given by 

(Sy - aij)Uij (21) 

Let uij be approximately constant during an incremental loading 
event. Then from (19) and (21), we obtain 

\ = d, \ = (22) 

on the forward and rear parts of the yield surface. To a first approx­
imation let 

d = Ad, e = Be (23) 

where A and B are independent of position on their respective por­
tions of the yield surface. For monotonic loading, higher curvature 
is observed to develop in the forward part of the yield surface, thus 
A > B. To determine the appropriate expressions for A and B, it is 
assumed that 

where 

:gij, 

(T)2 

B- §27 

W & 

(24) 

(25) 

In general, g\ and gi are scalar functionals of the history of the de­
formation. 

For proportional loading of an initial Mises surface, uij = j/y = /y, 
a unit vector in the loading direction, and so 

su - a;; - 0 

Equation (26) may be integrated to obtain 

d — do 
su ~ an - (27) 

le - eo 
where do and eo are evaluated at the beginning of the loading event 
during which A71 plastic strain is accumulated. Also from (21), (23), 
and (24), 

d = d0 exp I gxdy 
U/o 

The unit change in dimension of the yield surface is given by 

Similarly, 

d — do 

d 

= eo exp 

e - e0 

1 — exp 

»Ayi 

I" I 
A71 

gidy 

( '" gidy 
Ja j 

J' A T I 

0 
= 1 — exp g2dy 

From (21), (27), (29), and (31) 

sij - ctij - g{ski - akdkihj • 

(28) 

(29) 

(30) 

(31) 

(32) 

where g assumes the values g\ and g\ on the front and rear surfaces, 
respectively. Equation (32) may be written as 

sij - aij - Lijki(sf,i - oiki) = Sij (33) 

where Lyki assumes different forms on the front and rear surfaces. 
In general, after n linear loading trajectories Ljjki assumes In different 
values on In subdomains of the surface and the description becomes 
quite complex [9]. 

However, a considerable simplification of the proposed hardening 
rule may be achieved by assuming only one deformation rate, i.e., A 
= J3. With this approximation, the subsequent yield surface represents 
an ellipsoid in six-dimensional deviatoric stress space. The defor­
mation of the yield surface is given by the fourth-order tensor Lijki, 
which is single-valued over the entire surface. For the initial Mises 
yield condition, the subsequent yield surface is now 

I [sij - aij - Lijki(ski - a>,i)][sij - aij 

- Lijki(ski - aki)] = *o (34) 

By computing the material time derivative of (34), we obtain 

Sy - atj - Lijkiiski - au)- Ujki(shi - au) = 0 (35) 

From (11), (18), (21), and (23) and the assumption of a single hard­
ening rate A, 

hj - aij - A(SM ~ aki)ukiu.ij = 0 

From (35) and (36), 

(36) 

A(smn - amn)umnUij + Lijkiiski - aki) 

- A(spq - apq)upquraLijrs = 0 (37) 

Note that Lijki is independent of position on the yield surface. Thus, 
based on (37), Lijki may be defined by 

Lijki - KijUki (38) 

where Ky may be obtained by substituting (38) into (37) and elimi­
nating the scalar quantity (ski - aui)uki. That is, 

Lijki = KijUki = A[uij — Lijmnumn]uki (39) 

The scalar quantity /I may be computed from the consistency 
condition at the active stress point, sy- = a'j. Then, from (16), (34), 
and (39), we obtain 

(26) . _ s'jjor'ij — AS'kiiuki — LkimnUmn)upq(a*pq — apq) + 

where 

^ PQ uv*-*uupq )Vpq 

S'ij = a\j — a^ — Lijki(a%i - aki) 

(40) 

(41) 

In its specialized form, the simplified hardening rule is similar to 
Baltov and Sawczuk's [17] anisotropic hardening rule, which also 
includes a combination of kinematic hardening, rigid body rotation, 
and symmetric deformation of the yield surface. 

4 M u l t i a x i a l F l o w R u l e s 
The theory of viscoplasticity may be formulated by generalizing 

Malvern's one-dimensional model into multiple-dimensional con­
stitutive relations. Generalization of the uniaxial theory required the 
specification of two key features: the direction of the viscoplastic 
strain rate, ifj, and the magnitude of the overstress. 

Perzyna's version of the theory of viscoplasticity [5] is based on the 
existence of a yield function, (1), in deviatoric stress space. The region 
of elastic response is defined by (2) and the viscoelastic strain rate is 
given by (3), where the derivative is defined at a'j = <Ty. 

At the loading point outside the yield surface, f > K, the dynamic 
loading surface is given by / = C*, an isotropic expansion of the sub­
sequent yield surface, and from equation (3), the viscoplastic strain 
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rate is defined to be normal to the dynamic loading surface. The ov-
erstress H is defined by 

H = C* (42) 

which is independent of position on a given dynamic loading sur­
face. 

In [5], the theory is only proposed for isotropic hardening. However, 
it may be extended to any of the existing hardening rules by specifying 
the quasi-static loading point a\j properly. 

As an alternative to Perzyna's theory, Phillips and Wu [18] pro­
posed that the overstress H be defined as the perpendicular distance 
in the deviatoric space from the loading point aij to the yield surface. 
Thus the quasi-static loading point alj is given by 

and 

atj = aii ~ Htiij(a*pq) 

H= (oij- a'ij)nij(o*pq) 

(43) 

(44) 

where nij(a'pq) is, for smooth yield surfaces without corners, an 
uniquely defined unit normal vector to the yield surface at aPq. 

To take into account the possibility of the existence of corners on 
the yield surface, one alternative is to assume the existence of a dy­
namic loading surface which is everywhere parallel to the static yield 
surface and at a constant distance equal to the overstress H. The 
viscoplastic strain rate is assumed to be normal to both the dynamic 
loading surface and to the regular regime of the yield surface. When 
the quasi-static loading point is at a singular point on the yield surface 
the plastic strain rate direction is defined uniquely by the normal to 
the dynamic loading surface. The constitutive relation is then of the 
form 

efj = 7 < * ( # ) K K , ) = 7<*(ff)>n;,(<W 

From (45) 

%/2/f = (€f;ef))1/2=7<*(ff)> 

which may be inverted to obtain 

# = < $ > - V2 
/« 

(45) 

(46) 

(47) 

Equations (43) and (47) now define the dynamic loading surface at 
each value of viscoplastic strain rate. 

From the foregoing discussion, it can be seen that the primary role 
of the dynamic loading surface in Phillips and Wu's theory is to define 
the direction of efj at points which correspond to the corners of the 
yield surface. 

In the current work, the effective overstress H is defined by the 
distance between the loading point aij and the quasi-static loading 
point a'ij. That is, 

H = [|(ffy - <7j;)(t7y - <r-;)]1/2 for (cry - <7j;)ny(<r;,) > 0 (48) 

Otherwise, H = 0. The yield surface is given at alj by an equation of 
the form 

f(o*ij ~ otij) = Ko (49) 

where the quasi-static loading point a lj is determined in one of the 
two ways discussed at the beginning of Section 3 and illustrated in 
Fig. 3. 

The rate-dependent flow rule now may be expressed by 

ifi = s/lmH))vij(a'pq) (50) 

where $(H) is given by equation (7), and the unit vector Vij(aPq) is 
determined by one of two criteria: 

(a) If nij(aPq) is uniquely defined, then 

ViM'pq) = riij((Tpq) (51) 

(b) If nij(a*pq) is not uniquely defined, then 

Vij(a'pq) = M<r ; ? ) (52) 

Perzyna's Dynamic 
Loading Surface 

' Phillips and Wu's Dynamic 
Loading Surface 

Fig. 5 Comparison of the generalized Perzyna's and Phillips and Wu's the­
ories of viscoplasticity 

where 

K = (ay - o*ij)/H (53) 

Note that the use of the loading point of the first kind (alj) leads 
to a theory which is essentially equivalent to Phillips and Wu's version 
of viscoplasticity—although the concept of a dynamic loading surface 
is not introduced. Note also, that a theory based on equation (50) and 
the quasi-static loading point of the second kind (<rj/) is similar to 
Perzyna's theory, since riij(apq) = nij(apq), where nij(apq) is the unit 
normal to Perzyna's dynamic loading surface, /(ay- — aij) = C*. 
However, in the present theory the quasi-static loading point of the 
second kind, alj, is computed as the intersection of the yield surface 
and the line connecting the loading point and the center of the yield 
surface. That is, 

• C(oij - atj) (54) 

By substituting equation (54) into (49) C may be determined. Thus 
the overstress given by (54) is, in general, position-dependent, while 
Perzyna's overstress given by equation (42) is not. 

Fig. 5 shows the differences between the predictions of Phillips and 
Wu's and Perzyna's theories of viscoplasticity. At the loading point 
P, the unit vectors n\j and n\j are the unit normals to Phillips and 
Wu's and Perzyna's dynamic loading surfaces, respectively. Note that 
n\j is parallel to n'tj and nfj is parallel to nlj. 

For many cases, the alternative theories predict identical results 
and, in most situations, what differences there are, are small. However, 
the determination of alj by (54) and (49) is computationally simpler 
than that of the first kind. To determine <r;j, minimize H by intro­
ducing the Lagrangian multiplier X, to obtain 

dH df(a*pq - apq) 
r A ' ba*u i>at; 

0 (55) 

In six-dimensional deviatoric stress space, equations (49) and (55) 
give six equations with six independent unknowns, X and alj. By 
solving these six simultaneous equations, afj may be obtained. 

5 A S p e c i f i c Cons t i tu t ive L a w 
To illustrate the application of the flow law developed in Section 

4, consider the simplified hardening rule described at the end of 
Section 3. Then, at the quasi-static loading point, s;;- = alj, the yield 
surface given by (34) may be written as 

f(Slj) = lStjSlj- Kl 

where 

Sij - alj — a,j — Lijki(a*u — aui) 

The unit normal to the yield surface at a\j becomes 

(56) 

(57) 
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df/da'jj ..%L (58) 11 (df/d<Tpgdf/d<rpq)U
2 Z 

where 

Zij = S'ij — SliLkuj (59) 

Z = ( 2 y Z y ) 1 / 2 (60) 

The rate-dependent flow rule given by (50) and (51) becomes 

e y = < ^ <$(#)> f (61) 

Prom (61) and (25) 

7 = *(H) (62) 

The translation of the yield surface is given by (16) in which (i may 
be rewritten from (40) together with (39) and (59) 

M = 
Zjjil'i — SliLklmn(<r*mn ~ O-mn) 

(63) 

Note that vm must be specified and Lijki is given by equation (39). 
To complete the computation of ft we must relate the flow law to the 
quasi-static stress-strain law or relaxation boundary. The classical 
rate-independent flow law requires that 

efj = — akinhiriij (64) 

Thus, from (58) and (64), we obtain the rate-independent analog of 
(61), 

(<jhZki)Zij 

K(Z)2 

Prom (25) and (65) 

• _ / 3 bhZki 
7 V 2 EPZ 

Since EP = 3/2 K. Thus (62) and (66) imply that 

ahZki=\I^EPZmH)) 

and thus, from (63) and (67), 

. VlEPZ($(H)) - SUklmn«n ~ CLmn) 
ft = 

(65) 

(66) 

(67) 

(68) 

The remaining unknown quantities are C and h\y By substituting 
equation (54) into (56), C is obtained 

«l 11/2 

where 
Astfsy 

<?ij - OLij - Lijkl((Tkl - Olkl) 

(69) 

(70) 

Then, the quasi-static stress rate ir'j may be computed by differen­
tiating (54). That is, 

ir'ij = C(<ry - ay) + Cay + (1 - C)<jy (71) 

where C may be calculated by substituting (71) into (67). That is, 

C m y/lEPZ(<f(H)) - (1 - OZjjajj - CZklirkl 

\Omn ~ Oimn)Zmn 

This completes the formulation of the constitutive equations for 
the proposed model of viscoplasticity combined with the simplified 
hardening rule. Here the definition of the second kind for the 
quasistatic loading point a\j is used. In numerical simulations of stress 
control tests, the independent variables ay are specified at a succes­
sion of small time increments, then the successive increments of the 
dependent variables ey, L&jm„, oy, C, and <J\J are computed from 
equations (60), (39), (68), (72), and (71), respectively. In the next 
section these governing equations for combined tension-compression 

and torsion loading will be given. Then, together with the proper ex­
pressions for A, $ (H) , and EP, flow surfaces for pure aluminum are 
computed in Section 7. 

6 A p p l i c a t i o n to T e n s i o n - T o r s i o n Loading 
In this section, the deviatoric quantities are denoted by the con­

ventional (~) notation, and summations are carried out over the range 
1 to 5, unless otherwise indicated. The range of free subscripts is 
similarly defined. By using vector notation for nonzero components 
of the second-order tensors, we have 

|ff) = 11 a, - I a, - \ a, r , r), |a*| - |§ «r\ - s <r*, T 

and 

M = ifS, - hp
x,-i f ? , f * V e y 

The unit vectors uy and ?y are denoted by 

lWJ = (3 UXt ~~ 3 uXt ~ 3 ux> Uxy, Uxy\ 

and 

\v] = II Vx, ~ 3 Vx, - I Vx, Vxy, Vxy), 

where | ux + 1u\y = 1 and § v\ + %v\y = 1. 
Write (39) and (57) in contracted notation, 

Lij = A[Ui -Lijuk]uj 

and 

S; = (at ~ <*>) - Uj&'j ~ «;) 

* , T 

(73) 

(74) 

where {3?| = |§S*, - \S'„ -\S'X, S'xy, S'xy]and|S) = | | « , - J « , - \ a , 
/3, /?}. Noting the initial zero value of Ly for initial isotropic material 
and U2 = "3 = —\u\ and U4 = us, we conclude from (73) and (74), 

L2J = L$j = — iLij, L{2 = La = — 2L11, L$j = Lnj, L,-5 = Lu (75) 

Similar restrictions apply to Ly. The four independent components 
of the deviatoric tensor Ly are given in terms of the corresponding 
nondeviatoric components by 

[En, Lu, L41, -L44) — |9 LX}X, 3 Lx?Xy, s Lxy,x, LXy}X (76) 

From (76), equation (74) provides two independent equations in 
a — T space, 

\Sl 

Sly 

<X*-- a 

T * - / 3 j 

l-'XfX L*Xtxy 

Lxy.x ^xy,xyi 

i(<y*-

2(T* -

From (56), the yield surface is 

(S'x)
2 + 3(S;„)» = 3K2, 

-a)} 

JS> J 
(77) 

(78) 

By denoting {Z\ = (§Zx, -\Zx,-\ Zx, Zxy, Zxy\, (59) reduces to 

Zl 

Zxy 
= si 

Sly 
- J~*x,x ^x,xy 

J-*xy,x Lixy,xy, 

f2 c« 
3 °x 

.2 Sly 

From (79), the rate-dependent flow rule (61) gives 

cx 

fP cxy 

<*(#)> 

(Zl + 3Z?,)i« £, <-y-

where H is given by (48) 

H = [(a- a*)2 + 3(T - r*)2]1 '2 

From (73) 

(79) 

(80) 

(81) 

Lx,x
 = -^[(l — 3^x,x)w i "~ %*-'xtxyuxuxy\ 

*-*x,xy ~ A[(X — 2*-'x,x)UxUxy ~ ^x,xy^-xy\ 

*-*xy,x ~ A[*~ 3 LxyiXUx + (1 — 2iLXy,xy)^x^xy\ 

LXy,xy = A[— 3L/Xy,XUxUXy + (1 — ZL,XyiXy)Uxy\ (82) 
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Fig. 6 Rate-dependent offset surfaces following 0.2 percent tensile plastic prestrain 

where A is given by (24) and, for 1100 aluminum at room temperature 

g! = -a1biybl x 

where 

a i 

•• 4345, 61 = 
; 1.338, 61 = 

•• 0.9767 for 7 > 150 X lO ' 6 

•• 0.0584 for 7 < 150 X 10~6 

The accumulated inelastic strain rate 7 is 

b*Zx + 3r*Zx y -v = (ep + hep U 

The kinematic rule for the yield surface is defined by (16), 

= J " 

(83) 

(84) 

(85) 

(86) 

where, from (68), 

H = {EP(Zx + 3Zlyy'H$(H)) 

~~ 3 [SIL: 

+ S*xyLXyiX(a* 

x,x(<y* -a) + 3SxLx,xy(r* - /3) 

a) + dS'L • vxy) (87) 

According to equation (71), the quasi-static stress rates {a*, i*) 

ij* = C(a-a) + Ca+ (1 - C)a 

T* = C(T - /3) + CT + ( l - Q / 3 

where, from (69) and (70), 

C = -
V3 to 

[(sr)2 + 3(s;;)2]^ 
and 

S'x 

Sxl 

and from (72), 

A %EP(Zl + 3Zl 

1 _ r 
9. ^ 1 2 ( T - |8)J 

(88) 

(89) 

(90) 

For stress control loading programs, a and f are specified. After 
choosing the proper directions for Utj and vy, the incremental quan­
tities of the 13 dependent variables, e?, e^y, ex, e ly, 7,1/*,*, LIiXy, Lly>1, 
LXy,xy> OL, /?, o"*, and T*, can be sequentially integrated from the cor­
responding differential equations (77)-(91). Note that at the onset 
of inelastic flow, we have (a*, r*) = (a, T), and also initial zero values 
for Lij, a, and /?. 

For strain control loading programs, ex and kxy are specified. A 
similar procedure can be specified for this case. 

7 Flow Surfaces 
For simplicity consider the case of initial tensile loading followed 

by probes directed radially outward from the center of the first sub­
sequent yield surface. Let the hardening law be pure kinematic 
hardening of a Mises surface. Under these conditions it can be shown 
that the alternative definitions of kinematic hardening direction re­
duce to the loading direction \lx, lxy\ = \a/l, T/1\, where I = § (<r2 + 
3*2)1/2. 

One can compute the rate-dependent offset surfaces of constant 
plastic strain accumulation and the constant tangent modulus sur­
faces. Along a probing path, the points on a rate-dependent offset 
surface and on the corresponding quasi-static offset surface are the 
loading point and its corresponding quasi-static loading point for 
which the designated amount of offset strain is accumulated. The 
points on a rate-dependent constant tangent modulus surface are 
similarly defined. In this section the rate-dependent tangent modulus 
is defined by the ratio of the effective stress rate and the effective 
plastic strain rate, i.e., a/y. Then from equation (62), the rate-de­
pendent tangent modulus becomes a/$(H). The function <J> is de­
termined from (5) and (7). For the 1100 aluminum considered herein, 
1/k = 237 MPa"-min and n = 2.86. Also (P = (o/k)lln, EP = khyh-x 

where A = 0.1014 and k = 126 MPa. 

Figs. 6 and 7 illustrate the two families of surfaces of rate-dependent 

,)<*(ff)> - (1 - C)(Zxa + 3Zxy$) - C(Zxa + 3Zxyfi) 

[(a - a)Zx + 3(r - P)Zx: 
(91) 
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Fig. 7 Rate-dependent tangent modulus surfaces following 0.2 percent tensile plastic prestrain 

offset surfaces and tangent modulus surfaces, respectively. The initial 
loading is such that 0.2 percent of plastic strain is obtained in uniaxial 
tension. The surfaces are computed by incorporating the pure kine­
matic hardening rule into the rate-dependent flow rule for a constant 
stress rate of 0.345 MPa/min (50 psi/min). The offset strains range 
from 0.002 to 0.5 percent, and the tangent modulus from 1000 GPa 
to 5 GPa. Fifteen probing paths are computed and then the surfaces 
are completed by interpolation. It can be seen that the rate-dependent 
offset surfaces are similar to those reported by Williams and Svensson 
[19]. The surfaces are significantly distorted for small offset strain 
and tend to be isotropic for large offset strain. The tangent modulus 
surfaces tend to become isotropic for small tangent moduli, while the 
surfaces of large tangent moduli show significant distortion and local 
concavities. Although the concept of a family of constant modulus 
surfaces proposed by Mroz [20] has been widely applied to formulate 
theories of cyclic plasticity [21,22], no biaxial experiments to deter­
mine such surfaces have been reported. 

8 Closure 
In the preceding sections a theory of viscoplasticity capable of in­

corporating anisotropic hardening in a most general sense has been 
presented. The theory has been shown to reduce to those of Perzyna 
[5] and Phillips and Wu [18] under appropriate restrictions, and it 
has been applied to simple loading conditions in tension-torsion. The 
specific form of the calculated offset surfaces depends on the under­
lying quasi-static stress-strain curve during load reversal, the detailed 
description of which is presented in [9] and in a forthcoming paper 
in which the application of the theory to cyclic loading processes is 
explored. Similarly, the application of the theory in its more general 
form (Sections 3 and 4) to the description of yield surface distortion 
and studies of the effects of choice of direction of vij and uv- [8] are to 
be found in [9] and forthcoming papers. 
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On the Characterization of Strain-
Hardening in Plasticity 
In the context of a purely mechanical, rate-type theory of elastic-plastic materials and 
utilizing a strain space formulation introduced in [1], this paper is concerned mainly with 
developments pertaining to strain-hardening behavior consisting of three distinct types 
of material response, namely, hardening, softening, and perfectly plastic behavior. It is 
shown that such strain-hardening behavior may be characterized by a rate-independent 
quotient of quantities occurring in the loading criteria of strain space and the correspond­
ing loading conditions of stress space. With the use of special constitutive equations, the 
predictive capability of the results obtained are illustrated for strain-hardening response 
and saturation hardening in a uniaxial tension test. 

1 Introduction 
Within the scope of a rate-type mechanical theory of elastic-plastic 

materials, Naghdi and Trapp [1] have recently discussed the advan­
tages of formulating plasticity theory relative to yield (or loading) 
surfaces in strain space (rather than stress space). We adopt here the 
loading criteria of the strain space formulation as primary and derive 
the associated loading conditions in stress space. By comparing the 
local motion of the loading surface in stress space to that of the loading 
surface in strain space during loading, we find that three distinct types 
of material response representing hardening, softening, and perfectly 
plastic behavior can be defined in a natural way. For convenience, 
these three types of response will be referred to collectively as 
strain-hardening behavior. The development leading to the latter, 
as well as illustrative examples of the results for special constitutive 
equations, are the main objectives of the present paper. As in [1], we 
confine attention to the purely mechanical theory of elastic-plastic 
materials, and base our development on the rate-type stress space 
formulation of Green and Naghdi [2,3]2 and on the alternative strain 
space formulation introduced by Naghdi and Trapp [1]. 

By way of motivation, consider the response of a typical ductile 
metal in a one-dimensional simple tension test in which the strain may 

1 Now in the Department of Mechanical Engineering, University of Houston, 
Houston, Texas 77004. 

2 The theory proposed in [2,3] is a general thermodynamical theory of elas­
tic-plastic materials. The development in [1[ is carried out within a purely 
mechanical framework which can readily be interpreted in. terms of the iso­
thermal case of the thermodynamical theory. 
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Fig. 1 Idealized stress-strain diagram for a typical ductile metal. As the points 
1, 2, 3, 4, 5 of the stress-strain curve are successively transversed, the locus 
of the yield point on the a-axls moves outwards through B,, B2, B3, B4, and 
0 S , respectively, while the corresponding locus of the yield point on the s-axis 
first moves upwards through 4 i , 4 2 to A3 , and It then moves downwards 
through At and 4s. All unloading curves are drawn parallel to the linear elastic 
segment 1-0 and hysteresis Is ignored. 

be moderately large. Let e and s stand, respectively, for the compo­
nent e n of the Lagrangian strain tensor and the component s n and 
symmetric Piola-Kirchhoff stress tensor. Fig. 1 shows a plot of the 
stress s versus the strain e for the one-dimensional homogeneous 
simple tension test. From the origin 0 to the elastic limit (identified 
by the point 1) the material is elastic, stress strictly increases3 with 

3 Recall that a real-valued function / defined on some interval 'J of the real 
line is increasing if f(x2> g f{xi) whenever xi and x2 belong to 3 and x2 3 *i-
A function / is strictly increasing if /(ac2) > f(x{) whenever x2 > *i- Similarly, 
/ is decreasing if i 2 3 *i implies f{x%) g f(xi) and strictly decreasing if X2 > 
Xi implies/(JC2) </(*i)-
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strain, there is no plastic straining and unloading takes place along 
1-0. On the rising portion 1-3 (excluding point 3) of the s-e curve both 
stress and plastic strain strictly increase with strain. Unloading from 
a point such as 2 takes place along 2-2' leaving a plastic strain of 
amount 02'. At point 3, s attains its maximum value.4 On the falling 
portion 3-4-5 (excluding point 3) of the s-e curve, stress strictly de­
creases with strain, but plastic strain continues to strictly increase. 
Associated with each point of the segment 1-5 in Fig. 1, there is a 
unique yield point on the s-axis (i.e., in stress space) and a unique yield 
point on the e-axis (i.e., in strain space). For the points 1,2,3,4,5 these 
are denoted by Ai, A% A3, A4, A5 and B\, B2, B3, B4, £5, respectively. 
The points A\ and B\ are the initial yield points. As the segment 1-5 
of the stress-strain curve is traversed, the locus of the yield point on 
the s -axis differs characteristically from that of the yield point on the 
e-axis, in that the former reverses its direction of motion while the 
latter does not. 

The usual loading criteria of the stress space formulation of plas­
ticity theory, when applied to the one-dimensional case under dis­
cussion, require that the plastic strain rate be nonzero whenever the 
yield point on the s-axis is moving upwards, and be zero when it is 
stationary. It is further stipulated that the yield point on the s-axis 
cannot move downwards while tension is being applied. These criteria 
are consistent with the results of the tensile test for the rising portion 
1-3 of the stress-strain curve, both for paths of the type 1-2 and paths 
of the type 2-2'. They also demand the correct kind of behavior for 
paths of the type 4-4' issuing from points on the falling portion 3-5 
of the stress-strain curve. However, they are clearly inadequate for 
paths of the type 3-4 because the yield point on the s-axis does move 
downwards for any such path; and, as was pointed out in [1], plastic 
strain is observed to be strictly increasing in this region. On the other 
hand, again with reference to the one-dimensional case under dis­
cussion, the loading criteria of the strain space formulation require 
that the plastic strain rate be nonzero whenever the yield point on the 
e-axis is moving outwards and that it be zero whenever this yield point 
is stationary. It is further required that the yield point on the e-axis 
cannot move inwards while extension is occurring. These require­
ments are consistent with the behavior represented in Fig. 1. Thus 
the plastic strain is strictly increasing along the paths 1-2 and 3-4 and 
is constant along the paths 2-2' and 4-4'. 

In order to provide a background for some subsequent develop­
ments, it is desirable to make further observations regarding the 
stress-strain curve in Fig. 1. In the context of the classical infinitesimal 
theory, we recall the relations 

e = ee + eD ••s/E, (1) 

where ee and ep are abbreviations for the components efi and efi of 
the elastic and plastic strains, respectively, and E (>0) is Young's 
modulus. We note that 

dee dep de _ de /de e \ _ 1 

dee ds\ds I 
1+-

deD 
(2) 

de = 

ds ds ds ' dee ds\ds j dee 

Now with the use of dee/ds = HE > 0 and (2)2, we have 

ds d@ dc d€ 
— > 0 if and only if > 0, — < 0 if and only i f — < 0 . (3) 
ds dee ds dee 

On the rising portion of the s-e curve de/ds > 0 (or equivalently ds/de 
> 0), on the falling portion de/ds < 0 (ds/de < 0) and de/ds at point 
3 becomes unbounded. Then, at a point A on the portion 1-5 of the 
s-e curve, with the help of (2) and (3) it is readily seen that 

1+-
dep 

dee 

> 0 if and only if A is on the rising portion of the curve, 
(4) 

< 0 if and only if A is on the falling portion of the curve, 

while 1 + dep/dee becomes unbounded at point 3. 
After recalling the main features of the purely mechanical theory 

of elastic-plastic materials from [1-3]6 in Section 2, a quotient f/g of 
quantities which are derived from the loading functions / in stress 
space, and g in strain space, is introduced. It is noteworthy that while 
/ involves the time rate of the stress tensor and g the time rate of the 
strain tensor, the quotient f/g is independent of rates. In the latter 
part of Section 2, using an equation obtained with the help of a 
physically plausible work assumption introduced by Naghdi and 
Trapp in [4], we derive a geometrically revealing expression for the 
quotient f/g [see equation (32)]. Next (Section 3), in terms of the 
quotient f/g, definitions are provided (see (43)) for strain-hardening 
behavior, i.e., for hardening, softening, and perfectly plastic behavior, 
and their geometrical implications are examined. It is demonstrated 
that, while during loading the yield surface in strain space is always 
moving outwards locally, the corresponding yield surface in stress 
space may concurrently be moving outwards, inwards, or may be 
stationary depending on whether the material is hardening, softening, 
or exhibiting perfectly plastic behavior. Because of our definitions 
(43), a variety of functions associated with material behavior and 
deriving from f/g or / are found to be positive, negative, or zero ac­
cording as a material exhibits hardening, softening, or perfectly plastic 
behavior. To avoid undue repetition, we introduce the abbreviation 
(44) and denote such conditions by the letter H. Any function that 
satisfies conditions H can be used to characterize strain-hardening 
behavior. By considering the limiting behavior of f/g, we also examine 
(in the context of the developments of the present paper) the phe­
nomenon of saturation hardening studied previously by Caulk and 
Naghdi [5]. Definitions for saturation behavior are given at the end 
of Section 3. 

The results in Sections 2 and 3 hold in the context of the nonlinear 
theory, but in the remainder of the paper attention is confined to 
small deformations of elastic-plastic materials. In order to demon­
strate the predictive capability of the strain-hardening character­
ization developed in Section 3, special sets of constitutive equations 
are utilized in Sections 4 and 5 to discuss, respectively, strain-hard­
ening response and saturation hardening under uniaxial loading. 

For the particular constitutive equations utilized in Section 4, a 
rate-independent characterization of strain-hardening behavior is 
provided in terms of a certain combination (2/3 + \p<l>) of material 
constants. Moreover, it is shown that both the time rate of work-
hardening (k) and the time rate of tension (s) may be used to char­
acterize strain-hardening behavior. While the quotient f/g involves 
the coefficient \// as well as the derivatives of strains with respect to 
stress (see equation (64)), it is shown that for a certain special case, 
the quotient/ /£ may be expressed (see equation (65a)) in terms of 
quantities appearing in (2)-(4) recorded earlier in this section. An 
examination of details of the solution in Section 4 shows that in uni­
axial tension and in the sense of our definitions, linear elastic behavior 
is followed for perfectly plastic behavior by a horizontal stress-strain 
curve, while hardening behavior is represented by a straight line lying 
above, and softening by a straight line lying below the perfectly plastic 
line. 

Finally, in Section 5, we consider another set of constitutive 
equations having in particular a loading function employed by Caulk 
and Naghdi [5] in their discussion of hardening response in small 
deformation of metals. Again it is shown that a number of different 
functions can be used to characterize strain-hardening behavior. 
Moreover, it is demonstrated that the quotient//£ may be calculated 
in uniaxial tension from a knowledge of the slope de/ds, found from 
the stress-strain curve, and the elastic constants, namely, Young's 
modulus E and the shear modulus /x, and thus may be easily identified 
experimentally. Although our characterization of strain-hardening 
is, in general, different from that discussed previously by Caulk and 
Naghdi [5], the two sets of results are in agreement for the class of 
materials for which detailed comparisons with experiments were 

4 As was observed by Naghdi and Trapp [1, p. 789], the maximum of the s-e 
curve corresponds to a point which is stiil in the rising portion of the engineering 
stress (ir) versus engineering strain (e) curve. The maximum of the ir-e curve, 
where necking begins, corresponds to a point on the falling portion of the s-e 
curve. 

5 While some of the formulas in Section 2 may appear to be repetitions of 
those in [1], our starting point and some of our conclusions differ from [1] and 
for clarity we have repeated these formulas. 
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undertaken in [5]. In this connection see equations (88), which also 
include a simple expression in terms of material coefficients for the 
saturation hardening constant. 

2 T h e Q u o t i e n t t/g of Quant i t i e s O c c u r r i n g in 
Load ing Cr i t er ia 

Let the motion of a body be referred to a fixed system of rectangular 
Cartesian axes and let the position of a typical particle in the present 
configuration at time t be designated by x, = Xi(^A.t), where XA is 
a reference position of the particle. Throughout the paper, lower case 
Latin indices are associated with the spatial coordinates xi and assume 
the values 1, 2, 3. Similarly, upper case Latin indices are associated 
with the material coordinates XA and take the values 1, 2,3. We also 
adopt the usual convention of summation over repeated indices. 

We define a symmetric Lagrangian strain tensor by <*KL = \ (FIKFH, 
— &KL), where Fuc = dxi/dXjf is the deformation gradient relative 
to reference position and 8KL is the Kronecker symbol. The six-
dimensional Euclidean vector space formed from the components em 
is called strain space. The components of the symmetric Piola-
Kirchhoff stress tensor are denoted by SMN and the six-dimensional 
Euclidean space formed from these components is called stress 
space. 

We now summarize the main ingredients of the purely mechanical 
rate-type theory of a finitely deforming elastic-plastic solid and base 
our treatment on the work of Green and Naghdi [2,3] and Naghdi and 
Trapp [1]. In addition to the strain tensor eKL, we assume the exis­
tence of a symmetric6 second-order tensor-valued function eft/, = 
efciiXA, t) called the plastic strain at XA and t, and a scalar-valued 
function K = K(XA, t) called a measure of work-hardening. It is as­
sumed that the stress SMN is given by the constitutive equation 

SMN = SMNCU), 11 = \eKL, e1(L, K), (5) 

and that for fixed values of efcL and K, (5 ) I possesses an inverse of the 
form 

eMN = SMNCV), V = UKL, efd, 4 (6) 

The response functions SMN and 6MN in (5) and (6) are taken to be 
smooth. 

We admit the existence of a continuously differentiable scalar-
valued yield (or loading) function g('U) such that, for fixed values of 
eft/, and K, the equation 

gi.1t) = 0 (7) 

represents a closed orientable hypersurface itS of dimension five 
enclosing a region S of strain space. The function g is chosen so that 
g(1l) < 0 for all points in the interior of the region 6°. The hypersurface 
d(? is called the yield (or loading) surface in strain space. Corre­
sponding to a motion Xi, we m a y associate with each particle of the 
body a continuous oriented curve Ce in strain space. This curve will 
be called a strain trajectory. The strain trajectories are restricted to 
lie initially in <S or on its surface d<», i.e., 

gi'tt) s 0 

initially on Ce. 
The constitutive equations for k and ejj£, are [1] 

ewfti, 
and 

0 

0 

0 

XPKL$ 

i f g < 0 , 

ifg = 0 

ifg = 0 

ifg = 0 

and 

and 

and 

£<o, 
1 = 0, 

£>o, 

(a) 

(b) 

(c) 

id) 

(8) 

(9) 

(10) 

where <?KL - GKLCU) is a symmetric tensor-valued function, a su­
perposed dot indicates material time differentiation, 

i>g 

deMN 
eMN, (ID 

and where X = \{%l) and PKL - PKLW) are,7 respectively, a scalar-
valued function and a symmetric tensor-valued function. The quan­
tity g is the inner product of the tangent vector eMN to a strain tra­
jectory Ce and the vector dg/deMN- When g = 0 and at least one 
component of dg/deMN 7* 0, g gives the inner product of eMN and the 
outward normal vector to the yield surface d(S, where the notation 
dg/deMN stands for the symmetric form J (dg/deMN + dg/deNM)- The 
conditions involving g and g in (10) are the loading criteria of the 
strain space formulation. Using conventional terminology, these four 
conditions in the order listed correspond to (a) an elastic state (or 
point in strain space); (b) unloading from an elastic-plastic state, i.e., 
a point in strain space for which g = 0; (c) neutral loading from an 
elastic-plastic state; and id) loading from an elastic-plastic state. We 
assume that the coefficient of ̂  in (lOd) is nonzero on the yield surface 
and, without loss in generality, we then set 

PKL 9* 0, X > 0. (12) 

In order to provide a geometrical interpretation of the conditions 
(10), we need to record the material time derivative of the loading 
function, namely, 

•6 + ^-iiL + ^-k, 
deftL d* 

(13) 

where (11) has been used. It follows from (7), (9), and (10a) that in 
an elastic state the strain trajectory Ce lies in the interior of <?, which 
is referred to as the elastic region in strain space, and the yield surface 
dS remains stationary. Similarly, by (7), (9), (10b), and (13), during 
unloading the strain trajectory Ce intersects the yield surface d<? and 
is moving in an inwardly direction, with the function g decreasing, 
while d<S itself remains stationary. Likewise, from (7), (9), (10c), and 
(13) during neutral loading the strain trajectory Ce lies in the yield 
surface dS while the latter remains stationary and£ = 0. Finally, from 
(7), (9), (lOd), and (13) during loading the strain trajectory Ce inter­
sects d<a and is moving in an outwardly direction. It is stipulated in 
this case that d<? is locally pushed outwards by the strain trajectory 
Ce so that8 

g = 0, (14) 

if g = 0, g > 0. Thus positive values of the function g can never be 
reached on a strain trajectory and the condition (8) holds for all time. 
It follows from' (9), (lOd), (13), and (14) that during loading 

/ dg dg 

ldeftL dK 
0. (15) 

Therefore, since the coefficient of g is independent of eMN, we 
have 

1 + ^PKL 
i>g 

+ — <?KL = 0 (16) 

at all points on the yield surface dS through which loading can occur. 
We note that equations (5)i and (6)i hold during loading, neutral 
loading, unloading, and in an elastic state. 

For a given motion x; and an associated strain trajectory Ce we may 
utilize the constitutive equations (5)i, (9), and (10), together with 
appropriate initial conditions for e^i and K, to obtain the corre­
sponding stress trajectory Cs, a continuous oriented curve in stress 

6 In [4], Naghdi and Trapp have shown that the symmetry of exL follows from 
a physically plausible work assumption which will be discussed at the end of 
this section. 

7 Our notation X corresponds to X in [1]. 
8 In the literature on plasticity this is called the "consistency" condition, 

namely, that loading from an elastic-plastic state leads to another elastic-plastic 
state. For references and background information in the context of a stress space 
formulation, see, for example, Naghdi [6, Pages 141,137]. 
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space. In a similar fashion (6)1 may be used to obtain Ce from Cs. 
Furthermore, for a given loading function g('il), with the aid of (6)1, 
we can obtain a corresponding function /(<V) through the formula 

gCU)=g(eKLCV),e>kL,K)=m), (17) 

where the variables 'U and "V are defined by (5)2 and (6)2, respectively. 
Conversely, (5)i may be used to obtain g from /. Because of the as­
sumed smoothness of (6)1, for fixed values of e%L and K, the equa­
tion 

/(•V) = 0 (18) 

represents a hypersurface deP in stress space having the same geo­
metrical properties as the hypersurface d<£ in strain space. The region 
enclosed by d# is denoted #. It follows from (17) that a point in strain 
space belongs to the region S (i.e.,gCU) £ 0) if and only if the corre­
sponding point in stress space satisfies fCV) s 0 and hence belongs 
to <f. Similarly, by (17) and (18) a point in strain space belongs to the 
yield surface de7 (i.e., g = 0) if and only if the corresponding point in 
stress space belongs to dcf (i.e., / = 0). Hence, we refer to the interior 
of <£ as the elastic region in stress space, and to d<f as the yield (or 
loading) surface in stress space. We have seen that (8) holds for all t. 
Therefore, by (17), every stress trajectory Cs is restricted to lie in <£ 
or on its surface d£ and positive values of/ can never be reached. We 
note that any function of variables 11 can be written as a different 
function of variables V and vice versa, e.g., GKL — GKLW) - @KL OV) 
which occurs in (9). 

In [1] a comparative basis was provided between the two indepen­
dent sets of loading criteria for the stress space and the strain space 
formulations. A correspondence between the two sets of loading cri­
teria was established for all conditions except that during loading. The 
approach in the present paper differs from that of [1] in that the 
loading criteria of the strain space formulation are regarded as pri­
mary and associated loading conditions in stress space are deduced 
from the former.9 Although in the examination of the loading criteria 
our starting point and conclusions are different, the arguments em­
ployed parallel those of [1]. Thus, taking the material time derivative 
of (17) and making use of (13), we obtain 

> > 3/ „ d/ 

where 

/ = df 

dsMN 

de\L d/c 

SMN- (20) 

The quantity / is, of course, the inner product of the tangent vector 
SMN to a stress trajectory C„ and the vector df/dsMN- In view of 
(19) 

f = g if e<kL = 0 and k = 0. (21) 

Considering an elastic state, / = # < 0, (10a) holds, k = 0 by (9) and 
hence/ = g by (21). Since the yield surface dS in strain space is sta­
tionary so also is the yield surface dS in stress space. The stress tra­
jectories remain in the interior of <4\ It is clear from (9), (106), (17), 
and (21) that10 / = 0 and / < 0 if g = 0 and g < 0. In this case (g = 0, 
g < 0) the stress trajectory Cs intersects dcf and is directed inwards, 
with the function / decreasing in value, while d£ itself remains sta­
tionary. It follows from (9), (10c), (17), and (21) that1 1 / = 0 and 
/ = 0 if g = 0 andg = 0. In this case (g = 0,g = 0) the stress trajectory 
Cs lies in the surface dtf which remains stationary and / = 0. 

9 These derived conditions are not the same as the loading criteria usually 
assumed in the stress space formulation. 

10 In [1] it was possible to prove the converse of this statement because of the 
independent loading criteria that were assumed in the stress-space formulation. 
It will become clear presently that in the context of this paper the converse 
statement does not hold. 

11 See the previous footnote. 

In the case of loading from an elastic-plastic state, it follows from 
(9), (Wd), and (19) that 

- = 1 + Xp* 
[ dg df 

•J \<>K dK, 
GKL 

(g = 0,g>0). (22) 
In the developments that follow, the quotient//£ can be expressed 

in a number of different forms. In order to establish one such form 
we note that by (17), (5)i, (6)x and the chain rule of differentiation 

dg 

deKL 

df 

te<KL 

a/ = 

dK dSMN 

df d§MN 

dsMN deKL 

df dsMN 

dg deMN 

deMN deft/, ' 

dg deMN 
(23) 

d/c dK dsMN dK deMN 

W i t h t he use of (23), (22) can be rewr i t t en as 

dK 

/ 
1 + \PKL 

XpKL 

a/ 
&SMN 

i>g 

i>SMN , &SMN „ 
+ — <?KL 

deMN 

diMN 

dK 

, deMN „ 

+ eKL 
(g = 0 J > 0 ) . (24a) 

degx dK 

Another useful form of the quotient//£ that may be derived from (22) 
with the help of (12)2 and (16) is 

/ 
Xp/CL H GKL 

de\L dK 

a/ 
PKL , +^GKL 

deft£ dK 

PAflVV 
dg dg 

+ — GMN 
dK 

(g = 0,g>0). (246) 

\.dei,N 

Since the right-hand side of (246)2 is independent of rates, it is clear 
that the quotient//£ is independent of rates and has the same value 
for all strain trajectories through a given elastic-plastic point on dS. 
Also, in view of (17), f/g is dimensionless. Clearly a knowledge of all 
constitutive equations is required for the calculation of fig. 

We now turn to the work assumption of Naghdi and Trapp [4,7]. 
Starting with the assumption that the external work done on an 
elastic-plastic body in any smooth homogeneous cycle of deformation 
is nonnegative, it was demonstrated12 in [4] that 

i>SMN , dSMN -
+ — — G K L de<kh dK 

efaeMN S 0 (25) 

during loading or neutral loading, i.e., wheng = 0, g a 0. In the case 
of neutral loading it follows from (10c) that the left-hand side of (25) 
vanishes and (25) is satisfied trivially, while in the case of loading, it 
follows from (lOd) and (12)2 that (25) becomes 

dSMN , dSMN „ 
+ —. GKL PKLe-MN S 0 (26) 

Idefti <>K 

with g = 0 and g > 0. The coefficient of 6MN in (26) is itself indepen­
dent of 6MN and the inequality must hold for all choices of eMN that 
satisfy g > 0. Therefore, by the same argument used in Section 5 of 
[4], we deduce that 

dSMN , dSMN „ 
—— + ——GKL 
deb, dK 

evaluated on the yield surface g 
satisfies 

PKL = - 7 
dg 

(27) 
deMN 

0, where the scalar function 7* 

>y* (11)5:0. (28) 

We emphasize that (27) holds even for a motion that is not homoge­
neous.13 

12 See equations (5.2), (5.3), and (4.11) of [4]; the notation HMN in [4] corre­
sponds to GMN in the present paper. 

13 For a discussion of this point, see [4, p. 40] or [7, p. 63]. 
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In order to compare (27) with the resul ts of [4] we mul t ip ly on bo th 

sides of (27) by X£ a n d uti l ize (lOd) t o ob ta in 

OSMN , i>SMN _ 
+ <?KL 

deKL dK 
6<kL = - *y*g 

og 

deMN 
(g = 0,g>0). (29) 

Recall ing t h e res t r ic t ions (12)2 a n d (28), we define a funct ion y 

by 1 4 

T = \y*i g o 

and from (29) ob ta in 

OSMN , OSMN „ 
+ ——&KL 

deKL 
dK efe= 7" 

dg 

(30) 

(g = 0,g>0). (31) 
deMN 

E q u a t i o n (31) is t h e s a m e as (5.4) of [4], W e n o t e t h a t (31) involves 

ra tes , while (27) does no t . W e have shown t h a t (27) impl ies (31). 

Conversely, it follows a t once from (lOd) and (12)2 t h a t (31) impl ies 

(27) wi th 7 * = y/\i, as in (30). 

F r o m (27) a n d (24a) i follows an express ion for f/g in t h e form: 

/ 
1 - X 7 * A , (g = 0,g>0), 

where 

a/ dg 
te = /=o). 

(32) 

(33) 

T h e quan t i ty A represents the inner p roduc t of the normal to the yield 

surface d<£ in s t ress space a n d t h e n o r m a l to t h e yield surface dS in 

s t ra in space. 

For some purposes i t is conven ien t t o express t h e cons t i tu t ive 

equa t ion (5)i in t e r m s of a n equ iva len t se t of k inemat ica l var iables 

in t h e form 

SMN = SMN(eKL ~ egx, eft/,, K). (34) 

S u p p o s e t h a t t h e p a r t i a l der ivat ives OSMN/OBKL possess t h e sym­

metr ies 1 6 dsMN/dexL = oeKh/deMN- T h e n , in a manne r similar to t h a t 

in [4, Sec t ion 5], from (27) we ob ta in 1 6 

depQ IdSMN , dsMN „ \ „, df 
-PPQ + ~ \ T V + 1 . eKLlPKL = - 7 * . 

osMN \ oeftt OK I aspQ 

fe = / = 0 ) . (35) 

I t is clear from (35), (30), ( lOd) , a n d (12) t h a t if t h e response 

function SMN in (34) is independen t of its second and thi rd a rguments , 

i.e., if dsMN/defci = 0, Z>SMN/OK = 0, t h e n 

PKL = 7 * — — ^ 0, 
OSKL 

efti = 7 
OSKL, 

fe = 0) (36) 

and PKL is d i rected along t h e normal t o the yield surface atf in s t ress 

space, as also is exL dur ing loading. I t follows from (36)i and (28) t h a t 

in th i s case 

7 * > 0 , fe = 0) (37) 

a n d hence , du r ing loading, in view of (30) and (12)2 

7 > 0 (38) 

also. W h e n PKL satisfies (36)i , (16) can be wr i t t en as 

df I dg dg \ 
1 + X 7 * — - — B — + / GKL = 0, (g=0). (39) 

dsKL \oeKL dK I 

14 The function y on the right-hand side of (31) depends on the variables e^N, 
e&v, K, and eMN-

15 This is equivalent to the condition that SMN be derivable from a potential, 
as indeed is the case in the general thermodynamical theory (see Section 4 of 
[3]) of which the present development may be regarded as corresponding to the 
isothermal case. The existence of a potential in the purely mechanical theory 
can also be demonstrated by an argument based on the work postulate of 
[4]. 

16 The symmetry of PKL and hence efcL follows from (35). See [4, Section 
5]. 

T h e last resul t can be used to solve for the p r o d u c t X7* and (30) then 

gives 7 . Also, we m a y se t 7 * equa l to an a rb i t r a ry posi t ive scalar-

valued funct ion of t h e var iables It a n d t h e n use (39) to d e t e r m i n e X. 

T h u s , in t h e special case in which SMN in (34) depends only on its first 

a r g u m e n t , no cons t i tu t ive equa t ion is needed for pKL-

W e observe t h a t when PKL satisfies (36)i, t hen (246)i may be used 

t o express f/g as 

}/i = \y*T, (g = 0,g>0), 

where 

— - + — (PKL 
delcL OK 

Also, in view of (32), (40), (37), and (12)2> 

1 „ . . / T 0 < : 
X7' 

• = r + A, 
g r + A' 

(g = o). 

(g = 0, g > 0). 

(40) 

(41) 

(42) 

3 S t r a i n - H a r d e n i n g B e h a v i o r a n d I t s G e o m e t r i c a l 
I n t e r p r e t a t i o n 

T h e q u o t i e n t f/g which occurs in (246)2 a n d re la ted equa t ions in 

Sec t ion 2, is ut i l ized he re t o define t h r e e d i s t inc t t y p e s of s t ra in-

ha rden ing response for a n elastic-plastic mater ia l . T h e s e definit ions 

are as follows: A n e las t ic-plas t ic ma te r i a l is said t o be hardening, 

softening or exhib i t ing perfectly plastic behavior dur ing loading 

(g = 0, i > 0) according t o whe the r 1 7 

(a) f/g > 0 

(6) fig < 0 

(c) f/g = 0 

(for ha rden ing) , 

(for softening), 

(for perfect ly plas t ic) . 
(43) 

W e emphas i ze t h a t a condi t ion of loading, i.e., g = 0 and § > 0, is al­

ways p r e s u p p o s e d in t h e def ini t ions (43). I t is wor th observing from 

(246)2 t h a t once PKL, GKL, g, and (6)1 are specified, t h e n t h e s t ra in-

h a r d e n i n g response is also known. 

W e now provide a geometrical interpretat ion of the definitions (43). 

W e recall t h a t dur ing loading, since g = 0, g > 0, and g = 0, t h e strain 

t ra jec tory Ce is in te rsec t ing t h e yield surface dS a n d locally push ing 

i t ou twards . Since g = 0 a n d g = 0 it follows from (17) and (19) t h a t 

/ = 0 a n d / = 0 also, and t h e cor responding s tress t ra jectory Cs is in­

t e r sec t ing t h e yield surface d£ in s t ress space. If t h e ma te r i a l is 

ha rden ing , (43a) holds a n d t h e s t ress t ra jectory C s is d i rec ted out­

wards and is pushing the surface d<£ locally outwards. But , (436) holds 

if the mater ia l is softening and the stress trajectory is directed inwards 

a n d is pul l ing t h e surface d<Ss locally inwards . In perfectly plas t ic be­

havior w h e n (43c) holds , t h e s t ress t ra jectory cont inues to lie on t h e 

yield surface d£ which is s ta t ionary . 

T h u s while during loading the strain trajectory Ce is always pushing 

t h e yield surface dcf in s t r a in space locally ou twards , t h e corre­

sponding yield surface d ^ in stress space may be moving concurrently 

o u t w a r d s , inwards , or m a y be s ta t ionary depend ing on the t y p e of 

s t r a in -ha rden ing response being exhibi ted. T h e actual occurrence of 

such behavior h a s been ind ica ted in Sect ion 1 wi th reference to the 

s imple t ens ion tes t . T h e usua l s t ress space formulat ion of plast ic i ty 

t heo ry in t roduces a priori loading cri ter ia in s t ress space and s t ipu­

la tes t h a t du r ing loading t h e yield surface in s t ress space can never 

move inwards . Viewed in t h e context of t h e p resen t development , the 

u sua l s t ress space formula t ion of p las t ic i ty is seen to include only a 

h a r d e n i n g - t y p e response and to exclude softening and perfect ly 

plas t ic r e sponses . 1 8 Fig. 2 i l lus t ra tes t h e th ree types of ma te r i a l be­

havior def ined by (43). 

17 Since £ is always positive in (43), we could use only / in providing the 
foregoing definitions. But the use of the quotient//^ which is rate-independent, 
is preferable in general. For certain purposes, however, it is useful to employ 
only / as in (58)3 and (59) of Section 4. 

18 In the context of the present paper, it is not possible to formulate loading 
criteria in stress space using only / and / . 
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T a b l e 1 S u m m a r y of loading cr i t er ia in s tra in s p a c e and a s s o c i a t e d condi t ions in 
s t r e s s s p a c e 

Elastic g < 0 implies / < 0 

Unloading g = 0, g<0 implies / = 0, /<0 

Neutral loading : 0 , g = 0 implies / = 0, / - 0 

Loading ( (a) hardening 

(6) softening V implies 

(c) perfectly plastic 

'"u g = o 

Fig. 2 A sketch indicating the motion of yield surfaces in stress space and 
strain space. During loading the yield surface dS in strain space moves out­
wards with the strain trajectory C„ through positions such as B-,, B2, B3, Ba, 
B5. The corresponding yield surface d£ in stress space moves outwards 
through positions such as » 1 and A2 during hardening behavior, is stationary 
in positions of the type A3 during perfectly plastic behavior, and moves inwards 
through positions such as Aa and As during softening behavior. 

The definitions for hardening, softening, and perfectly plastic be­
havior introduced in (43) require the use of yield surfaces both in 
strain space and stress space. However, it may be noted that our ter­
minology for softening and hardening seems to be consistent with the 
geometrical sense of these terms employed in a stress space formu­
lation by Edelman and Drucker [8]; see Fig. 5 of their paper. Also, 
Prager [9] employs the terms hard and soft with reference to material 
behavior, but this sense of these terms differs from ours: In [9], a hard 
material is one whose stress-strain curve always lies above a given 
straight line (representing linear elastic response) with the deviation 
from linear behavior increasing for larger deformation; a soft material 
is one whose stress-strain curve always lies below the straight line with 
the deviation increasing for larger deformation. 

In what follows, we frequently need to refer to a set of conditions 
which must be satisfied by various functions and material coefficients, 
and which arise from characterization of strain-hardening response. 
To avoid undue repetition we denote this set of conditions by H and 
write 

'> 0 if and only if the material is hardening, (a) 

< 0 if and only if the material is softening, (6) 

= 0 if and only if the material is exhibiting 

perfectly plastic behavior. (c) 

H: i (44) 

Returning to the definitions (43) and recalling (246)i and (12)2, it is 
seen that 

-PKL — - + — <SKL satisfies conditions H. (45) 

It is worth mentioning that the usual treatment of an elastic-perfectly 
plastic material (see, for example, [2, Section 9]) in stress space re­
quires the use of a yield condition of the form f(sxL) = constant and 
the quantity on the left-hand side of (45) indeed vanishes identically 
in this case. 

With the use of the definitions (43a, b), we now obtain an expression 

for the rate of plastic strain which is valid in regions of hardening and 
softening behavior only. Thus, by (lOd), (12), (246)i and (43a), in a 
region of hardening efa can be related to / through the expression 

e&z, = ^PKL r -
f/g 

PKL { 

PMN 
a/ 

defo 

df 
+ — <?MN 

^ 0 (46) 

with (43a) and (45a) holding,19 while in a region of softening e\L is 
again given by (46) but now with (436) and (456) holding; in both 
cases, the sign of the coefficient of PKL in (46) is positive. For perfectly 
plastic behavior, it is clear from (lOd), (246)i, (43c), and (45c) that 
eld cannot be expressed as a product involving / and must be calcu­
lated from (lOd). For convenience, a summary of the relationships 
between the loading criteria in strain space and the associated con­
ditions in stress space is provided in Table 1. 

In the remainder of this section, we discuss some special cases of 
the foregoing results which are of particular interest in view of their 
simplicity. The first two of these (see Cases (a) and (b) below) examine 
the consequences on strain-hardening behavior of certain restrictions 
on the stress response functions SMN in (5)i and SMN in (34). The third 
(see Case (c) below) pertains to a limiting behavior of strain-hardening 
response, i.e., saturation hardening and softening. 

Case (a). Consider the special case of (5)i for which the stress 
response is independent of its last two arguments, i.e., 

dSMN 
0, 

dSMN 0. (47a) 

When conditions (47a) are satisfied, (5)i may be replaced by an 
equation of the form 

SMN = SMN^KL)- (476) 

We observe that (476) has the same form as the stress constitutive 
equation of a nonlinear elastic solid. For an elastic-plastic material 
whose stress constitutive equation is (476), the stress tensor SMN is 
determined once the motion Xj of the body is specified. This should 
be contrasted with the general case for which the differential equa­
tions (9) and (10) must be solved before SMN can be calculated. A 
further interesting feature of elastic-plastic materials for which 
(47a) 1,2 hold is that their hardening response is extremely limited. 
Thus, by (47a) and (23), we have 

(48) 

_dg df_ 
deKL defa' 

and hence by (24a) or (22) 

dg = df_ 

dK dK 

f/g = 1. 

Recalling the definitions (43), it is clear that a material for which 
(47)i,2 hold can never exhibit softening or perfectly plastic behavior. 
If conditions (47a h,2 are satisfied and if dg/deMN ^ 0, it follows from 
(27) and (30) that 

9 The equation number (45a) refers to (45) along with part (a) of condition 
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= 0, 7 = 0. (49) 

Conversely, if (49)i is satisfied so is (49)2 and then (48) holds by virtue 
of (32). 

It is clear from the results of the foregoing special case that in order 
to construct a general theory of elastic-plastic materials, it is necessary 
to include e\L and K (or at least one of them) in the list of arguments 
of the stress response function $MN- Otherwise, the strain-hardening 
behavior will be too restrictive. 

Case (b). Consider the special case of (34) for which the stress 
response is independent of its last two arguments. In this case, the 
results (36) to (42) hold. It then follows from (37), (40), (43), and (12)2 

that 

r satisfies conditions H. (50) 

With the use of (36)i and (40), in a region of hardening or softening 
(46) becomes 

/ a/ 
e»L = - : 5*0, (51a) 

TdSKL 

while it follows from (50c), (42), (36)i, and (lOd) that in a region of 
perfectly plastic behavior 

a/ 
AOSKL 

(516) 

Case (c). Caulk and Naghdi [5] have previously introduced a 
definition of saturation hardening in connection with their discussion 
of hardening response in cyclic loading of metallic materials (see 
equation (19) in [5]). In view of the definitions (43), it is of interest 
to reexamine here the notion of saturation hardening. Thus, for our 
present purpose, an elastic-plastic material is said to exhibit satura­
tion hardening along a strain trajectory Ce (or a stress trajectory Cs) 
if and only if there exists a constant Ki, such t ha t 2 0 

limf/g = Kh>0 (g = 0,g>0). (52a) 

Similarly a material exhibits saturation softening along a strain tra­
jectory Ce if and only if there exists a constant Ks such that 

l i m / / | = K s < 0 (g = 0 , | > 0 ) . (526) 

In order to indicate the relationship between the definition (52a) 
of saturation hardening and that given by Caulk and Naghdi [5, 
equation (19)], we observe that if during loading the limit as t -* <» 
of k is zero on some strain trajectory Ce, then assuming (12)2 to hold 
in the limit, it follows from (9) and (lOd) that on Ce: 

lim PKLGKL = 0. 

Consequently, by (246)2 on Ce: 

PKL 

lim : lim 

PMN 

if this limit exists. The latter limit may be positive, negative, or zero 
depending on the limiting value of —pjH./(d//aefti,), m view of 
(45). 

We close this section with some remarks on certain other ap­
proaches which have been used in connection with the characteriza­
tion of strain-hardening. 

One approach, that of Palmer, Maier, and Drucker [10] is based on 
a "plastic work" criterion. In the notation of the present paper, the 

20 In the definitions (52a, b) we have excluded for convenience the equality 
sign. If the limit of the left-hand sides of (52a, 6) is zero, we say that the material 
saturates to a perfectly plastic behavior. 

procedure of [10] amounts to stipulating that the scalar SKL^KL is 
positive for hardening and negative for softening. However, such a 
criterion leads to ambiguities since SKL^KL vanishes for both perfectly 
plastic behavior and neutral loading (and in an elastic state as 
well). 

Another approach is that of Hill [ l l ] .2 1 Hill confines his discussion 
to a special class of constitutive equations which may be derived from 
(34) when SMN is independent of its last two arguments. While Hill 
considers flow rules in both strain space and stress space,22 his stress 
space flow rules are anomalous; and, in particular, his flow rule for 
perfectly plastic behavior involves an indeterminacy in strain rate 
(and hence also in plastic strain rate). The reason for these anomalies 
is that Hill does not regard the loading criteria of strain space as pri­
mary. 

To elaborate, although Hill [11, p. 245] speaks of a condition of 
"continued plastic flow," his flow rules 1), 2), 3) are not consistent with 
the requirement that g be positive.23 In particular, if g > 0 and fig > 
0, then the first part of flow rule 1) corresponding to / < 0 can never 
apply. Hill's flow rule 2) involves a "double-valued" inverse. Again, 
if the condition g > 0 is enforced no such anomaly occurs. Finally, in 
the case 3) of perfectly plastic behavior, the first part of the flow rule 
corresponding to / < 0 should be omitted and instead of the second 
part of the flow rule which involves an indeterminacy, the flow rule 
of the strain space formulation should be retained.24 The indeter­
minacy in Hill's flow rule 3) results from the fact that the determinant 
of L (in equation (4) of [11]) vanishes for perfectly plastic behavior. 

Setting aside the matter of incorrectness of the flow rules in [11], 
we now wish to relate Hill's quantity l-£'\ to the quotient fig of the 
present paper. Consider the stress constitutive equation in the al­
ternative forms (5) and (34). By applying the chain rule to these 
equations, (24)i may be expressed as 

- - 1 - XPKL : 
dg 

+ \PKL 
a/ asjvflv , asMN _ 

+ GKL aefo. dK denL SSMN 

In [11], Hill defines strain-hardening, strain softening, and perfectly 
plastic behavior in accordance with whether XpKL(i>g/i>eKL) is less 
than, greater than or equal to unity. Such a characterization is clearly 
not adequate for a general elastic-plastic material of the type being 
treated in the present paper. If, however, we confine attention to the 
special class of constitutive equations for which the function SMN in 
(34) is independent of its last two arguments, then f/g reduces to 1 -
XpKL(ag/ae/fL). Indeed, as we have indicated above (see (36)-(42) 
and Case (6) of the present section), when SMN is independent of its 
last two arguments, the work assumption of Naghdi and Trapp [4,7] 
implies the normality condition (36)i on PKL, and instead of fig, the 
simpler quantity T in (41) can be used to characterize strain-hard­
ening behavior. Furthermore, in a region of hardening and in a region 
of softening the flow rule for plastic strain rate may be written in the 
stress space form (51a), while in a region of perfectly plastic behavior 
it reduces to the strain space form (516). 

4 S t r a i n - H a r d e n i n g R e s p o n s e for Spec ia l 
Cons t i tu t ive E q u a t i o n s 

We consider now in some detail the nature of the hardening re­
sponse in small deformation of metals whose behavior is characterized 

21 Hill's paper [11] was brought to our attention by a referee after the present 
paper was submitted for publication. 

22 Actually, Hill [11] employs strain-rate and stress-rate space in conjunction 
with a constitutive equation for an objective stress rate. 

23 Hill's X, £, m, £'(, m's correspond to our \PKL, dg/cVxz., °//OSKL>$I /, re­
spectively. As will be shown presently, for the case discussed by Hill, the quo­
tient fli of the present paper reduces to Hill's 1-̂ 'X. 

24 As we have observed in the present paper (see the paragraph containing 
(46)) one can go over to the flow rules of stress space (involving /) in a region 
of hardening (£ > 0, / > 0) and in a region of softening (£ > 0, / < 0), although 
even then one must retain the loading conditions of strain space. In the case 
of perfectly plastic behavior, however, one must retain (lOd), the flow rule of 
the strain space formulation, which gives a determinate plastic strain rate once 
the motion x; is specified. 
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by a simple set of constitutive equations appropriate for elastic-plastic 
materials which are homogeneous and initially isotropic in their ref­
erence state. First, we recall that the infinitesimal elastic strain tensor 
is defined by e^t = exL — eftz, and note that with e^L = 0 in the ref­
erence configuration, e^i = 0 also there. It is convenient to utilize a 
standard decomposition for second-order tensors. Thus, for example, 
in the case of the stress tensor, we have 

SKL = S&KL + TKL, S = J SKK, 

where S&KL is the spherical part of SKL, TKL is the deviatoric (traceless) 
part of SKL and s is the mean normal stress. In a similar manner we 
decompose e/o,, eftz,, efo. into spherical parts e&KL, epbKL, ee8KL and 
deviatoric parts JKL, JKL, JKL-

Let the stress response function in (5)i be specified by generalized 
Hooke's law, namely, 

TKL = 2/*7?tt> * = 3fee€ (53) 

and the coefficient function GKL for the rate of work-hardening re­
sponse in (9) in the form [12] 

@KL - $TKL + <t>S&KL, (54) 

where n (> 0) is the shear modulus, k (> 0) the bulk modulus and /3 
and 4> are constants. With the use of the decompositions just noted, 
the loading functions fCV) and g('U) can be written as different 
functions ](TMN, S, yiiN, ep, K) and g(y\iN, e, y%N, ep, K). In this 
section, we restrict attention to special loading functions of the 
form 

fCV) = f(TMN, S, yPMN, ep, K) = TKLTKL + tys2 
K, 

g(V) = g(yMN, e, 7Sw. ep, K) 

= 4 M 2 ( 7 * L - 7fct) (7KL ~ JKL) + 2 7 # 2 ( e - e»)2 - K, (55) 

where \p is a constant and where (17) and (53) have been used.26 Uti­
lizing formulas of the type26 

d/ _ 1 / df dj V 
5s7 

&MN 
dSMN &TMN 3 V>TKK <>SI 

and recalling (20) and (11), it can be easily shown that 

(56) 

dSMN 
= 2(TMN + ^S&MN), f = %(TMNTMN + 3\ps§), 

g = 2(2HTMNJMN + 9 # s e ) = / + 2 ( 2 M T M N 7 & N + 9\pksgp) (57) 

and the expressions for dg/deMN and d//de^f/v m a v be obtained 
similarly. We recall that during loading £ is positive while g = f = g 
= / = 0. Keeping this in mind, it follows from (55)! and (57)2 that 
during loading 

TKLTKL + 3i/<s2 - K = 0, 2(TKLTKL + 3^ss') - k = 0, f = k (58) 

and hence by the definitions (43), 

K and (TMNTMN + S\pss) both satisfy conditions H. (59) 

Clearly for the special constitutive equations used in this section, in 
view of (58)3 and (59), the strain-hardening behavior may be char­
acterized by k. 

The stress response (53) may be regarded as a special case of that 
in (34) with the last two arguments absent; and, in addition, the 
symmetry conditions mentioned following (34) are satisfied by (53). 
Hence, in addition to (36)-(42) the special results obtained at the end 
of Section 3 [see Case (6) following equation (49)] remain valid here. 

Thus, using (54) and (55), from (33), (41), and formulas of the type 
(56) and (57)i and recalling that df/dsKL ^ 0 by (36)i, we obtain 

A = 4(2MTKLTKL + H2ks2) > 0, r = 2(PTKLTKL + 3i/-^2). 

(60) 

With the use of (60), X7* and fig may be obtained at once from (42). 
Moreover, in this case, since fig is always < 1 the degree of hardening 
behavior is limited. Also, remembering (50), we observe that in this 
case the right-hand side of (60)2 provides a rate-independent char­
acterization of strain hardening. Constitutive equations for the rate 
of plastic strain or equivalently for ep and JKL simplify and may now 
be obtained from (51a) in a region of hardening or softening and from 
(516) in a region of perfectly plastic behavior. 

Since our development in Sections 2 and 3 began with the strain 
space (rather than the stress space) formulation as primary and since 
the quotient fig is used to define strain hardening, it is desirable to 
examine the predictions of various theoretical results in the case of 
the familiar one-dimensional tension test. To this end, consider a 
homogeneous deformation sustained by a uniaxial tension su = s = 
s(t) along the Xj-axis. Then, using a matrix representation for TKL, 
we have 

\\TKL\\ = -\\bKL\\, 
o 

S = T § 0 , fed 

2 

0 

0 

0 

- 1 

0 

0 

0 

- 1 

, (61) 

where for brevity we have introduced the constant matrix ||6^z,l|. 
Assuming that initial yield occurs at a value so of s and a value 
Ko > 0 of K, the solution can be obtained in a straightforward manner. 
We omit details, but record here some of the results of interest:27 

K = Js2(2 + iZV), Ko = Js§(2 + ^ ) , 2 + \p>0, s 0 > 0 , (62a) 

s > 0, K > 0, efx > 0 when g = 0, g > 0, (626) 

Both s and (2/3 + \j/<j>) satisfy conditions H. (62c) 

We postpone a discussion of perfectly plastic behavior until later in 
this section but consider further calculations for the other two types 
of behavior: In a region of hardening or softening, the elastic and 
plastic strains are 

ep 

9k' 

s - s p 

9k* ' 

\\7KL\\ = T-lbKLl 

1175a 
s - s o lltjttll 

(63a) 

(636) 

Hd 
s -so 

E* 

d£?i 
ds 

d7fi f> 0 if and only if 

ds [< 0 if and only if 

6n* 

1 0 0 

0 -v* 0 

0 0 -v* 

the material is hardening, 

the material is softening, 

(63c) 
where the constants v*, E*, n*, and k* are defined by 

k* 

2 + i' 

E* 

2(2 + \p)2 ' 

2 + 4> 
2(1 + «*) 6 

E* 2 + f 

3(1 - 2v*) ~ 9\p 

E*, 

E* ty * 0) 

(63d) 

and 

E* and n* satisfy conditions H, (63e) 

25 The loading function (55)i does not depend explicitly on plastic strain, but 
includes a dependency on mean normal stress. When ^ = 0 and K = constant, 
(55)j reduces to the usual von Mises yield function. A loading function of the 
type (55)i was previously employed by Green and Naghdi [12). 

26 It is understood that in line with the summation convention, our notation 
df/dTKK in (56) stands for the sum df/dru + df/drm + d//dT33. 

27 It is clear from (10), (62o)3, {62b)u and the expression/ = (2/3) (2 + ip)ss, 
that during neutral loading, it is necessary to have s = 0 and during unloading 
it is necessary to have s < 0. In this connection, recall Table 1 and the discussion 
following (21). 

292 / VOL. 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



while 

i=-ss(2 + t) 1 + 
2(4/i + 3i2k)' 

2P + 4>(/> 
> 0 . (63/) 

The constants in (63d) have been defined analogously to the corre­
sponding constants in linear elasticity, e.g., n = E/2{1 + v), k = E/3(l 
— 2c), where v is Poisson's ratio. In the special case that \p = 0, v = 1/2 
and the expressions for E*, fi* simplify while k* -*• °° as \p -»• 0. Con­
tinuing our discussion of hardening and softening behavior, it can be 
shown that when \(/ ^ 0 (see the Appendix for details) the quotient 
f/g can be written as 

1 > 
t 2 + \j, 

1 
- t r 
3 

dfKL 

ds 
dyU 

ds 

- i , delde1 

ds\ ds 
UK 

(64) 

where tr stands for the trace operator. In the special case when v* = 
v, (64) reduces to (see the Appendix for details) 

/ 
1 > -

f <H 
bi­

ds 

- i 

= 
den] 

1 + — £ 

dee 

(65a) 

and by (43a,6) 

de , / de„ 
— and 1 + — -
ds \ de, 

> 0 if and only if the material is hardening, 

< 0 if and only if the material is softening, 

(65b) 

where as in Section 1, we have again used the notation e = en, ee = 
efi, eP ~ eft. 

Before closing this section, it is desirable to elaborate briefly on 
some features of the foregoing results for uniaxial tension, which have 
been obtained with the use of a special set of constitutive equations. 
With reference to all three types ofstrain hardening response defined 
in (43), it is clear that during loading eft is strictly increasing with time 
by virtue of (626)3. Moreover, according to (62c) the time rate of stress 
may be used to characterize strain-hardening behavior in uniaxial 
tension and a characterization of the same behavior is provided by 
the combination (2/3 + ^0) of the constitutive coefficients. While the 
elastic moduli E, /x are always positive, it follows from (63e) that the 
constants E*, 11* are positive for hardening and negative for softening 
behavior. In the special case of v* = v, it is clear from (65a) that the 
quotient//^ can be expressed in terms of quantities (2)-(4) and indeed 
(656) corresponds to the behavior summarized in (4) for uniaxial 
tension.28 Furthermore, with \f/ = 0 in (55)i, the plastic volume change 
or equivalently ep vanishes also. The strain-hardening response is 
then characterized by ft in view of (62c). Also, in a region of hardening 
or softening the quotient f/g reduces to (see the Appendix for de­
tails) 

^L^"1 
(66) 

where we have put y = yn and ye •• 7n-

The significance of the strain space formulation in the case of 
elastic-perfectly plastic materials was pointed out in [1], Since the 
quotient//^ is used here to define various types of hardening response, 
it is desirable to indicate the reduction of the present development 
to the usual perfectly plastic behavior in uniaxial tension. First, we 
observe that during loading (g = 0, g > 0) for perfectly plastic behavior 
j/g = T = 0 by (43c) and (42). It then follows that k = 0, K = K0, S =. so 

28 Recall that the special constitutive equations employed in this section are 
not sufficiently general to predict all details of the stress-strain curve in Fig. 
1. Indeed, different choices of the combination (2(3 + \(/<f>) of the coefficients 
(appropriate for different materials) yield stress-strain curves consisting of 
straight line segments which correspond to the rising and falling portions of 
the curve in Fig. 1. 

by (58)3 and (62a)i^ and that, in view of (626)3, eftis strictly increasing 
with time.29 Thus, in the context of the present paper, the uniaxial 
stress-strain curve for elastic-perfectly plastic behavior consists of 
a linearly elastic portion followed by a horizontal portion and as time 
progresses the locus of eft moves outward along the abscissa of the 
s-e curve. This is in agreement with the usual characterization of 
perfectly plastic behavior in uniaxial tension. We also note that an 
examination of the solution given by (63a, 6) and (63e) easily reveals 
that hardening (softening) is represented in a stress-strain diagram 
by a straight line which lies above (below) the horizontal perfectly 
plastic line. Indeed, since e n = s/E + (s — so)/E*, then deu/ds = 1/E 
+ 1/E* and by standard results for inequalities it follows from (63e) 
that 

den 
» > > max 

ds 

1 den 1 

E ds E* 

1_ J_ 
E' E* 

if the material is hardening, 

if the material is softening. 

Moreover, 

d e n 1 00 > > — implies that the material is hardening, 
ds E 

d e n 1 
— <» < < — implies that the material is softening, 

ds E 

and it is at once clear by comparing the constant slope delr/ds with 
the inverse 1/E of the elastic modulus whether the material is hard­
ening or softening. 

5 S a t u r a t i o n H a r d e n i n g 
As in Section 4, we again restrict attention to small deformations 

of elastic-plastic materials, which are homogeneous and initially 
isotropic in their reference configuration. We also assume that there 
is no plastic volume change so that ep = 0 in the notation of Section 
4. For a fairly large class of metallic materials, it is well known that 
the stress-strain curves of uniaxial cyclic loading attain—after several 
cycles—saturation hardening. The purpose of this section is to indi­
cate how the development of Sections 2 and 3 can be used to charac­
terize a hardening response that includes saturation behavior and to 
compare the results with those of Caulk and Naghdi [5]. 

Starting with a fairly general discussion of loading functions con­
tained in the paper of Green and Naghdi [2], for initially isotropic 
materials Caulk and Naghdi [5] derived a loading function in the form 
(see [5, equations (40)i and (56)i]) 

fCV) = f(TMN, yPMN, «) = TKLTKL ~ CtTKLyliL + oy\L JP
KL ~ K, 

g(tl) = gijMN, J'MN, K) = 4fl2(jKL ~ yfr^iyKL ~ 7fti) 

-2afi (yKL-y^L)yB(L+ oyluy'iu.- «, (67) 

where a and a are constants and where (53) has been used in writing 
(67)2. It should be noted that the loading functions (67)1,2 depend 
explicitly on yfci but not on the mean normal stress s. Here we also 
adopt (67)i,2 but, instead of the hardening response assumed in [5], 
we specify the coefficient function (?/«, in (9) by 

&KL = ftbcfrKL + yWyla, (68) 

which is different from that used in Section 4. The constitutive as­
sumption for <?KL in [5] is similar to (68) but with P(K) and T)(K) spec­
ified 

fa)- 7)M ; 

v, (69) 
Ko — K„ (CO - Ks 

where /? and r\ are constants, KO is the value of K at initial yield and KS 

is the saturation value of K. Since the stress response (53) is used in 

29 In the case of perfectly plastic behavior in uniaxial tension, (516) reduces 
to an identity unless the motion is specified. 
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this section, in addition to (36)-(42), all the results stated under Case 
(6) at the end of Section 3 are also valid here. 

To facilitate the discussion that follows and for later reference, we 
record the expressions 

dSMN 

i>8 

= %TMN - ayluN 5* 0, 

= 2\i 
df * o , te = o), 

(70) 
deMW ZISMN 

f = (2TMN ~ ayiiN)TMN, 

g = 2fl(2TMN ~ uyii^JMN 

= f+ 2(U(2TMW ~ a7Sfiv)7^JV, 

which have been obtained with the use of formulas of the type (56) 
along with (20), (11), (36)x, and (37). With the help of (70) and re­
calling the definitions (33) and (41), A and T are given by 

df df 
A< 2 M 2 T / « , - ay<kL)(2TKL - ay<kL) > 0, 

dsiu, dsKL 

T = (2TKL ~ ayfaMa + $M)TKL - (2a - ?)M)y%d (71) 

Thus, based on the constitutive equations assumed in this section, 
A is 2fi times the square of the magnitude of the normal to the yield 
surface dc? in stress space. Having obtained the results (71)i,2, XT* 
can be calculated from (42) x and it then follows from (32) that the 
quotient fig must satisfy the inequality 

m < i, (72) 

which limits the extent of the hardening behavior. The restriction (72), 
in turn, places an upper bound of unity on the value of the saturation 
constant Kf, in (52a) so that 

0 < Kh £ 1. (73) 

Expressions for -ygx c a n n o w D e easily calculated from (51a) in a re­
gion of hardening or softening and from (516) in a region of perfectly 
plastic behavior. 

Given the constitutive assumptions employed in this section, the 
results (71)1|2 and the restrictions (72) and (73) are valid for any small 
elastic-plastic deformations. In the rest of this section, however, we 
again confine attention to a homogeneous deformation sustained by 
uniaxial tension (61). Since plastic volume change ep = 0, ee = e is 
given by (63a)i. Again, as in (l)i, for convenience we use the notation 
e = en , ee = ee

n, ep = e?iand write 

ll7»L .llfcjftll. 

where the constant matrix | 6 K L I is defined by (61)3. Also, from 
(^0)1,3,4, (61), and (1)2, we deduce that 

/ - « s-aep)s, g = (§s - aep)\Ee + (3n - E)ep 

is-aep ^ 0 f e = 0). 

At initial yield ep = 0 and Kn 
Hence, on the yield surface (g = 

(74) 

= § sjj > 0 by virtue of (74)3 and (67)i. 
: 0), is - aep must be positive. From 

this last result, along with (30) and (36)2, we have ep > 0 during 
loading and therefore ep is strictly increasing with time. Further, from 
the definition (43), and the positivity of the coefficient of s in (74)i, 
it follows that s must satisfy the conditions in (44). The above results 
may be summarized as follows30 

is — aep > 0, ep > 0, 

s satisfies conditions H. 
(75) 

While (75)2 holds during all three types of strain-hardening behavior 
defined in (43), it follows at once from (75)3 and (1)2 that ee also 
satisfies conditions H. 

30 The inequality (75)i, together with (74)i and (10), imply the following: 
During neutral loading it is necessary that s = 0, while during unloading it is 
necessary that s < 0. 

For uniaxial tension under discussion, the quantities A and F in 
(71)i,2 reduce to 

(76) 
A = Mis-ctep)

2>0, F = ( | s - a e p ) r , 
f = (a + &{K))S - l(2<r - vM)ep, 

where for later convenience we have introduced the quantity F defined 
by (76)3. Further, from (50), (76)2, and (75)! follows the result 

r satisfies conditions H. (77) 

Also, the expression for the plastic strain rate ep in a region of hard­
ening or softening can be written as 

If r ^ —E(%s - aep), (78a) may be written as 

1 + -

(78a) 

(78b) 
E(is-aep)\ ' 

which is similar in form to that obtained in [5] and where the relation 
s = E{e — ep) has been used in deriving (786). In fact, if the coefficient 
functions p and fj which occur in T are specialized to those given_by 
(69), then (786) reduces to that in [5, equation (80)]. The value f = 
—E(i s — aep) corresponds to a special softening behavior in which 
e = 0, * = —Eep. 

The result (75)3 enables us to calculate the slopes de/ds, dep/ds 
explicitly as functions of s, ep, K. Thus, with the use of (1), (78a) and 
chain rule of differentiation, in a region of hardening or softening we 
have 

(79) 
de 
ds 

1 _ dep dep is — aep 

E ds ' ds ~ T 

It follows from (79), (75)i, and (77) that 

de„ 
» > -f > 0, 

ds 
de 

°° > — > max 
ds 

1 de^ 

E' ds 
> 0 if the material i 

deD 
-co < -

Moreover, 

<0 , 
1 de dep 
— > — > if the material is softening. 
E ds ds 

(80a) 

de 1 I de 
00 > — > — or equivalently •» > 

ds E \ 

\ 
£ > 0 impl 
5 / 

ies hardening, 

de 

ds E 

deD 
°° < — < — or equivalently — » < < 0 implies softening 

ds 

(80b) 
Since dee/ds = 1/E which is always positive, we may write dep/dee 

= E dep/ds, de/dee = E de/ds and then obtain explicit expressions 
for these derivatives from (79). It is evident that conditions of the type 
indicated in (80) for dep/ds also hold for dep/dee. It follows from (42), 
(76), and (79)2 that in a region of hardening or softening 

1>L 1 + 3ju-
de. 

1 + 
ds m) (81) 

In view of (80a) and (43), (81) implies that dep/ds < -1/3/n in a region 
of softening. It is clear from (81)i and (1) that a knowledge of /j., E and 
the slope de/ds suffices to determine//$. If the material saturates to 
perfectly plastic behavior, the left-hand side of (81)i, i.e., f/g must tend 
to zero and hence in this case dep/ds must become unbounded. 

We now turn to a brief discussion of saturation hardening usually 
observed under uniaxial cyclic loading. Recalling the definitions (52a, 
6), from (81) we deduce that saturation hardening occurs if there 
exists a constant K/, such that 

1 + 3M lim ^ 
t-»« ds . 

..Khi nm^ = i+LiI>iA0<Kh 
t—»ds E SiiKh 

1). 

(82) 
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In order to exploit the implications of (82), we first observe that V 
defined by (76)3 can be rewritten as 

\[ls-aep) (a + PM) + ̂ - 2 a + JJM + | PW}ep 

and then express (79)2 in the form 

dep 

ds 

2o-+ V(K) + - P(K) \ep 

- (a + £ W) + -
4 2 H s - a e D 

(83) 

(84) 

Consider now a special material response which corresponds to the 
vanishing of the numerator of the second term in the square brackets 
in (84), i.e., 

2 

— - 2<r + j jM + - # M = 0, (85) 

which has the same form as a particular case discussed in [5]. From 
(75)i, (77)b (83)-(85), and (81), it can be readily concluded that 

a + P(K) satisfies conditions H, 

de„ 4/3 / 
1 + -

4M 

« + (3W. 
< 1 . (86) 

ds a + $(K) § 

Also, in view of (43fe) and (86)2, in a region of softening: 

0 > a + $(K) > - Aii. 

If saturation hardening occurs with 0 < Kh < 1, then from (82)i, (86), 
and the condition (85) we have 

l i m £ W = i ^ L . 
, ~ - 1 - Kh 

lim 7J(K) = 
2aiiKh 

l-Kh 
+ 2tr, 

(0<Kh< 1), (87) 

while P(K) becomes unbounded for K/, = 1. 
We further examine saturation hardening by adopting the special 

coefficients (69) subject to the condition (85). When saturation is 
assumed to occur, the limit of the coefficients (69) as t - • °° is zero and 
from (85), (82), and (86)2 we obtain 

a2 = 4<j, a/3 + 2r/ = 0, lim — = 
t-~m ds 

1 4 
- + —, 
E 3a 

0<Kh 1 + 
An 

< 1, a > 0, (88) 

the first three of which are the same as those derived in [5, equations 
(70) and (86)]. 

By way of illustration, consider the 304 stainless steel whose be­
havior in cyclic tension-compression is discussed in [5, Section 7], As 
in [5], for the 304 stainless steel, we take the values of E = 123 GPa 
and de/ds = (3.85 G P a ) - 1 at initial yield and also assume the value 
v = 0.3 for Poisson's ratio.31 With these values, the expressions (79)i 
and (81) predict that the quotient//$ at initial yield is approximately 
equal to 0.027. Again using the above values; as well as a = 1.5 (for 
tension), (88)3 gives an approximate value of 0.008 for Kh- Thus ?/i 
decreases from a value of 0.027 at initial yield to a value of 0.008 at 
saturation. It is clear from (82) that the definition of saturation 
hardening given by (52a) implies that the slopes de/ds and dep/ds 
tend to constant limits at saturation. In this connection, it should be 
noted that when $ and f) are of the form (69), the definition of satu­
ration hardening used in [5] also gives constant limiting slopes. 

We return once more to the perfectly plastic case, and first observe 
that the expression for32 yfcL can be obtained from (516) with the use 
of (70)i]4 and (71)i. In view of (75)a, s = 0 for perfectly plastic behavior 
and s retains its initial yield value so and, in accordance with (75)2, 
ep is strictly increasing with time during loading. The work-hardening 
parameter K may then be obtained as a function of ep from g = f = 0 
with/given by (67h: 

K = § si - asQep + I aeP. (89) 

By (76) and (77c), for perfectly plastic behavior it is necessary that 

i(a + p{K))s0-(2a-riM)eP=0 (90) 

for all ep. We observe, however, that in view of (76) and (77c) the 
constant values 

P(K) = -a, f/M = 2(7 (91) 

are sufficient for perfectly plastic behavior. It should be noted that 
the values (91) satisfy the condition (85). 
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APPENDIX 
We provide here details of the calculations leading to (64), (65a), 

and (66), and also record alternative useful forms of the quotient//£ 
associated with the constitutive equations of Section 4. From (63), 
in a region of hardening or softening we have 

31 A value for Poisson's ratio was not needed in the calculation given in [5, 
Section 7]. With v = 0.3 and E = 123 GPa, n is calculated to be 47.31 GPa. 

32 In fact, in the case of uniaxial tension, the resulting expression is an iden­
tity, unless the motion is specified. 
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de ldee' 

ds \ ds 

-i deP ldee\-i k 
1+ 1—I = 1 + —, (f = 0), ds \ds k* 

dyKL 1 

ds 1 

deKL 

ds 

dyKL 

ds 

dee
KL 

ds 

= n* 

' = u« 

ds 

de'kL 

ds 

dyKL 

ds 

dee
KL ~ 

ds 

= 1 + - II5* 

_1 Ifcll+jl-

l>l- 1 + 
2(4/t + 3i/<2fe) 

2 / 3 + \p<l> 

1 + -
_E_ 

3£* 

2(1 + i/*)2 (1 - 2i/*)2l 

1 + c 1 -2 ; / 

1 + — 
E* 

1 + -
2 (v- i /* ) 2 

I V 1 + 
4/x* + 3i^2fe*. 

2|l + —1 + ^(1 +— 

0 

v*/v 

0 

0 

0 

v*/v 

(92) 

(93) 

(94) 

In a region of hardening or softening T ^ 0 by (50) and using (42)2 

we may write f/g = (1 + AAT)-1. Then, by (60), (61), and (62&h we 
have 

(95) 
(1 + i/)(l - 2v)\ 

and we may recall that 1 + v > 0,1 — 2v > 0. If \[/ ^ 0, then//^ may also 
be written as 

/ f in + S\P2k | - i _ 2 + $ 
(96) 

The result (64) follows at once from (92), (93), and (96). Similarly, if 
v* = v [or 4/ = 1 - 2P/(1 + p)], then from (94) and (95) we obtain 

E 
1 + — 

E* 
tr IIS* + 

defa 
ds 

de KL 

ds 
(97) 

The result (65a) follows from (97) and (63a). With the use of (94) it 
is also possible to write (97) in terms of 

deKL 

ds 

dee
KL 

ds 

but we do not record this here. 
In the special case that \p = 0, we note that by (63d)2,3 and (93), 

l + 4 ! 
-tr 

dyKL 

ds 

dyKL 
ds 

- 1 dy ldye' 

ds \ ds 
(98) 

The relations (95)x, (98), (63a)2, and (636>2 lead to the expression 
(66). 
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Constitutive Equations of 
Elastoplastic Materials With 
Anisotropic Hardening and 
Elastic-Plastic Transition 
Constitutive equations of elastoplastic materials with anisotropic hardening and elastic-
plastic transition are presented by introducing three similar surfaces, i.e., a loading sur­
face on which a current stress exists, a subyield surface limiting a size of the loading sur­
face and a distinct-yield surface representing a fully plastic state. The assumption of sim­
ilarity of these surfaces leads the derived equations to remarkably simple forms. Also a 
more general rule of the kinematic hardening for the distinct-yield surface is incorporated 
into the constitutive equations. While they seem to be applicable to various materials, 
special constitutive equations of metals, for example, are derived from them and are com­
pared with experimental data on a cyclic uniaxial loading of aluminum. A close correla­
tion between theory and experiment is observed in this comparison. 

Introduction 
The author proposed previously constitutive equations of elasto­

plastic materials with elastic-plastic transition [1], introducing the 
concept of a loading surface in a subyield state. A reasonably simpli­
fied rule of kinematic hardening is incorporated into the constitutive 
equations. They cannot, however, describe the phenomenon that the 
curvature of the stress-strain curve becomes smaller in the reverse 
loading than in the first loading from an initial isotropic state as is 
observed in the stress—strain curve for the uniaxial loading of elas­
toplastic materials such as metals. Further, according to them, the 
loading along the yield surface which represents the fully plastic state 
brings about not a plastic deformation but an elastic deformation, 
since the loading surface is assumed to coincide with the yield surface 
in the fully plastic state. However, not only an elastic but a plastic 
deformation will occur in real materials subjected to such a 
loading. 

On the other hand, the Mroz model of a field of hardening moduli 
[2] in which are assumed many surfaces can describe these phenomena 
suitably to some extent. Further, Krieg [3] and Dafalias and Popov 
[4] proposed independently the simplified constitutive equations in 
the form of the so-called two-surface theory. The former [3] formu-
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JOURNAL OF APPLIED MECHANICS. 
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ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
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lated elastoplastic constitutive equations in concrete forms though 
they are confined to metals, while the latter [4] provided only a con-
ceptional description. These constitutive equations in the two-surface 
theory would have similar mathematical behaviors to" those of the 
Mroz model. The Mroz model and the Krieg or the Dafalias and 
Popov's two-surface theory are, however, incapable of describing 
suitably the elastic-plastic transition, since they assume the surface 
which delimits an elastic region. For instance, the reloading after a 
partial unloading within this surface brings about an abrupt change 
from the elastic to the fully plastic state. 

In this paper, the elastoplastic constitutive equations which are 
modified to remove the aforementioned defects in the past theories 
are presented by formulating a simplified two-surface theory on the 
assumption of similarity of surfaces and then incorporating the au­
thor's previous theory with a loading surface [1] into it. Consequently, 
three similar surfaces are assumed; a loading surface on which a 
current stress exists, a subyield surface limiting the size of the loading 
surface and a distinct-yield surface representing a fully plastic or 
distinct-yield state. The assumption of similarity of these surfaces 
leads the derived constitutive equations to remarkably simple forms. 
And a more general rule of the kinematic hardening for the distinct-
yield surface, which would be applicable to various materials including 
metals and granular media, is incorporated into them. Further, from 
them are derived special constitutive equations of metals, for example. 
And the adaptability of them to the description of the actual behavior 
of metals is examined comparing with experimental data on a cyclic 
uniaxial loading of aluminum which was reported by Lipkin and 
Swearengen [5] and quoted by Krieg [3] also to compare with his 
theory. In this comparison, a close correlation between theory and 
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f I'-

Fig. 1 The distinct-yield state (I = F) illustrated as the envelope curve of 
reloading curves 

experiment is obtained by the equations proposed in the present paper 
better than the equations of Krieg. 

B a s i c Cons t i tu t ive E q u a t i o n s 
A typical stress-strain curve of elastoplastic materials is schemat­

ically illustrated in Fig. 1. Assume that the surface which represents 
stresses in the distinct-yield state shown by the envelope curve of 
reloading curves in this figure is described by the following equation 
(see Fig. 2). 

f(a -a)- F(K) = 0 

/(r» - F{K) = 0, 

where 

(1) 

(2) 

(3) 

The second-order tensor a is a stress, and the scalar K and the sec­
ond-order tensor a are parameters to describe, respectively, the ex­
pansion or contraction and the translation of the surface. Let this 
surface be called a distinct-yield surface. 

Now, we assume that the distinct-yield surface retains a similarity 
in a stress space. Therefore, the function / is to be a homogeneous 
function of its arguments. Then, let the degree of / be denoted by 
n. 

Further, we introduce the secondary surface which is similar to the 
distinct-yield surface and translates within the distinct-yield surface 
(see Fig. 2). Hence, let the surface be described by 

f(a - a) - r"F(K) = 0 

f(a) - r*F(K) = 0, 

where we set 

(4) 

(5) 

(6) 

r (0 £ r £ 1) is a material constant and the second-order tensor 5 is 
a parameter to describe a translation of the surface. Let this surface 
be called a subyield surface. 

In what follows, the parameters K, a and a are defined. 
Let K where a superposed dot designates a material time derivative 

be a function of stress, plastic strain, and plastic strain rate ip in de­
gree one, which satisfies the condition K = 0 when ep = 0. 

Now, suppose that the current stress is on the subyield surface, and 
let it be denoted by as. Further, let the conjugate point on the dis­
tinct-yield surface having the same outer normal direction as that of 
the subyield surface at as be designated by ay. 

Then, let a be given by 

a = A tr(e"l) l + B tr IfP 

•AeuPl+Btr\iP-?-]-; (7) 

D i s l i n c l - y i c l d surfm 

Suliyirl i l sui-fai-c 

iwliiiK surface 

Fig. 2 The distinct-yield, the subyield and the loading surfaces 

a = AkvPl +Bti \iP 
Os 

by the relation 

(8) 

(9) 

in accordance with the assumption of the similarity of the distinct-
yield and the subyield surfaces. In these equations, 

iuP = tr (iP), 

Oy = ffy — (X, 0"S = 0"S 

(10) 

A and B are scalar functions of K and a, and the notation | | is used 
to represent the magnitude. In (7) or (8), the first term is added to the 
equation assumed in the previous paper [1], while the first and the 
second term would be significant for granular media and metals, re­
spectively. 

Since the subyield surface must not intersect the distinct-yield 
surface but can come into contact with it, the direction of the relative 
motion of the conjugate point ay and as must coincide with that of 
the vector ay — o> at least when <rs is near to ay. Then, let the fol­
lowing equation be assumed as is done in the Mroz model [2]. 

0 = /SA, 
where ji is a scalar parameter formulated later and we set 

fi = ay — <rs 

which can be written as 

f}= I l p , + a-a 

by (9). 

Substituting (13) into (11) using (10), we have 

5 = (1 - r)&s + ra- rfiji. 

Differentiation of (5) with substitution of (14) yields 

rn-ip _ t r —(<r» - a) 
d<7s 

M = " 

"d* 

(ID 

(12) 

(13) 

(14) 

(15) 

Further, substituting (15) into (14), we obtain 

(l-r)&s+r&-r0-
-'/-tr(4<*. 

ldr/s 
•A) 

\dtrs 

(16) 
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Finally, the plastic strain rate ip is formulated in the following. 
In the distinct-yield state (os = ay), it can be obtained by differ­

entiating (2) and substituting (7) that 

tr 
\dffv 

- t r 
df 

dav 
AiPl + B t r ep 

where 

dF 
F' = •— 

dK 

Adopting the associated flow rule 

• df 
** = A- i - (X>0), 

da 

•• F'K, (17) 

(18) 

(19) 

where X is a proportionality factor, (P is given from (17) as follows: 

e" = - a/ 

\dOyl\ I \dty \Oy\j 
+ F'kv 

dS-v 
(20) 

where ky is a scalar function of stress, plastic strain and df/dby in 
degree one given by 

Ky = K/X, (21) 

that is, ky is given by replacing the argument i? by df/day in the 
function K. 

Now, we extend (20) to the subyield state os ^ ay as follows: 

(P = Q(6) • 
"(£*') df 

A 

where b denotes 

do, 
tr 

3/ gy 

dffy 1 ^ | 
+ F 'KV 

d<rv 

(22) 

b = ti 
|8 dffy 

Ji-l/n Of 
do\ 

(23) 

and Q (0 s Q £ 1) is a monotonically decreasing function of 6 satis­
fying the condition 

Q = 1 when 6 = 0. (24) 

(22) means that the plastic strain rate produced in the subyield state 
relates to the parameter b, i.e., the projection of the vector f}/Fl/" to 
the outer-normal direction of the subyield surface at os. 

Further, since the homogeneity of the function / and the relation 
(9) yield the relation 

3L = ri-«*L 
dav dos 

(22) can be written as 

iP = Q-

urn 
. UffJ 

+ B tr 
df as 

d<rs \as\ 

2 da, 
+ rn-lF'Ks 

(25) 

df 
~r, (26) 

where K„ stands for a function given by replacing the argument dfldoy 

by dfldos in the function ky. 
The constitutive equations formulated in the foregoing are regarded 

as one of the so-called two-surface theory, which are considerably 
simplified by virtue of the similarity of the distinct-yield and the 
subyield surfaces. However, if the interior of the subyield surface is 
assumed to be an elastic region as is done on the Mroz model of a field 
of hardening moduli [2] and the Krieg'[3] or the Dafalias and Popov 

[4]'s two-surface theory, the aforementioned constitutive equations 
cannot describe suitably the elastic-plastic transition. For instance, 
the reloading after a partial unloading within the subyield surface 
brings about a gradual transition from the elastic to the plastic state 
but an abrupt one. In what follows, the previous constitutive equations 
are extended so as to describe suitably a gradual elastic-plastic 
transition even in a reloading state. 

In accordance with the foregoing discussion, it should be assumed 
that a plastic deformation occurs even in the state that a current stress 
exists within a subyield surface. Then, let the current stress be des­
ignated simply by a, and assume the following relation. 

bs = H(R)a, (27) 

where H (0 £ H £ 1) is a monotonically increasing function of R sat­
isfying the condition 

H = 1 when R = 1. (28) 

R (0 £ R £ 1) designates the ratio of the size of the third surface, 
which passes through a and is similar to the subyield surface with 
respect to a (see Fig. 2) and which we call a loading surface, to that 
of the subyield surface, i.e., 

R = fffi l /n 

in setting 

(29) 

(30) 

Now, noting the homogeneity of the function / and the equations 
(5) and (29), we get 

(3D 

and also 

df 
= fl»- (32) - « - • — 

d5s da 

By substituting (25), (27), (31), and (32) into (8), (13), (16), (23), 
and (26) for the state R = 1, we obtain the extended constitutive 
equations to the general state 0 s R < 1 as follows: 

eP = QH-
\da 

"'ir-HS! + F'K(rR)"-
do' 

!4Pifi)lr & = AivPl + B 

(rR)"-^ - tr 

a = (1 - r)Hir + ra - r/S -
do' 

(Ho - &) 

(33) 

(34) 

(35) 

(36) 

(37) 

where K stands for a function given by replacing the argument df/dos 

by df/do in the function KS. 
As a consequence of formulating (33), it follows that the associated 

flow rule is applied to the loading surface whose interior is not an 
elastic region. The applicability of this rule to the loading surface was 
discussed in the previous paper [6, 7], 

Constitutive Equations of Metals 
Based on the constitutive equations formulated in the preceding 
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section, constitutive equations of metals are derived in this sec­
tion. 

We first introduce the modified von Mises yield condition 

Z-F(Q = 0, 

where 

|, ff*sff--tr(ff)l 
3 

(38) 

(39) 

Hence, it follows that 

re = 1, K = l. 

Substitution of (38) and (40) into (29) and (33)-(37) leads to 

12/ E 2 ( S + F') 

2 £ ( B + F') 

F--tT{—(Hir-&) 
i 2 " 

a = (1 - r)tf<r + r a - r/3 -
1 P „\ 3 /ff* 

-1 
2 

/8 = (1 — r) — <r + « - a. 

" ( f 
rF 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

(47) 

Now, we consider the uniaxial loading of a bar. In this case, it holds 
that 

where 

E - | f f « | , Z=\iap\ 

Oa=Oa- O-a 

(48) 

(49) 

and aa, aa, and ia
p designate components cf <r, a, and ip along the 

axis, respectively. 
Substituting (48) into (41)-(47), we have 

f„p = QH 
B + F' 

\5a\B + F'1 

hi = BeaP, 

aa =Haa -r—r-F, 

Pa = (1 - r)F —2- + &„ - S 0 , 

/2/3q (7q 

V 3 F I5U 

where a a is the component of a along the axis. 

(50) 

(51) 

(52) 

(53) 

(54) 

(55) 

(56) 

Compar i son W i t h E x p e r i m e n t a l D a t a 
In this section, how closely the foregoing constitutive equations can 

predict the actual behavior of metals is examined by comparing with 

"100 
0.5 

Axial strain £ a % 

——————— Measured by Lipkin and Swearengen 
Predicted by the present theory 
Predicted by Krieg 

Fig. 3 Theoretical prediction of cyclic uniaxial loading behavior of 6061-0 
Aluminum 

experimental data on a cyclic uniaxial loading of aluminum. The ex­
perimental curve for the stress-strain relation of 6061-0 Aluminum 
subjected to a repeated uniaxial loading between —95 and +95 Mpa, 
measured by Lipkin and Swearengen [5], is depicted by the heavy 
solid line in Pig. 3. Thie material was selected for presentation because 
it satisfies the assumption of initial plastic isotropy. Further, the 
theoretical curve calculated by the present theory is depicted by the 
broken line, provided that this curve is supplemented by the elastic 
axial strain ea

e given by the Hooke's law 

ea
e = aJE, (57) 

where E is the Young's modulus. Functions and material constants 
in (41)-(47) and (57) are selected as follows: 

F = 88 - 26 exp (-300?) Mpa, 

B = 32000?0-6 Mpa, 

r = 0.7, 

Q = : T7T7 . (58) 
1 + 36.76 

H = ft10, 

E = 64000 Mpa. 

The distinction between a loading (€p 9^ 0) and an unloading 
(ip = 0) is made by the sign of X as was described in the previous paper 
[1], while for the uniaxial loading it is made by the sign of ?0ff0 as is 
known from (51). 
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Theoretical curves for the relations of parameters aa, aya, asa, aa, 
and aa versus ta

p are depicted by the broken line, the fine solid line, 
the fine chain line, the solid line and the chain line respectively in Fig. 
4, where aya and asa are components of ay and as along the axis, re­
spectively. 

In Fig. 3, the theoretical curve calculated by Krieg [3] with his 
two-surface theory is also depicted by the chain line. It does not, 
however, exactly satisfy the stress condition varying between —95 and 
+95 Mpa. The ratio of the strain rate to the stress rate becomes pro­
gressively greater as | cra | comes up to the maximum value 95 Mpa. 
Therefore, note that the slight difference of the stress range affects 
considerably the magnitude of the strain calculated. On the other 
hand, the broken line is calculated conforming exactly to that stress 
condition. And yet the very close approximation throughout all de­
formation process is obtained by this line. 

Besides, the theoretical stress-strain curve for the partial unloading 
from 80 Mpa (point u) to 60 Mpa (point r) and the reloading from 60 
Mpa (point r) is depicted in Fig. 4 where we observe the gradual 
change of its slope. On the other hand, the Mroz model and the Krieg 
and the Dafalias and Popov's two-surface theory express not a gradual 
transition but an abrupt change of the stress-strain curve in which 
the reloading curve coincides with the unloading curve until aa = 80 
Mpa and bents suddenly to follow the curve depicted by the direct 
loading without the unloading, since they assume the surface whose 
interior is an elastic region. 

S u m m a r y and Appl i ca t ion to the O t h e r Mater ia l 
Constitutive equations of elastoplastic materials with an anisotropic 

hardening (or softening) and an elastic-plastic transition have been 
presented. They have quite simple forms by virtue of the similarity 
of the assumed three surfaces, i.e., the distinct-yield, the subyield and 
the loading surfaces. Hence, they can be called a three-surface theory. 
Though the equations have been applied to metals and their adapt­
ability was examined on the cyclic uniaxial loading behavior of alu­
minum for example, they seem to be applicable to various materials. 
For instance, constitutive equations of granular media which exhibit 
very different plastic behaviors, softening and volume change, from 
metals would be formulated suitably by introducing the following 
functions [7]. 

/(o=) = p 2 + — , F = F0exp\--euP\, 
\ml \ p I 

m 

0.5 1.0 

P la s t i c axial s t ra in £JJ % 

A= V F , B = 0, 
pM 

_tfa 

- t f y a — 

•a 
" ^ a 

-a 
where 

Fig. 4 Theoretical relations of a„, <ty,, a„, a,, and a. versus e„ ' 

P = 3 t r (S ) . 

m, M, and p are material constants and FQ is an initial value off . 
Elastoplastic constitutive equations of granular media will be re­

ported in another paper at length. 

A c k n o w l e d g m e n t 
The author wishes to express his sincere gratitude to Prof. H. Ya-

maguchi of the Tokyo Institute of Technology for his kind advice and 
many helpful discussions. The results reported here were obtained 
in the course of research supported by the Aid for Scientific Re­
searches from the Ministry of Education of Japan under Grant 355220 
in 1978-1979 to the author. 

R e f e r e n c e s 
1 Hashiguchi, K., "Constitutive Equations of Elastoplastic Materials With 

Elastic-Plastic Transition," ASME JOURNAL OF APPLIED MECHANICS, Vol. 
47,1980, pp. 266-272. 

2 Mroz, Z., "On the Description of Anisotropic Workhardening," Journal 
of the Mechanics and Physics of Solids, Vol. 15,1967, pp. 163-175. 

3 Krieg, R. D., "A Practical Two Surface Plasticity Theory," ASME 
JOURNAL OP APPLIED MECHANICS, Vol. 42,1975, pp. 641-646. 

4 Dafalias, Y. F., and Popov, E. P., "A Model of Nonlinearly Hardening 
Materials for Complex Loading," Acta Mechanica, Vol. 21, 1975, pp. 173-
192. 

5 Lipkin, J., and Swearengen, J. C, "On the Subsequent Yielding of an 
Aluminum Alloy Following Cyclic Prestraining," Metallurgical Transactions, 
Vol. 6, Series A, 1975, pp. 167-177. 

6 Hashiguchi, K., "A Derivation of the Associated Flow Rule," Journal of 
the Faculty of Agriculture, Kyushu University, Vol. 24,1979, pp. 75-80. 

7 Hashiguchi, K., "Anisotropic Hardening Model for Granular Media, 
"Proceedings of the International Symposium on Soils Under Cyclic and 
Transient Loading, Swansea, 1980, pp. 469-474. 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 301 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A.j.Rosakis The Effect 0 f Crack-Tip Plasticity on 
Research Assistant. 1 a 

L. B. Freund 1 the De ermination of Dynamic 
>rofessor and Chairman. _^ 

* . « • Stress-Intensity Factors by the 
Division of Engineering, 

,..',-";v ? Optical Method of Caustics 
The shadow spots which are obtained in using the optical method of caustics to experi­
mentally determine dynamic stress-intensity factors are usually interpreted on the basis 
of a static elastic crack model. In this paper, an attempt is made to include both crack-tip 
plasticity and inertial effects in the analysis underlying the use of the method in reflec­
tion. For dynamic crack propagation in the two-dimensional tensile mode which is accom­
panied by a Dugdale-Barenblatt line plastic zone, the predicted caustic curves and corre­
sponding initial curves are studied within the framework of plane stress and small scale 
yielding conditions. These curves are found to have geometrical features which are quite 
different from those for purely elastic crack growth. Estimates are made of the range of 
system parameters for which plasticity and inertia effects should be included in data 
analysis when using the method of caustics. For example, it is found that the error intro­
duced through the neglect of plasticity effects in the analysis of data will be small as long 
as the distance from the crack tip to the initial curve ahead of the tip is more than about 
twice the plastic zone size. Also, it is found that the error introduced through the neglect 
of inertial effects will be small as long as the crack speed is less than about 20 percent of 
the longitudinal wave speed. 

1 Introduction 
Progress toward understanding the phenomenon of dynamic crack 

propagation in solids has been impeded by several complicating fea­
tures which are encountered in both analytical and experimental 
approaches. Prom the experimental viewpoint, the inherent time 
dependence of the process requires that many sequential measure­
ments of field quantities be made in an extremely short time in a way 
which does not interfere with the process itself. Furthermore, the place 
at which field quantities are to be measured varies, often in a non­
uniform way, during the course of the process. Because of this com­
plexity, most experimental techniques for measuring crack-tip stress 
and deformation fields during rapid fracture are based on optics. Such 
methods have three main advantages: 

(i) The techniques are full-field methods, i.e., the entire specimen 
is observed continuously and crack paths need not be known a 
priori. 
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Discussion on this paper should be addressed to the Editorial Department, 
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Department. Manuscript received by ASME Applied Mechanics Division, 
October, 1980. 

(ii) There is no coupling between the optical and mechanical 
processes, i.e., the method of measurement does not interfere with 
the process being examined. 

(Hi) The response of an optical system is essentially instantaneous 
on the time scale of mechanical rapid fracture events. 

Several optical methods have been used during the past 50 years 
to measure deformations in nominally elastic materials, and thereby 
to determine stress fields. Most of the methods are based on light wave 
interference principles, and their application has been confined to 
transparent materials, or to opaque materials coated with transparent 
materials. 

Recently, the optical method of caustics, or the shadow spot 
method, was developed and applied in the investigation of nonuniform 
surface deformations due to stress concentrations in deformed solids 
[1,2]. Details of the stress field may then be inferred from shadow spot 
measurements on the basis of an analytical model. The method of 
caustics is an exceptional method because it is based on the principles 
of geometrical optics, rather than light interference, and it has been 
successfully applied to cases of both opaque and transparent mate­
rials. The method was first used in a reflection arrangement by The-
ocaris [2], who studied the stress singularity in the vicinity of a sta­
tionary crack tip. Later, Theocaris and Gdoutos [3, 4] applied the 
method of caustics in reflection to experimentally examine the de-
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SPECIMEN 

Fig. 1 Schematic of the formation of the three-dimensional caustic envelope 
obtained by reflection 

formation fields near the tips of stationary cracks in metal plates. In 
this case, which apparently was the first application of the method 
to metal specimens, plastic deformation occurred locally and the 
optical data were analyzed by assuming a plane stress Dugdale-Bar-
enblatt model for the crack-tip plastic zones. 

The method was first used in experiments involving very rapid 
crack propagation and stress wave loading by Kalthoff and coworkers 
[5] and Theocaris and coworkers [6, 7], and more recently by Gold­
smith [8]. In each case, it was assumed that the elastic stress field near 
the tip of a rapidly growing crack in a brittle solid has precisely the 
same spatial variation as the elastic stress field near the tip of a sta­
tionary crack. That is, the influence of inertial effects on the spatial 
dependence of the crack-tip field was not taken into account. More 
recently, several investigators have reanalyzed the method of caustics 
as applied to rapid crack propagation in brittle materials, including 
the effect of inertia on the spatial variation of the elastic crack-tip 
stress field. Kalthoff, et al. [9], introduced an approximate correction 
factor to account for the potentially large error introduced when the 
static local field is used in data analysis. The exact equations of the 
caustic envelope formed by the reflection of parallel incident light 
from the surface of a specimen containing a rapidly growing crack were 
recently obtained by Rosakis [10] for mixed mode plane-stress crack 
growth. It was found that, for some typical laboratory materials used 
in crack propagation studies, the neglect of the influence of inertia 
on the crack-tip stress field could lead to errors of up to 30 to 40 per­
cent in the value of the elastic stress-intensity factor inferred from 
the measured caustic diameter. A similar analysis has also been dis­
cussed by Theocaris, et al. [11]. 

specimen 

, As vo r, ,T 

P'(X,,X2) 

X, 

Fig. 2 Optical mapping of points P(x-i, x2) of the surface of an illuminated 
solid, to points P'iX-,, X2) on a screen 

In this paper, a first attempt is made at including plasticity effects 
in the analysis underlying the optical method of caustics as applied 
in dynamic crack propagation studies. The analysis is based on the 
one-dimensional line plastic zone model of Dugdale and Barenblatt. 
For dynamic crack propagation in the two-dimensional tensile mode 
which is accompanied by such a strip yield zone, the sizes and shapes 
of the predicted caustic curves are studied. The influence of material 
inertia and of the extent of the plastic zone on stress-intensity factor 
measurements are considered. The initial and caustic curves are found 
to have geometrical features quite different from those present for 
purely elastic crack growth, and the dependence of these features on 
crack speed and plastic zone size is investigated. 

2 Formation of Caustics in Reflection 
Consider a family of parallel light rays incident on the reflective 

surface x% = —f(x\, x2) of an opaque material; see Pig. 1. Upon re­
flection from the surface, the light rays will deviate from parallelism. 
(In practice, the intensity of the reflected ray will be less than the 
intensity of the incident ray due to random scattering.) If certain 
geometrical conditions are met by the reflecting surface, then the 
family of reflected rays will have an envelope in the form of a three-
dimensional surface in space. A section of such a surface is shown as 
the dashed curve in Pig. 1. This surface, which is called the caustic 
surface, is the locus of points of maximum luminosity (i.e., highest 
density of rays) in the reflected field. The reflected rays are tangent 
to the caustic surface. If a screen is positioned parallel to the (x\, x2)-
plane and so that it intersects the caustic surface, then a cross section 
of the caustic surface can be observed as a bright curve (the so-called 
caustic curve) bordering a relatively dark region (the shadow spot) 
on the screen. 

Suppose that the incident ray which is reflected from the point 
P(xi, xi) on the reflecting surface will intersect the screen at the image 
point P'(X\, X2); see Pig. 2. The (Xi, X2) coordinate system is 
identical to the (xi, x2) system, except that the origin of the former 
has been translated to the screen. The position of the image point P' 
will depend on the slope of the reflecting surface at P and on the 
normal distance zo between the screen and the reflecting surface. It 
has been shown elsewhere [12] that the position of the image point 
P' on the screen has coordinates 

Xi=Xi± 2z0(i>f/dxi) (1) 

where zo » | / | . Equation (1) represents a mapping of points P of the 
reflecting surface onto points P' of the screen. The choice of sign in 
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(1) depends on whether the image point is a real image in front of the 
reflecting surface (+ sign) as is the case in Fig. 2 or a virtual image 
behind the reflecting surface (— sign). The use of the virtual image 
has certain advantages in experimental fracture mechanics, and the 
subsequent analysis will be based on the choice of the negative sign 
in (1). 

If the screen intersects a caustic surface, then the resulting caustic 
curve on the screen is a locus of points of multiple reflection. That is, 
for those points on the caustic curve, the mapping (1) is not invertible 
and the Jacobian of the transformation must vanish, i.e., 

The vanishing of the Jacobian is the necessary and sufficient condition 
for the existence of a caustic curve. The points on the reflecting surface 
for which J (x i, * 2) = 0 are the points from which the rays forming the 
caustic curve are reflected. The locus of these points on the reflecting 
surface is the so-called initial curve. 

3 Application of Caustics to Plane-Stress 
Elastodynamics 

Consider a two-dimensional elastic solid occupying a region of the 
*i> *2-plane. The outer boundary is subjected to traction and/or 
displacement boundary conditions of a type to ensure uniqueness of 
solution. Suppose that a planar crack grows through the body, with 
the crack tip speed being v. Within the framework of the theory of 
plane stress, the two-dimensional displacement vector u is governed 
by the equation 

c 2V(V • u) - c2V X V X u = u (3) 

where V is the two-dimensional gradient operator and the superposed 
dot denotes time derivative. In terms of the elastic modulus E and 
Poisson's ratio v, the longitudinal and shear wave speeds for plane 
stress are ci = [E/(l - v2)p]1/2 and cs = [B/2(l + v)p]1/2, respec­
tively. 

Any displacement vector which is derived from the longitudinal 
and shear wave potentials 0 and ̂  according to 

u = V0 + VXiJ<; c ? V 2 0 - 0 = O; c2V2^ - $ = 0 (4) 

satisfies (3). In plane stress, \p has a single nonzero component which 
is here denoted by \p. 

Suppose now that the (x\, x2) coordinate system is fixed with its 
origin at the moving crack tip and that it is oriented so that crack 
growth is in the xi-direction. Furthermore, suppose that the crack 
grows with constant speed, and that the geometry and applied loading 
are steady (i.e., independent of time) as seen by an observer moving 
with the crack tip. Under these circumstances, it is expected that the 
complete elastodynamic field is steady, so that 0 and \p depend only 
on xi, x2 and ( ) = — vi>( )/i>x\. Under steady conditions, the wave 
equations in (4) reduce to 

d 2 0 / v2\ d 20 d2\b( v2\ d2\b 

i s 1 " i + r r - ° Tin 1 - -+72 ° (5) 

dx\\ cfj dx\ bx\\ ell dxl 
But each of the reduced wave equations is clearly equivalent to La­
place's equation with the X2 coordinates scaled by the factor ai = (1 
— i>2/c2)1''2 in the first case and as = (1 — i>2/c2)1/2 in the second case. 
General solutions of (5) may be written immediately in the form 

0 = Re[F(z,)], ip = Im[G(zs)] (6) 

where z\ = x\ + iaix2, zs = x\ + iasx2, and F and G are each an ana­
lytic function of its complex argument in the region occupied by the 
body. In any given problem, the analytic functions are determined 
by the boundary conditions. Although (5)-(6) have been established 
with reference to crack growth, it should be noted that these equations 
are valid for any steady plane-stress elastodynamic field. 

Generally, for plane-stress crack propagation in a body which is 
symmetric about the crack plane, the deformation fields are a com­
bination of two modes. The tensile mode, or Mode I, exhibits reflective 
symmetry with respect to the crack plane, while the shearing mode, 

or Mode II, is antisymmetric with respect to the crack plane. For these 
cases 

F(zi) = ±Fjz7), G(zs) = ± G f e ) (7) 

where the upper signs apply for Mode I and the lower signs for Mode 
II. The bar denotes complex conjugate. 

Consider now a plate which has uniform thickness d in the unde-
formed state. If the plate is subjected to edge loading which results 
in a nonuniform state of plane stress, then the thickness of the de­
formed plate is also nonuniform. In terms of the in-plane stress 
components the lateral contraction is 

f(xi, x2 ) = -u3{xi, x2) = vd(an + o22)l2E (8) 

Clearly, the function / here is identified with the function / describing 
the reflecting surface in Section 2. It represents the shape of the 
originally plane surface which is the reflecting surface. 

In terms of the stress distribution, the equations of the mapping 
(1) based on geometrical optics become 

Xi =xi- Cd( (7n + (T22)/dXi (9) 

where C = zovd/E. Thus determination of the first invariant of stress 
establishes the mapping, even for dynamic problems. 

In terms of the displacement potential 0, the first stress invariant 
is 

<Tii + ff22 = - : V 2 0 (10) 
( 1 - W 

For a steady-state deformation field translating in the xi-direction 
with speed v, (5) may be employed to reduce (10) to 

<ru + a22 = (1 + v)pv2d24>/dx\ (11) 

or, in terms of the analytic function F appearing in the general solution 
(6), 

a n + a22 = (1 + v)pv2 Re [F»(zi)} (12) 

If the differentiation indicated in (9) is performed and the result is 
expressed in terms of the complex variables Z = X\ + iX2, z = x\ + 
ix2 then the mapping is 

Z = 2 - K |Re [F'"(z,)] - ia, Im [F'"(zi)]} (13) 

where K = (1 + v) pv2C. 
As noted in the preceding section, the condition for the existence 

of a caustic curve on the screen at X3 = —z$ is the vanishing of the 
Jacobian of the transformation (13). With reference to (2), the con­
dition 3(x\, x2) = 0 specifies the initial curve on the plane of the 
specimen, and the corresponding caustic curve on the screen is the 
map of the initial curve according to (13) onto the place of the screen. 
The condition that the determinant of the Jacobian matrix must 
vanish is 

J = 1 + K(1 - a?) Re [F*(zi)] - aU2\FHzt)\
2 = 0 (14) 

where F4 is the fourth derivative of F with respect to its argument. 
The equations (13) and (14) together describe the caustic curves 

formed by reflection of parallel light from the surface of any planar 
elastic solid in which the elastodynamic stress distribution is steady. 
For any particular case, the analytic function F which appears in these 
equations must be determined from the geometrical configuration 
of the body and the boundary conditions. 

In the case of elastic crack propagation, the stress field has universal 
spatial dependence in the vicinity of the crack tip. The only quantity 
which varies from one specific case to another is a scalar amplitude, 
the so-called elastic stress-intensity factor, which is often the pa­
rameter of fundamental interest in laboratory testing. In the context 
of equations (13) and (14), the function F will be known up to a scalar 
multiplier, the stress-intensity factor. If the crack speed, geometrical 
parameters, and bulk material parameters are known, the equations 
(13) and (14) then provide a relationship between a characteristic 
dimension of the caustic curve and the corresponding value of the 
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stress-intensity factor. Experimental measurement of this charac­
teristic dimension provides the instantaneous value of the stress-
intensity factor. The tremendous appeal of the method is due to the 
fact that it povides a direct measure of the stress-intensity factor in 
nominally elastic fracture. No measurement of boundary conditions 
or field quantities is required. The optical singularity on the screen 
provides the information necessary to determine the strength of the 
mechanical singularity in the specimen (under the assumption that 
the theory of plane stress provides an accurate picture of the three-
dimensional deformation field). 

4 Caust ic C u r v e s for the L ine P l a s t i c Zone Mode l 
Analytical crack-tip models of a one-dimensional zone of nonlinear 

material response extending ahead of the tip have been proposed for 
plane-stress fracture of ductile sheets by Dugdale [13] and for the case 
of pure cleavage tensile fracture by Barenblatt, et al. [14]. The 
Dugdale-Barenblatt model is analyzed as an elastic crack problem 
in which the crack is made effectively longer by an amount R, the 
plastic zone size, with cohesive forces in the plastic zone acting on the 
prospective crack surfaces so as to restrain the opening. If small scale 
yielding conditions prevail then the applied loading is completely 
specified by an equivalent elastic stress-intensity factor, which is 
denoted by K\ for the plane tensile fracture model. 

The analysis of the strip yield model is outlined in [15]. The (x\, x%) 
coordinate system is fixed at the tip which is moving with constant 
speed v in the x\-direction. The plastic zone extends over the interval 
0 < x i < R. The derivation of the analytic function F, which is re­
quired to determine the caustic curves, follows closely the work of 
Willis [16] and employs the asymptotic result of Freund and Clifton 
[17]. For the case of small scale yielding and ideal plasticity, in which 
the cohesive tractions which resist crack opening in the plastic zone 
have the constant magnitude do, the analytic function F is given 
by 

F"(z) 
2<r0(l + a2) 

liirQ 
• tan" 

R 1/2 

where 

•KK\ 

* 8<rl' 
Q = Aaias - (1 + a2,)2 

(15) 

(16) 

The quantity <TO is identified as the uniaxial tensile flow stress of the 
material. The branch of (z - R)1/2 which is positive as z ->- <= along 
the positive real axis of the z-plane is assumed. Note that the rela­
tionship (16) between the plastic zone size and the remote stress-
intensity factor is identical to the corresponding result for quasi-static 
deformations [18]. However, the function F is different from the 
corresponding quasi-static result. 

Suppose now that a tensile crack is propagating in a polished plate 
specimen, and that the specimen is illuminated by a beam of parallel 
light as indicated in Fig. 1. The light will be reflected from the speci­
men surface and, under suitable conditions, will form a caustic curve 
on a screen placed at a distance zo from the midsurface of the speci­
men. The size and shape of the caustic curve will be related to the 
functional form of F in (15), and will depend on the parameters v, (To, 
and K\. In what follows, the nature of the caustic curves corresponding 
to dynamic crack growth accompanied by a strip yield plastic zone 
under small scale yielding conditions is investigated. The investigation 
is based on the analytic function F given in (15) and (16), on the 
equation of the initial curve (14), and on the equation of the optical 
mapping (13). 

Next, all lengths are normalized with respect to the plastic zone size 
R, and a superposed caret is used to denote normalized values of the 
length parameters, e.g., z; = zi/R = n exp (idi). If F is differentiated 
and is substituted into the equation for the initial curve (14), then the 
result in nondimensional form is 

J (n , 6i) = 1 - A(l - «f) Re [Gizd] - a2, A2 | [G(z,) |2 = 0 (17) 

where J is now viewed as a function of the distorted polar coordinates. 
In (17) 

Fig. 3 Initial curves at the tips of steadily propagating cracks for five values 
of r/R 

G(Z)-
(3z /2- l ) 

' Z 2 ( Z - 1)3/2 
A _ (* + " W U + °%) COZCd , l g . 

TTQ ER2 

The mapping, which defines the caustic curves corresponding to the 
solution of (17), is 

.&1 = fi cos 8i + 

cti%2 = ti sin 8i + 

ri(f2-2ficosd,+ l)Ui 

X cos 

a2 A 

0, + ltan-if ' ' 8 i n 9 ' ) 
2 \fi cos 6t - l/. 

Mr? ~ 2 n cos 8i + l)i/* 

X sin r\ sin ( ! + - tan i , 
2 Vl cos Oi - 1J 

(19a) 

(19b) 

The limiting behavior of the foregoing equations as R —>- 0 and 
v -* 0 may be checked against the previously derived results for 
R = 0 and v = 0. It is easily shown that if R —>• 0 then (19) reduce to 
the equations (2.9) of [10] which represent the caustic envelope for 
a dynamic Mode I crack propagating in a linear elastic solid. For 
R —- 0 and u —• 0, (19) reduce to the equation of a generalized epicy­
cloid as predicted by the analysis of a stationary crack in a linear 
elastic material [2]. 

5 R e s u l t s and D i s c u s s i o n 
Two parameters which seem to have fundamental significance in 

analyzing the initial curves (17) and caustic curves (19) are the ratio 
of crack-tip speed to characteristic speed of the material and the ratio 
of initial curve "size" to plastic zone size. The former parameter 
represents a measure of the inertial effects, while the latter parameter 
represents a measure of the influence of the crack-tip plastic zone. 
Furthermore, the two parameters are independent of each other, in 
the sense that either may be varied without influencing the other. 
Specifically, the inertial parameter is u/ci and the plasticity pa­
rameter is r/R, which is understood to be the solution of (17) for 8i 
= 0. Thus r/R is the quotient of the distance from the crack tip to the 
extremity of the initial curve directly ahead of the crack tip and the 
length of the plastic zone R. 

The equation of the initial curve (17) was solved numerically by 
means of the Newton-Raphson procedure. First, the value of 8i was 
fixed, and then all values of fi satisfying the resulting equation were 
determined by Newton-Raphson iteration. This was done for a 
number of values of 8i sufficient to generate the initial curves. 

The computed initial curves for the case of u/cj =0.2 are shown in 
Fig. 3 for a range of values of r/R. The geometrical features of the 
initial curves are strikingly different from the features of an initial 
curve for an elastic crack. For values of r/R near to unity (e.g., r/R = 
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Fig. 4 Caustic curves formed by reflection from the near tip region of steadily 
propagating cracks corresponding to the initial curves of Fig. 3 

1.2), the individual singularities in the deformation field at the crack 
tip and the plastic zone tip dominate. The initial curve consists of two 
disjoint lobes, each roughly circular and centered at these two 
singularities. As r/R becomes larger, the shape of two lobes is distorted 
and they tend to approach each other. As seen in Fig. 3, the two lobes 
are almost in contact for r/R = 1.32. When r/R has increased to about 
1.34, the two lobes have two common points. As r/R increases beyond 
this critical value (e.g., to r/R = 1.35), the initial curve again splits into 
two lobes. However, whereas the lobes are disjoint for r/R < 1.34, they 
are nested for r/R > 1.34. This nested structure is maintained as r/R 
is increased. For values of r/R large compared to one, the shape of the 
outer lobe is essentially the correct shape for a dynamic elastic crack. 
The inner lobe becomes very small compared to R as r/R becomes 
large, and is finally reduced to a point as r/R —•- °°. 

It is a simple matter to prove that the initial curve (17) intersects 
the plastic zone at two points for any value of r/R in the range 1 < r/R 
< •». On Im (it) = 0 and 0 < Re Hi) < 1, it is clear from (18) that 
Re (G) = 0, and (17) takes on the simple form 

(OLlAY \G(zt)\ (20) 

The left side of (20) is, in general, a bounded positive real number. 
From (18), it can be seen that the right side of (20) equals zero if 
Re (z() = | . Furthermore, the right side of (20) increases monotonically 
from zero to arbitrarily large values either as Re (z;) increases from 
f to 1 or as Re (zj) decreases from | to 0. Thus (20) always has one, and 
only one, root in the range 0 < Re (ii) < §, and one, and only one, root 
in the range | < Re (z;) < 1. As r/R -* «>, these two roots coalesce at 
ii = | The coalescence of the two roots as r/R -> °° corresponds to the 
reduction of the inner loop of the initial curve to a single point as the 
effects of plasticity disappear. 

The caustic curves corresponding to the initial curves in Fig. 3 are 
shown in Fig. 4. If the initial curve consists of disjoint lobes, then the 
resulting caustic consists of open curves (e.g., r/R = 1.2 in Fig. 4). As 
r/R approaches the transition value of 1.34, cusps are formed near the 
ends of the open curves. When r/R reaches the critical value of 1.34, 
the gap between the open curves which form the caustic closes, and 
as r/R increases beyond the critical value (e.g., for r/R = 1.35), the 
cusped portion of the curve splits off from the main caustic curve. A 
detailed view of these cusps for r/R = 1.35 is shown in Fig. 5, where 
the corresponding angle on the initial curve is identified for several 
points on the caustic. Note that the ends of the caustic seem to cor­
respond to the points where the initial curve intersects the plastic 

Fig. 5 A detailed view of the cusped portion of the caustic curve for r/R •• 
1.35, v = 0.20 c(, shown in Fig. 4 

K i 
l^oi cr„(z0l'd) 

Fig. 6 Variation of the dimensionless maximum transverse diameter of the 
caustic curve, versus the normalized remote elastic stress-intensity factor, 
presented for a range of crack velocities 

zone. For r/R > 1.34, the cusped segment of the caustic arises from 
the small inner loop of the initial curve, and the larger smooth portion 
of the caustic arises from the outer loop of the initial curve. As r/R 
increases, the small cusped segment of the caustic curve becomes 
smaller and separates further from the main part of the caustic 
curve. 

6 I n t e r p r e t a t i o n of E x p e r i m e n t s 
The following discussion is based on the assumption that, in the 

interpretation of experimental data, the size of the caustic curve is 
determined by the distance between the two points on the curve which 
are furthest from the Xi-axis on the screen. This distance will be 
denoted by D. For a purely elastic Mode I crack under quasi-static 
conditions, the relationship 

( — I 1 
D •• 2 . 5 9 2 8 

E y/iKi 
\oQVZ<jd} (To 

2/5 
(21) 

between D and the Mode I stress-intensity factor K\ is well known. 
Although the plastic flow stress <JQ appears in (21), it does so only 
through a factor common to both sides of the equation. The form of 
(21) was chosen because the results with plasticity effects included 
could be expressed best in terms of the dimensionless quantities in 
square brackets in (21). 

For a given crack-tip speed u/cj, both of the dimensionless quan­
tities D(E/a0v zdd)1/2 and (Ki/oa)(E/oo vz0d)w can be determined 
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Fig. 7 Error Introduced In the inferred value of K through neglect of both
material Inertia and plastlcily effects in Ihe analysis of experimental data Fig. 8 Caustic formed In reflection at the tip of a propagating crack In a

metallic specimen using single phase, monochromatic light

Fig. 9 Caustic lormed In reflection at the lip 01 a prop~gatlng crack In a
metallic specimen using while light

ro'

Fig. 10 Causllc at a stationary crack tip In the form of an eplcyclold as
predicted by elastic static analysis

be for an elastic crack as in Fig. 10. The long tail behind the main
caustic curves is apparently due to the permanently deformed wake
left behind as the active plastic zone passes by a material point. The
Dugdale-Barenblatt crack-tip plastic zone model does not include a
plastic wake effect, and no quantitative estimate of the relative size
of the caustic associated with the wake region is yet available. The
fringes in the optical pattern of Figs. 8 and 10 seem to be due to phase

in terms of the parameter r IR, which is thus a parametric represen­
tation of the D versus Kr relationship. If the parameter rlR is elimi­
nated (a process which can only be done numerically), then the rela­
tionship shown in Fig. 6 for four crack speeds is established. It is im­
portant to note that rlR varies alone each curve in Fig. 6, in general
decreasing from left to right. The dashed curve in Fig. 6 is simply a
graph of (21) which is valid for vlcl = 0 and rlR ---+ "'. As can be seen,
it fits very well with the computed result for viC/ = O. It should perhaps
be restated here that D is assumed to be the observed caustic size, Kr
is the remote elastic stress-intensity factor within small scale yielding
theory, and the relationship shown in Fig. 6 is that predicted on the
basis of plane-stress theory, small scale yielding, and the Dugdale­
Barenblatt one-dimensional plastic zone model. It would appear from
Fig. 6 that if experimental observations are confined to cases for which
(Kr/uo)(Eluo v Zo d)l/4 is less than about 1.0, then plasticity effects
need not be taken into account in the interpretation of the observa­
tions. The possibility of adjusting the value of this nondimensional
parameter simply by changing Zo is only apparent because the value
of this distance is not completely arbitrary. In any experimental setup
for measuring stress-intensity factors by the method of caustics, the
distance Zo must be chosen so that the initial curve lies in a region of
the specimen near the crack tip where the K-dominated small scale
yielding solution accurately represents the stress field. It is also ob­
served that the influence of inertia on the D versus Kr relationship
is not large if vlcl is less than about 0.2.

Suppose now that an observed caustic of size D is interpreted in two
ways. First, it is interpreted on the basis of an elastic crack model and
quasi-static conditions, and the inferred value of Mode I stress-in­
tensity factor is K e • Alternatively, the caustic is interpreted on the
basis of a dynamic line plastic zone model, and the inferred value of
the Mode I stress-intensity factor in this case is simply K. The ratio
KIKe as a function of rlR is shown in Fig. 7. This result suggests that,
as long as the extent of the initial curve ahead of the crack tip is at least
about twice the plastic zone size, the error introduced through neglect
of plasticity effects in the analysis of the data will be small. Again, this
observation is based on the condition that the initial curve lies in a
region of the specimen in which the K-dominated small scale yielding
solution accurately represents the stress field. A qualitative discussion
of this oint is included in [19]. For any extent of the plastic zone, in­
ertial effects seem to be important only for crack speeds in excess of
0.2 C/.

Finally, two photographs of caustic curves obtained in reflection
for running fractures in steel specimens are shown in Figs. 8 and 9.
These are preliminary photographs taken in the process of developing
an experimental apparatus, and a full quantitative interpretation is
not yet available. However, it does seem that the caustics are elongated
in the direction of crack growth, rather than circular as they would
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interference. The light source used to produce the photographs shown 
in Figs. 8 and 10 was a laser which emits monochromatic, single phase 
light. The illumination outside the caustic curve results from a double 
reflection or mapping. That is, light waves reflected from both inside 
and outside the initial curve on the specimen strike the screen outside 
the caustic. Because of the deformation of the specimen surface, 
however, the light rays reflected from inside the initial curve travel 
a distance different from that traveled by the rays reflected from 
outside the initial curve. This difference in path length leads to a 
difference in phase at the screen which results in the observed phase 
interference pattern. Unlike Figs. 8 and 10, no fringes appear in the 
photograph in Fig. 9 because the incident light in this case was not 
single phase and no regular phase interference pattern could be 
formed. 

7 S u m m a r y of C o n c l u s i o n s 
For the line plastic zone model, the geometrical features of the 

initial and caustic curves are found to be strikingly different from the 
curves corresponding to an elastic crack. In terms of the fundamental 
parameters r/R and v/c, which were defined at the beginning of Sec­
tion 5, the following observations are made: 

1 With reference to the initial curve for v/c = 0.2, 
(i) For r/R near unit, two disjoint lobes centered at X\ = 0 and 

*i = R are found. 
(ii) As r/R increases from 1 to 1.34, the two lobes distort and 

approach each other. 
(Hi) The two lobes make contact when r/R = 1.34 and as r/R 

increases beyond 1.34, the initial curve takes the form of two nested 
closed curves. 

(iv) As r/R ->• °°, the outer branch of the initial curve ap­
proaches the shape appropriate for a dynamic elastic crack and the 
inner branch shrinks to a single point on the line plastic zone. 

2 With reference to the caustic curve for u/c; = 0.2, 
(i) For 1 < r/R < 1.34, the caustic consists of two open 

curves. 
(ii) As r/R increases toward 1.34, cusps are formed at the ends 

of the open curves and the separation distance between the two open 
curves decreases. The separation distance vanishes when r/R = 
1.34. 

(Hi) For r/R > 1.34, the main part of the caustic is an oval curve 
with its longer axis in the direction of crack growth. A small secondary 
caustic, arising from the inner loop of the nested initial curve, splits 
off from the main caustic. 

(iv) As r/R -* °°, the main part of the caustic approaches the 
shape appropriate for a dynamic elastic crack and the secondary 
caustic vanishes. 

3 On the basis of the line plastic zone model, plasticity effects need 
not be taken into account in analyzing experimental data for which 
(E/o-ovzod)1'* (Ki/o-0) is less than about 1.0. 

4 The error introduced through the neglect of plasticity effects 
in the analysis of data will be small as long as the extent of the initial 
curve ahead of the crack tip is more than twice the plastic zone 
size. 

5 Inertial effects appear to be significant for crack speeds ex­
ceeding approximately 0.2 c;. 

A c k n o w l e d g m e n t 
The research support of the Office of Naval Research, Structural 

Mechanics Program, through Grant N00014-78-C-51 to Brown 
University, is gratefully acknowledged. 

R e f e r e n c e s 
1 Manogg, P., "Anwendung der Schattenoptik zur Untersuchung des 

Zerreisvorganges von Platten," Dissertationsschrift an der Universitat Freiburg, 
1964. 

2 Theocaris, P. S., "Local Yielding Around a Crack Tip in Plexiglass," 
ASME JOURNAL OF APPLIED MECHANICS, Vol. 37,1970, pp. 409-415. 

3 Theocaris, P. S., and Gdoutos, E. E., "Verification of the Validity of the 
Dugdale-Barenblatt Model by the Method of Caustics," Engineering Fracture 
Mechanics, Vol. 6,1974, pp. 523-535. 

4 Theocaris, P. S., and Gdoutos, E. E., "The Modified Dugdale-Barenblatt 
Model Adapted to Various Fracture Configurations in Metals," International 
Journal of Fracture, Vol. 10,1974, pp. 549-564. 

5 Kalthoff, J. F., Winkler, S., and Beinert, J., "Dynamics Stress-Intensity 
Factors for Arresting Cracks in DCB specimens," International Journal of 
Fracture, Vol. 12,1976, pp. 317-319. 

6 Theocaris, P. S., "Dynamic Propagation and Arrest Measurements by 
the Method of Caustics on Overlapping Skew-Parallel Cracks," International 
Journal of Solids and Structures, Vol. 14,1978, pp. 639-653. 

7 Katsamanis, F., Raftopoulos, D., and Theocaris, P. S., "Static and Dy­
namic Stress-Intensity Factors by the Method of Transmitted Caustics," ASME 
Journal of Engineering Materials and Technology, Vol. 99, 1977, pp. 105-
109. 

8 Goldsmith, W., and Katsamanis, F., "Fracture of Notched Polymeric 
Beams Due to Central Impact," Experimental Mechanics, 1979, pp. 235-
244. 

9 Kalthoff, J. F., Beinert, J., and Winkler, S., "Influence of Dynamic Ef­
fects on Crack Arrest," EPRI 1022-1, First Semi-Annual Progress Report, 
Report V9/78, Institut fur Festkorpermechanik, Freiburg, Germany, Aug. 
1978. 

10 Rosakis, A. J., "Analysis of the Optical Method of Caustics for Dynamic 
Crack Propagation," Report ONR-79-1 Division of Engineering Brown Uni­
versity, Mar. 1979, Engineering Fracture Mechanics, Vol. 13,1980, pp. 331-
347. 

11 Theocaris, P. S., and Ioakimides, N. I., "The Equations of Caustics for 
Crack and other Dynamic Plane Elasticity Problems," Engineering Fracture 
Mechanics, Vol. 12,1979, pp. 613-615. 

12 Theocaris, P. S., and Gdoutos, E. E., "Surface Topology by Caustics," 
Applied Optics, Vol. 15,1976, pp. 1629-1638. 

13 Dugdale, D. S., "Yielding of Steel Sheets Containing Slits," Journal of 
the Mechanics and Physics of Solids, Vol. 8,1960, p. 100. 

14 Barenblatt, G. F., Salganik, R. I., and Cherepanov, G. P., "On the Non-
steady Motion of Cracks," Journal of Applied Mathematics and Mechanics 
(English translation of PMM), Vol. 26,1962, p. 469. 

15 Rosakis, A. J., and Freund, L. B., "The Effect of Crack-Tip Plasticity 
on the Determination of Dynamic Stress-Intensity Factors by the Optical 
Method of Caustics," Report N00014-78-C-0051/5, Division of Engineering, 
Brown University, Sept. 1980. 

16 Willis, J. R., "A Comparison of the Fracture Criteria of Griffith and 
Barenblatt," Journal of the Mechanics and Physics of Solids, Vol. 15,1967, 
p. 151. 

17 Freund, L. B., and Clifton, R. J., "On the Uniqueness of Plane Elasto-
dynamic Solutions for Running Cracks," Journal of Elasticity, Vol. 41974, pp. 
293-299. 

18 Rice, J. R., "Mathematical Analysis in the Mechanics of Fracture," 
Fracture, Vol. II, ed., Liebowitz, H., Academic Press, New York, 1968, p. 
191. 

19 Beinert, J., and Kalthoff, J. F., "Experimental Determination of Dy­
namic Stress-Intensity Factors by the Methods of Shadow Patterns," for 
publication in Mechanics of Fracture, Vol. VII, ed., Sih, G. C, Noordhoff In­
ternational Publishing, Leyden, The Netherlands. 

308 / VOL 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



M. K. Kassir 

Professor, 
Department of Civil Engineering, 

City College of City University 
of New York, 

New York, N. Y. 10031 
Mem. ASME 

Stress-Intensity Factor for a Three-
Dimensional Rectangular Crack 
An integral transform solution is developed to reduce the problem of determining the 
stress-intensity factor of a narrow three-dimensional rectangular crack to the solution 
of a Fredholm integral equation of the second kind. The crack is assumed to be embedded 
in an infinite elastic solid subjected to normal loading. Numerical results are presented 
to indicate a reduction in the value of the stress-intensity factor from the plane strain 
case. For an elongated rectangular crack the plane-strain stress-intensity factor is recov­
ered. 

Introduction 
A problem of current interest in Fracture Mechanics is the deter­

mination of the stress-intensity factors of cracked structural com­
ponents. Confining attention to embedded cracks in three-dimen­
sional solids, analytical solutions are available to treat basic geome­
tries like the circular, elliptical, and half-plane cracks. They involve 
solutions to certain half-space problems in the theory of elasticity with 
emphasis placed on the state of stress near the crack border. An out­
line of these solutions and expressions of the corresponding stress-
intensity factors induced by various loading conditions are given in 
[1]. For flat cracks occupying other regions analytical solutions are 
not available and several attempts have been made to formulate the 
problem in term of integral equations amenable to numerical treat­
ment (see, for example, [2-5]). Also, the nature of the singularity at 
the corner of a wedge-shaped crack (or punch) has been investigated 
in [6-8]. However, there seems to be a conspicuous lack of information 
in the literature concerning analytical formulation to determine the 
stress-intensity factor along the sides of flat rectangular crack em­
bedded in infinitely extended solid. 

It is the aim of this paper to develop an integral transform formu­
lation to reduce the problem of determining the stress-intensity factor 
of a narrow rectangular crack subjected to normal loading to the so­
lution of a standard integral equation of Fredholm type. The formu­
lation consists of representing the components of stress and dis­
placement in the solid in terms of double integrals containing one 
unknown function. By introducing the plane strain solution of a 
Griffith crack [9], the unknown function is shown to be governed by 
a Fredholm integral equation of the second kind. The example of a 
crack opened out by constant stress is considered in some detail. 
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Numerical results are obtained to indicate a reduction in the value 
of the stress-intensity factor from the corresponding two-dimensional 
case. This is in agreement with the results obtained in [4, 5]. For a 
narrow rectangular crack the plane-strain stress-intensity factor is 
reached asymptotically. 

Basic Equations 
Consider a flat rectangular crack of sides (2a) by (26) embedded 

in the midplane of a three-dimensional elastic solid. In terms of 
Cartesian coordinates (x, y, z) centered at the midpoint, the crack 
occupies the region | x | < a, |y | ^ 6 of the z = 0 plane. Let the crack 
be opened out by the application of identical stresses to its surfaces. 
Because of symmetry, it suffices to consider the half space z ~2- 0 with 
the following boundary conditions on z = 0: 

Tzx = TZy = 0, all x and y, 

Oz = - <*o(x,y), \x\ « a, |y | « 6, 

u. 
: 0 , |* | > a, \y\>b, 

(1) 

(2a) 

(2b) 

where (ux, uy, uz) designate the components of the displacement 
vector, TZX, Tzy, and az denote the stresses associated with the z-plane 
and ao(x,y) stands for the prescribed stress inside the crack surface. 
In addition to conditions (1) and (2), all components of displacement 
and stress must vanish at the remote distances. 

The complete solution of this class of problems can be represented 
by utilizing Boussinesq's potential formulation 

d2 / 
•2o) — + z-

dx dx dz 

2v) — + z '-> 
dy dydz 

2ixuz = -2(l~v)^ + z ^ l , 
dz dz2 

2 ixux = (1 

IfiMy = (1 

(3a) 

(3b) 

(3c) 

in which fi and v denote the shearing modulus and Poisson's ratio of 
the material, respectively, and f(x,y, z) is a harmonic function sat­
isfying Laplace's equation in three dimensions 
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V2/ = 0, 

Some of the relevant stress components are 

d3/ 
Tzx = 2 , 

i>x2i)z 

d3/ 

dy2dz 

d2/ d3/ 
<x, = + z dz2 dz 3 ' 

(4) 

(5a) 

(5b) 

(5c) 

which automatically clears the z = 0 surface from shearing 
stresses. 

By the usual method of separation of the variables, a sufficiently 
general solution of equation (4) which is symmetric in x and y can be 
taken as 

f- Jo Jo 
A({,u) 

cos (*£) cos (yij) e-<f2+»2>1/2* dfcfy, (6) 

in which A(£,»/) is an unknown function and the factor l/(£2 + ?j2) has 
been introduced for convenience. For problems possessing skew-
symmetry in x and y, the cosine terms in equation (6) may be replaced 
by sine terms. Across the plane z = 0, the normal displacement and 
stress are 

1 - v 
Uz 

ix Jo Jo 
Ait V) 

cos (x £) cos (yt)) df drj, (la) 

Uz = - I j A(£,v) cos (*£) cos (yrt) d£ drj, 
Jo Jo 

(76) 

Consequently, conditions (2) give rise to the dual integral equa­
tions 

Jo Jo 
A(k,v) ; cos (x£) cos (y?j) d£ drj =0, 

(£2 + i?2)1'2 

x > a, y > b, (8a) 

J j A(£, i)) cos (x%) cos (yri) d£ dr) = a0(x, y), 
o Jo 

x^a, y « 6 , (86) 
for the determination of A(£, rj). 

R e d u c t i o n to a n I n t e g r a l E q u a t i o n 
With a view toward establishing the integral equation governing 

the unknown function, A(£, rj), it is convenient to express the normal 
stress across the crack plane in the form 

<Tz(x,y,0) = p(x)q(y), \x\ < < M<- (9) 

where p(x) and q(y) are arbitrary functions. Inside the crack region 
these functions are specified (see equations (13)) while in the outside 
region they control the stress-intensity factor. Making use of equations 
(76) and (9) and assuming the inversion of the double Fourier cosine 
transform, the following result is obtained: 

4 /»™ f° 
A(£,TJ) = I I p(x) q(y) cos (*£) cos (yr))dxdy, (10) 

-Ki Jo JO 
which may be abbreviated to 

A(iv) PA&QAV) (ID 

In equation (11), pc(^) and qc(v) designate the one-dimensional 
Fourier cosine transforms of the functions p(x) and q(y), respec­
tively, 

Pc(£) = j p(x)cos(x£;)dx, 
Jo 

Qc(v)= j q(y) cos (yr))dy, 
Jo 

(12a) 

(126) 

By virtue of the fact that inside the crack region, the functions p(x) 
and q(y) are specified 

p(x) = p0(x), 0 « * « a , 

g(y) = Qo(y), o^y^b, 

it immediately follows that 

(13a) 

(136) 

p c (£)cos(*£)d£ = -p0(x), O^x^a, (14a) 
o 2 

X" qc(rj) cos (yrj) drj = - a 0 ( y ) , 0 * S y « 6 , (146) 

The next step in the analysis is to determine the corresponding rela­
tions satisfied by pc(£) and qc(rj) outside the crack region. Toward 
this end, the relation (11) is inserted into equation (7a), and upon 
setting1 y = 0 (in order to compute the value of the maximum 
stress-intensity factor), the normal displacement assumes the form 

4(1 - v) 

TT2fl 
C"pA& COS (x&dH C" 

Jo Jo 

qM)dr) 
(£2+ ,,2)1/2" (15> 

Applying relation (126) to equation (15), interchanging the order of 
integration and utilizing the result [10] 

' cos (si)) dr) 

X' (£2 + JJ2)!/2 
•K0(sZ), £ > 0 , 

it is found that 

2(1 - v) 

Jo 
Pc(Oqk(£)cos(x£)d£, 

where q* (£) denotes the relation 

2 2 I" 

<?*(£) = - J 
TT JO 

q(s)K0(s£)ds, 

(16) 

(17) 

(18) 

In equations (16) and (18), K0 is the modified Bessel function of the 
second kind of order zero. Condition (26) when applied to the ex­
pression in equation (17) yields 

f"pc(£)<7*($)cos(x$)d$ = 0, x>a, (19a) 
Jo 

which is the required relation outside the crack region. In exactly 
similar manner, the corresponding relation for qc(r)) along the y-axis 
is 

X' <?c (v)Pk (l) cos (yt}) dr) = 0, y > b, (196) 

where Pkiy) satisfies a relation identical to that expressed in equation 
(18) except that q(s) in equation(18) should be replaced by p(s). 

Equations (14a) and (19a) constitute a set of standard dual integral 
equations with arbitrary weight function. They have the solution 

pAt)<lk(8= f"' <t>(t)Jo(£t)dt, 
Jo 

(20) 

where the auxiliary function, <j>(t), is governed by the Fredholm 
equation 

* > + J > ™ ' > * - J ; ' ( £ ^ 
whose kernel is given by 

K(d,t) = t J*" - 1 Jo(st) JQ(S6) ds, 

(21) 

(22) 
s qk (s) 

and Jo denotes the usual Bessel function of the first kind of order 
zero. 

It is convenient to nondimensionalize equation (21) by substi­
tuting 

t = ar, 6 = ap, X = as 

Moreover, suppose that the crack is opened out by a constant stress, 

1 By writing y = 0b, 0 < 0 < 1, other values of the stress-intensity factor along 
the side of the crack can be obtained. 
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p0(x) = Po (constant), then, upon introducing a new function, <t>, de­
fined by 

0(t) = <t>(ar) = --p0a~Jr<k(r), 

the integral equation (21) assumes the standard form 

<t>(r) + ( <t>(p) L(ar,ap)dp = Vr , 

in which the symmetric kernel is 

L(ar,ap) = (rpY'2 P " X 

(23) 

(24) 

f 0.8 

1 
(A (A 
111*11 

Fig. 1 Variation of /f, * with ft/a 

<7o(y) d.y 

J0(\p) Jo(\r) d\, (25) 

The next step in the analysis is to determine the function qk(X/a). 
This will be done in the next section by assuming the plane-strain 
solution of a Griffith crack of length 26 [9]. 

P l a n e S t r a i n S o l u t i o n 
A basic characteristic of any three-dimensional crack problem is 

the fact that the state of stress in a normal plane near a smooth crack 
front is essentially a plane-strain one [11]. Aside from the stress-in­
tensity factors hi, ki, ks, it can be expressed in a form independent 
of the applied loading and shape of the solid. Thus, for rectangular 
cracks with large aspect ratios, the function q(y) can be considered 
as the normal stress, <st (y, z) evaluated at z = 0. In the yz-plane, the 
appropriate crack conditions are 

TyZ (y, 0) = 0, all values of y, (26a) 

«z(y,0) = qo(y), 0 < | y | < 6 , (266) 

" z (y ,0 ) = 0, M > 6 , (26c) 

It is well known that the solution of this problem can be represented 
by 

•K Jo Jo (t2-
(33) 

( f 2 _ y 2 ) l / 2 

The relation (33) determines the transform function qk in terms of 
the specified stress and enables the integral equation to be solved. For 
the example considered earlier, qo(y) = 1, and equation (33) yields 

?*t t ) - - [ l -e-«] , (34) 

The integral (25) now takes the form 

L(ar,ap) = (r, p)1/2 C 
Jo e(bla)\ _ l 

Jo(\r)J0(\p) dX, (35) 

which is convergent throughout its range and can be evaluated nu­
merically. 

S t r e s s - I n t e n s i t y F a c t o r 
In order to compute the stress-intensity factor, the relation (23) 

is inserted into equation (20) and after performing an integration by 
parts it is found that 

Pc(& = ' *(l)«/i(a£) 

+ f 1 s J i ^ ) — [ s - 1 / 2 * ( s ) ] d s 
Jo ds 

2p.uz(y,z) = j [2(1-v) + sz]B(s) cos (sy)e-"zds, 
Jo 

az(y,z) = - j s ( l + sz)B(s) cos (sy) e~sz ds, 

Tyz(y,z) = -z J s2B(s) sin (sy) e~"2 ds, 
Jo 

where the unknown function, B(s), is found from the relation 

2 Pb . . . . ft q0(y)dy 
S(S) = - - CtJo(st)dt f - ^ 

•w Jo Jo (t2- 2-11/2 ' (t2-y2) 

It follows from equation (276) that 

q(y) = - j sB(s) cos (sy) ds, 
Jo 

Inserting equation (29) into equation (18), making use of the result 
[10] 

(27a) 

(276) 

(27c) 

(28) 

(29) 

and since 

2 r-
p(x) = - | pc(B cos (*£) df, 

ir Jo 

Ji(at;) cos (x£) 

(36) 

(37) 

d£ + . (38) 

it follows that 

p(x) = -po<J*( l ) f ,. / M 
J° £<?*(£) 

where terms which are finite as x —• a have been neglected. Since the 
singularities of the integral in equation (38) occurs at the upper limit, 
and as evident from equation (34) that £ qk (£) -* 1 as £ -* <=, it follows 
that the integral in equation (38) yields: 

p(x) = - p 0 * ( l ) + . (39) 

f"ffo«y) 

(x2-a2)1/2. 

The normal stress outside the crack can be obtained from equations 
(9), (28), (29), and (39). Near the crack edge it can be expressed in the 
standard form 

cos (sy) dy = 
2(£2 + s2)l/2 ' 

it is found that 

™ sB(s) ds 

Jo (s2 + 12)1/2' 

(30) 

(31) 

<Tz(x,y,0)> 
ki 

(40) 
(2-KrY'2 

where r is a small distance measured from any point on the side * = 
a of the rectangle (except the corner point) and the stress-intensity 
factor, ki, is given by 

Applying the relation (28) to equation (31), making a permissible 
change in the order of integration arid noting the result 

s Jp(.st) ds e~(* 
(s2 + £2)1/2 ~ ~ 7 ~ ' 

it is found that 

ki = $(l) poVra , (41) 

X' (32) 

The factor kr is nondimensionalized with reference to the plane-strain 
factor and the variation of the factor 

v = 
kl 

Podra)1 (42) 
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with different aspect ratios of the crack sides is shown in Fig. 1. It is 
evident that there is a reduction in the stress-intensity factor for the 
rectangular crack. For an infinite strip crack (6 -> <=), the integral (35) 
vanishes, $(1) = 1, and the plane strain factor is reached. It should 
also be mentioned that the results shown in Fig. 1 agree with those 
obtained in [4, 5] by other methods. 

Conclusion 
An integral transform technique is presented to treat the problem 

of determining the stress-intensity factor of a three-dimensional 
rectangular crack embedded in an infinite elastic solid. The crack is 
assumed to be subjected to normal loadings. By introducing the plane 
strain solution across the width of the crack the stress-intensity factor 
along the crack length is shown to be governed by a standard Fred-
holm integral equation. For the particular case of constant loading, 
the integral equation governing the maximum value of the stress-
intensity factor is solved numerically and the result indicates a re­
duction in the three-dimensional stress-intensity factor from the plane 
strain solution. As expected, for a rectangular crack with large aspect 
ratio (infinite strip crack), the integral equation degenerates and the 
stress-intensity factor becomes identical to that of the plane-strain 
geometry. The technique employed in this paper may also be adopted 
to the case of shear loading On the crack surface. However, this is left 
for future study. 
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Crack Path Prediction for a Kinked 
Crack in the Neighborhood of a 
Circular Inclusion in an Infinite 
Medium 
In this paper, we study the effects of the elasticity and proximity of a circular inclusion 
upon the fracture angle of a bent crack in the surrounding matrix. The medium is as­
sumed to be in plane strain, and loaded in uniaxial tension by stresses acting perpendicu­
lar to the main branch of the crack. A comparison is made of fracture-angle predictions 
based upon current theories governing the initial fracture angle. 

Introduction 
Problems concerned with the branching and kinking of cracks have 

attracted considerable interest in recent years. Among the early 
publications, a key investigation is Sih's [1] work on the kinked (bent) 
crack in an infinite medium subject to antiplane shear deformation. 
For further discussion of this problem, see references [2-4] and for 
the related plane strain case, which is the context of the present dis­
cussion, see [3,4,5-20]. 

The mathematical techniques applied to these problems can be 
grouped into four categories. The first, and most commonly used is 
the Kolosov-Muskhelishvili potential formulation [5-10], where a 
mapping function derived by Darwin is used to transform the star-
shaped crack geometry on to the unit circle. The solution is then found 
either by solving an integral equation or using series expansions of 
the complex potential functions and the mapping function. 

Bilby, Cardew, and Howard [12] used an approach due to Khrapkov 
[11] to evaluate the stress intensity for kinked and symmetrically 
forked cracks. Their results agree with Chatterjee's work [8], but an 
incorrect comparison made by these authors led them to a 20 percent 
difference between their findings and those of [9]. However, the results 
of the present paper show them ([8, 9]) to be in agreement. 

Theocaris and Ioakimidis used a method proposed by Datsyshin 
and Savruk [13] to solve the problems of the symmetrically branched 
crack [14], asymmetrically branched crack [15], and kinked crack [16]. 
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This approach, which does not make use of conformal mapping, is 
applicable to problems involving essentially arbitrary crack shape. 

Over the past 10 years a fourth method has come into prominence. 
In this approach, a crack is viewed as the locus of a dislocation pileup 
and the problem is reduced to the consideration of singular integral 
equations involving the dislocation density, which are usually solved 
numerically. We were led by the results in [18-20], which deal with 
crack branching, to employ this approach in the present investiga­
tion. 

Another advantage of the method just mentioned is that it lends 
itself to a convenient determination of stress-intensity factors, which 
are needed in connection with certain of the criteria for determining 
fracture angle. We turn now to a discussion of these criteria. 

Criteria for Mixed Mode Fracture 
The current criteria can be summarized as follows: 

1 Maximum normal stress criterion [21], 
2 Maximum normal stress at a critical distance [22], 
3 Minimum strain-energy density [23], 
4 Minimum strain-energy density at a critical distance [24], 

5 Maximum energy-release rate. 

For an inclined straight crack in a homogeneous isotropic solid, we 
can find the fracture angle through 

Ki sin 8 + KTI(3 cos 6 - 1) = 0 (1) 

when Theory 1 is applied [21], whereas the second criterion gives 

— = - - cos - [Ki sin 6 + Kn(3 cos 6 - 1)1 
V2r 0 \ 4/ 2 

+ 2A sin d cos B = 0. (2) 

The stress-intensity factors K\ and K\\ are regarded as known and 
the constant A comes from the second-order term in the Williams 

Journal of Applied Mechanics JUNE 1981, VOL 48 / 313 
Copyright © 1981 by ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



t 1 f * 
Fig. 1 Geometry of the kinked crack in the vicinity of a circular inclusion 

crack-tip stress field. (The first term is of order 0 ( r _ 1 / 2 ) , the second 
term is a function of d, but not r, and the third term of order 0(r1 / 2).) 
Equation (2) is obtained by setting (das/d8)(r0,8) = 0, where as de­
notes the circumferential stress, as calculated in [24]. The critical 
distance ro can be found experimentally and it was suggested by both 
Williams [22] and Sih [29] that r0 = 0.00787 mm for polymethyl­
methacrylate. 

Another controlling factor, the critical energy-release rate Sc , is 
used in Theory 3 [23]. The energy-release rate, S, is a direction-sen­
sitive quantity, and the expression relevant to the present analysis 
is, from [23]. 

S = a n K / 2 + 2ai 2KiK n + a 2 2 K n
2 (3) 

The explicit formulas for aij(i,j = 1,2) are given in [23] and will not 
be reproduced here. The initial fracture angle is found by setting 
dS/dB = 0. The resulting expression is 

Ki2[sin 28-(K- l)sin 8] + 2KiKn[2 cos 28 - (K - 1) cos 8] 

+ K n
2 [ - 3 sin 20 - (1 - K) sin 8} = 0 (4) 

where K is given in terms of Poisson's ratio as K = 3 — Av. 
The strain-energy density function is related to S near the crack 

tip through 

W = (S/r) + CM + 0(r). (5) 

It is clear that sufficiently near the tip, S furnishes the information 
needed to find the direction of minimum W. 

In the criterion which we designate as Theory 4, the effect of Ci(8) 
in (5) comes into play. Rather than attempt to find this term, our 
approach is to resort to the expressions 

W = — \(TXx2 - 2vaxxayy + ayy
2 + 2(1 + v)axy

2] 
2E 

(6) 

Fig. 2 Edge dislocation in the neighborhood of a circular inclusion (from 

W-
l + v 

2E 
[(1 - v)(axx

2 + ayy
2) - 2vaxxayy + 2axy

2} (7) 

for plane strain. We evaluate W(rQ, 8) numerically by carrying out the 
appropriate calculations for axx, ayy, and axy. We then search out the 
value of 8 which minimizes W(ro, 8). 

The final principle is a two-dimensional version of the Griffith-
Irwin "Maximum Energy-Release Criterion." The energy-release rate 
is given by 

G = (1 - »2)(Ki2 + K n
2 ) /E (plane strain) (8) 

where Ki(8) and Ku(8) are stress-intensity factors for the limiting case 
where the length of the propagation branch goes to zero. 

Formulation 
The crack shown in Fig. 1 is situated in an elastic material (the 

"matrix") characterized by the constants (;ti, KI), which is loaded at 
infinity by uniaxial tension perpendicular to the main branch of the 
crack. Near the angled tip is a bonded tubular elastic inclusion, cir­
cular in cross section and of constants (^2, ^2). Here, in and /x2 denote 
the shear moduli, whereas KI = 3 — 4n! and K2 = 3 — 4v2, v\ and v<i being 
Poisson's ratios. 

The problem just stated will, for convenience, be solved by super­
posing the solutions of two problems. The configuration and loading 
for the first problem (Problem I) is as in Fig. 1, but without the 
crack. 

In the second problem (Problem II), the geometry is the same as 
the main problem, but instead of loading at infinity, surface tractions 
are prescribed along the crack surfaces. If we require these surface 
tractions to be equal in magnitude and opposite in sign to the tractions 
obtained in Problem I, then it is clear that the stresses for the main 
problem result from summing those of Problems I and II. Further­
more, Problem II gives the same stress-intensity factors as the main 
problem. 

Consider now another problem, Problem II', having a continuous 
distribution of edge dislocations spread along the crack locus. If the 
dislocations are so distributed that the surface tractions induced along 
these segments are equal to what we specified in Problem II, then 
these two problems have identical solutions. 

As a prerequisite to Problem IF, we consider the stress field pro­
duced by a single dislocation in the presence of a circular inclusion. 
This problem, whose configuration is shown in Fig. 2, was solved in 
[17]. We here cite the solution in the form given by Erdogan and 
Gupta [19]: 

for plane stress, and 

axx = L " I / T ( * I + l)](Hxxibx + Hxx2by). 

ffyy = [ M I M K I + D](Hyyibx + Hyy2by), (9) 
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Fig. 3 Geometry showing the dislocations 6X and b, in x-y coordinate, and 
a curved crack In the vicinity of a circular Inclusion 

Oxy = [MI/""(KI + l)](Hxylbx + Hxy2by). (9) 

(Cont.) 

The quantities Hxxi, HXX2, Hyyi, Hyy2, Hxyi, and Hxy2 are written 
in full in [19], and bx, by denote the components of the Burger 
vector. 

The surface tractions along the crack locus which result from the 
foregoing stress field are 

[TT(KI + l)/ni]Tn
b = Antbt + Anwbw 

[W(KI + l)/m]Tt
b = Attbt + Atabw (10) 

where bt and bw are the components of the Burger vector in the (t, w) 
coordinate system (see Fig. 3). The coefficients Ant, Anw, Att, and Atw 

are given by 

Ant
 = (Hxxi sin a — HXX2 cos a) cos2 a i + (Hyyi sin a 

- Hyy2 cos a) sin2 ax + (Hxyi sin a — Hxy2 cos a) sin 2a\, 

Anw - (Hxxi cos a + HXX2 sin a) cos2 a\ + (Hyyi cos a 

+ Hyy2 sin a) sin2 a\ + (Hxyi cos a + Hxy2 sin a) sin 2a\, 

Att = [ ( f f a i - Hyyi) sin a - (Hxx2 - Hyy2) cos a](sin 2ai/2) 
— (ATiyi sin a — Hxy2 cos a) cos 2oti, 

Atw = [(#*xi - -Hyyi) cos « + (Hxx2 - Hyy2) sin a] (sin 2ai/2) 

- (Hxyi cos a + Hxy2 sin a) cos 2a%. (11) 

The * — y and t — «; coordinates and the geometric meaning of a and 
«i are shown in Fig. 3. 

Using (10) as a Green's function, we obtain four integral equations. 
They relate the surface tractions to the dislocation densities along the 
kinked crack locus. 

Introduce the notation fi(t) = —bt(t),{2(t) = — bw(t) for dislocation 
densities on line OA; f3(t) = —bt(t), f4(t) = — bw(t) for densities on 
line OB; and define 

(12) 

fell ki2.k 13&14 

k2l &22 k23 &24 

k3lk32k33k34 

„fe41 k42 &43 &44 

[-^nilA.A [ - A „ U , ] A , A [—Ant]A,B [—Anw]A,B 

[-AU]A,A [-Atw\A,A [-Att\A,B [-Atw]A,B 

[-AntiB.A [-Anw]B,A [-Ant\B,B [-Anm]B.B 

„[-Att]B,A [-Atw]B,A [-AU]B,B [-Atu,]B,B-. 

where [-Ant]a,a, [-Anw\a,m [-Att]a,a, and [-A to]a,„ (a = A o rS) are 
regular parts of [-Ant]a,a, [-Anw]a,*, [-Att]a,a, and [-Atw]a,a. The 
notation [ ]A,B, for instance, stands for the effect at a point of line 
OA of a continuous distribution of dislocations on line OB. 

The four equations we just mentioned can be written as 

Pi( t) = 2 -J1-dto+ | (kuh + k12f2)dt0 
Jt% to — t *Jti 

(k^h + kufi)—^-
ts cos 7 

7T(Kl + l ) f ^ _ n pti fx 

Ml 

Mi 
-p2(t) = 2 ("1-^—dt0+ CH(k2if1 + k22f2)dt0 

Jti to — t Jti 

J -*t2 
(k23f3 

ts 

+ k2ifi) 
dtp 

cos 7 

TTQCI + 1) 

Ml X t2 

3 

'2 f /sin 7/3 cos 7/4' 
12 1 — ^ + ,Jf\ + k33f3 + k34f4 

to — t to — t 
dt, 

V(KI + 1) 

Ml 
Pi(t) = 

Jt$ 

- + f * (kaifi + k32f2)dt0 
cos 7 Jt2 

cos 7/3 - s i n 7 / ^ ' 
2 I + + £43/3 + kufi 

to ~ t to — t I 

dto r'i 

cos 7 

0 ftl 

— + (k41fi + k42f2)dto (13) 
7 «/t2 

where — pi(t) (i = 1, 2, 3, 4) are surface tractions from the corre­
sponding crack locus of Problem I. 

In order to complete the formulation, we require that fidoi = 0, 
where to denotes the relative displacement across the crack locus [28]. 
This condition, which is a single-valuedness condition, assumes the 
form 

"2/s(£o) ( 

•a cos 7 

C1fi(to)dt0+ f'2 — d t 0 = 0. 
JH JH cos 7 

("1fi(to)dt0+ f'2 — d t 0 = 0, 
JH Jt% cos 7 

• ' 2 / 4 ( t o ) ( 

i 7 

in the present problem. 

(14) 

S t r e s s - I n t e n s i t y F a c t o r s and t h e S t a n d a r d F o r m of a 
S y s t e m of S i n g u l a r I n t e g r a l E q u a t i o n s 

Following the standard procedure for dealing with singular integral 
equations, we first define 

gi(to) = (to ~ t2)Hti - t0)
1/2fi(to) (i = 1, 2) 

gi(to) = (t2 - Unto ~ i3)1/2/;Uo) d = 3, 4) (15) 

so that gi(to) (i = 1, 2, 3, 4) is Holder continuous. The exponent /3 
represents the strength of the corner point singularity [26]. The 
change of variables 

2t0 - (*i + t2) 

in (15) furnishes 

fi(h) 
Kl+ 1 

tl~t2 

'2t0 - (t2 + t3) 

t2-t3 

hi(^) 

2/X! (1 - &)«*(1 + fl> 
(i = 1, 2) 

(16) 

(17). 
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Hh) 
K l + 1 hi(h) 

2/xi (1 - £2)1/2(1 + h)' 
(i = 3, 4) (17) 

(Cont.) 

where hi and gi are related through 

MSi) = , ,„.-,,„_,„ (» = 1.2) 
2/ii 

Kl + 1 
ht(M = 

(d i /2 ) 1 / 2 ^ 

&tto(fc)) 
(» = 3,4) 

2/ii '" '" ' (d2 cos 7/2)!/2+^ 

By a simple manipulation, (12) becomes 

T P i © = f 1 —^= + Xn/ i i + Knh2 + K13h3 + Kuh4 J - i [ £ - £ 

' (1 - f)W(i + {)/> 

XI r L 

— i = + K 2 l / l l + #22/»2 + Kmh3 + #"24/14 
•i U - £ 

' (1 - 0U*(l + {)*• 

/« T 1 f - s in7 / i 3 cos 7/14 
irpa(&) = J ^ — - j - + Kaihi. + K32A2 

(18) 

+ KS3h3 + K34h,4 
dZ 

(1 - 01/2(1 + £)" 

*PS = £ f i\z<^hA + ™iy>n+Kilhi + K42h2 

+ #43^3 + #44^4 
d£ 

^ y 

(1 - 0W»U + {)* 

where 

difen difei2 d2fei3 d2fei4 

dif t2 i d\h22 d2&23 d2k2t 

d i ^ 3 i dife32 d2fe33 d2^34 

_ d i & 4 l d\k±2 d2&43 ^ 2 & 4 4 _ 

With di = (ti - i2), d2 = U2 _ *3)/cos 7. 
Similarly, the single-valuedness condition takes the form 

C [dihi + d2h3] J = 0 
J - l ' (1 - g)l/2(l + ^)" 

J_! (1 - ^ ( l + £)" 

(19) 

(20) 

As for the stress-intensity factors, it follows directly from the for­
mulas for the crack-tip stress field that 

Ki(h)= l i m [ 2 ( i - t i ) ] i / 2 p i ( i ) 
t—ti 

Kn(h)= \im[2(t - tWWt) 
(—ti 

Ki(ta) = lim [2(t3 - t)/cos y]1/2pa(t) 

Knits) = lim[2(t3 - t)/cos y}l/2Pi(t) 

By using the procedure found in [19], we arrive at 

Kl(ti) h2(l) 

fffdi)1'2" 2" ' 

= — (sin 7/1.3(1) + cos 7/14(1)). 

(21) 

<r(d2)i
/2 2" 

Kuih) _ /n(l) 
<r(di)1/2 2" ' 

Kn(t3) 1 , , , , . . , . . . . 
— — — = — (cos 7/13(1) ~ sin 7/14(1))-
<n«2)' 2^ 

(22) 

" " " < K I I ' H 

O hole 

• » 2 / U l - 2 3 , 

Fig. 4 Stress-intensity factors for the kinked crack tip B (7 = —45°, d1 = 
1, d2 = 0.1, ft = 1) 

N u m e r i c a l M e t h o d s and R e s u l t s 
After examining the various numerical methods, we decided on the 

closed-type (Lobatto) quadrature suggested by Ioakimidis and 
Theocaris [27]. This approach avoids extrapolation procedures for 
the estimation of the stress-intensity factors at the crack tips. 

The numerical counterparts of (19) and (20) consist of (in — 2) 
linear equations with 4n unknowns (n is the number of abscissas for 
the integration formula). We thus require two more equations. Our 
scheme is to define a new function /i,(£) through [16] 

M 0 = MS) (1 + W^-P (.,-1,2,3,4) (23) 

and then replace M £ ) / ( l - £)1/2(1 + £)" in (19) and (20) by M £ ) / ( l 
- i,)1/2(1 + £)1/2. This weight function (1 + £)~i /2(l - f )~1/2 leads us 
to use the Lobatto-Chebyshev numerical integration formula of [27] 
to solve the present problem. 

The singularities of the dislocation density functions fi(t) [i = 1, 
2,3,4] are of the order (t - t2)~^, where 0 < /? < \ [26]. Therefore, the 
exponent (! —18) in (23) is always greater than or equal to zero. At the 
corner point where £ = — 1, (23) gives 

/ i i ( -D = 0 (£ = 1,2,3,4). (24) 

The two equations needed to solve the new form of (19) and (20) (/i,(£) 
is the unknown function) may be selected from among (24). Table 1 
illustrates the results for different choices of conditions in (24) in 
solving (19) and (20). Minor differences in stress-intensity factors 
occur in Cases 2 and 5. The results for other cases are indistinguish­
able. 

The reason is simple. By requiring h\(—1) = h3(—1) = 0 (Case 2), 
we lose control over the values of dislocation density functions with 
the burgers vector in the —^-direction. In any of the four other cases, 
say Case 3, since we pin down the exact values of h\(—1) for burgers 
vector in the —t-direction and hi(—1) in the — m-direction, better 
results are anticipated. 

Fig. 4 shows the effect of the proximity of an inclusion on the 
stress-intensity factors of a kinked crack having d\ = 1, d2 = 0.1, 
R = 1, and 7 = -45° . Two different kinds of inclusions are considered, 
the first being a comparatively stiff inclusion, with material constants 
M2/M1 = 23, Ki = 1.6, and K2 = 1.8. The second is the special case when 
the inclusion becomes a hole (/i2 = 0). 

The results for the stress-intensity factors plotted against 7 for 
various inclusions are shown in Fig. 5. The point (t2, c) is chosen close 
enough to the inclusion to sense its influence. 

Table 2 shows the comparison among most of the results for the 
kinked crack problem (without inclusion) available in the literature. 
The present findings agree with the work of Kitagawa [10], Chatterjee 
[8], and Ioakimidis [16] to within 0.05 percent. 

The results for normal stress do and strain-energy density W at a 
critical distance r* = 0.002 from the crack tip are plotted as a function 
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1.6, K- = 1.8 

^ ^60 ^45 ^30 ^ ^ 0 tsL 30 45 60 75" ^ 

Fig. 5 Variation of the stress-intensity factors at the kinked crack tips for 
the angle 7 varying between —75° and 75° (f2 = 0.75, c = 0.80, d2 = 0.001, 
d , = 1, R = 1) 

ohole 

• l i j / l i j - 0 . 2 , 

' , - 1 . 6 , . 2 

• , . 2 / » , - 21 

Fig. 7 Variations of the strain-energy density w at a distance r* from the 
crack tip of a straight crack for 6 varying between —75° and 75° (f2 = 0.75, 
c = 0.80, f* = 0.002, d, = 1, B = 1, K-, = 1.6) 

Fig. 6 Variation of the normal stress o~« at a distance r* from the crack tip Fig. 8 Variation of the strain-energy release rate at the kinked crack tip for 
of a straight crack for 0 varying between -75° and 75° (f2 = 0.75, c = 0.80, the angle 7 varying between —75° and 75° (f2 = 0.175, c = 0.80, d2 = 0.001, 
r* =0.002, d-, = 1, H = 1) d, = ^,R = ^) 

Case 

1 
2 
3 
4 
5 
6 

Conditions imposed 

h1(-l)=h2(-l)=0 
hi(-l) = h3(-l) = 0 
/ i i ( - l ) = / U ( - D = 0 

M-D=M-D = o 
M-D=W-D = o 
M- i )=W-i ) = o 

Table 1 7 = 15 
m)A 

1.75115 
1.73282 
1.75115 
1.75115 
1.75124 
1.75115 

°, di = d2 = 1 

(Kn)A 

0.02867 
0.02787 
0.02867 
0.02867 
0.03054 
0.02867 

(ffi)s 

1.66188 
1.64393 
1.66188 
1.66188 
1.66221 
1.66188 

(KU)B 

-0.47767 
-0.47128 
-0.47767 
-0.47767 
-0.47589 
-0.47767 

of angle 8 and shown in Fig. 6 and Pig. 7. In these figures, a softer in­
clusion with material constants 1x2/(11 = 0.2, KI = 1.6, K2 = 1.8 is added 
to the aforementioned two types of inclusion for the purpose of 
comparison. 

The fracture angles as obtained by using the mixed-mode criteria 
2 and 4 are easily inferred from Figs. 6 and 7. The results are sum­
marized in Table 3. 

Pig. 8 shows the variation of 5 when 7 is varied from —75° to 75°. 
Here G is related to the energy-release rate G by 

G = G-
E 

• = Ki2 + K" 112 

(1 - *2) 

All the calculations related to criterion 5 are accomplished by as­

suming d.2 = 0.01. As one can see in Pig. 8, the peaks shift to the right 
as the relative stiffness 1x2/Hi is raised. 

There is thus a tendency of soft inclusions to attract cracks, whereas 
a hard one tends to divert them. 

In all of the work done here, we are able to infer that the softer an 
inclusion, the greater its tendency to serve as a crack termination site. 
Thus, in Fig. 5, we see the peak values of (K\)B and the zeros of (Kn)s 
shift to the left with decreasing relative stiffness. In Fig. 6, the angle 
of maximum normal stress decreases with 1x2/fxi, and in Fig. 7 we see 
decreasing angles of minimum strain energy. 

When Theories 1 and 3 are applied, it should be noted that K\ and 
Kn are associated with the tip of a straight crack, not the tip of a 
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Table 2 Comparison of present work with results in the literature (d2/di = 1) 

(Ki)A 

(Kid A 

(Ki)B 

(Kn)B 

e 
Ref [10] 
Ref [8] 
Ref [16] 
Present 

work 

Ref [10] 
Ref [8] 
Ref [16] 
Present 

work 

Ref [10] 
Ref [8] 
Ref [16] 
Present 

work 

Ref [10] 
Ref [8] 
Ref [16] 
Present 

work 

15 

1.7512 
1.7511 
1.7512 

0.0287 
0.0287 
0.0287 

1.6618 
1.6619 
1.6619 
1.6619 

-0.4776 
-0.4777 
-0.4777 
-0.4777 

30 

1.6930 
1.6928 
1.6929 

0.0407 
0.0406 
0.0407 

1.3573 
1.3573 
1.3571 
1.3572 

-0.8527 
-0.8528 
-0.8528 
-0.8528 

45 

1.6129 
1.6127 
1.6124 
1.6125 

0.0262 
0.0261 
0.0258 
0.0259 

0.9324 
0.9322 
0.9319 
0.9320 

-1.0501 
-1.0499 
-1.0498 
-1.0498 

60 

1.5283 
1.5282 
1.5282 

-0.0145 
-0.0149 
-0.0147 

0.4867 
0.4865 
0.4866 
0.4866 

-1.0399 
-1.0392 
-1.0396 
-1.0394 

75 

1.4547 
1.4556 
1.4551 

-0.0701 
-0.0706 
-0.0703 

0.1203 
0.1210 
0.1209 

-0.8429 
-0.8455 
-0.8446 

Table 3 Initial fracture angle obtained by applying different theories for two cases 

M2/M1 

Fracture 
angle 

e 

Theory 1 
Theory 2 
Theory 3 
Theory 4 
Theory 5 

23 

+14° 
9° 

14° 
3° 

14° 

t2 = 0.75 c = 0.8 

0.2 

-17° 
-11° 
-17° 
-17° 
-17° 

0 

-23° 
-16° 
-22° 
-21° 
-24° 

ti 

23 

11° 
4° 

11° 
2° 

12° 

= 0.95 c = 0.6 

0.2 

- 9 ° 
- 6 ° 
- 9 ° 

-11° 
-10° 

0 

-12° 
- 5 ° 

-12° 
-12° 
-13° 

kinked crack. The fracture angle 6 for these two theories is also listed 
in Table 3. 

Although an approximation (a finite length of 0.01 for the branched 
crack) is involved when Theory 5 is applied, the results are in good 
agreement with those obtained by applying Theories 1 and 3. The 
fracture angles predicted by Theories 2 and 4 disagree with each other 
and deviate a lot from the values given by applying the other three 
theories. Therefore, the use of Theories 2 and 4, which consider the 
second-order term in the crack-tip stress field in determining the 
initial fracture angle, is not promising here. 
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Thickness Effects Are Minor in the 
Energy-Release Rate Integral for 
Bent Plates Containing Elliptic 
Holes or Cracks1 

The exact value of Sanders' path-independent, energy-release rate integral I for an infi­
nite, bent elastic slab containing an elliptic hole is shown to be approximated by its value 
from classical plate theory to within a relative error of 0(h/c)F(e), where h is the thick­
ness, c is the semimajor axis of the ellipse, and F is a function of the eccentricity e. This 
result is based on Golden'veiser's analysis of three-dimensional edge effects in plates, as 
developed by van der Heijden. As the elliptic hole approaches a crack, F(e) ~ In (1 — e). 
However, this limit is physically meaningless, because Golden'veiser's analysis assumes 
that h is small compared to the minimum radius of curvature of the ellipse. Using Know-
les and Wang's analysis of the stresses in a cracked plate predicted by Reissner's theory, 
we show that the relative error in computing I from classical plate theory is only 0(h/c) 
In (h/c), where c is the semicrack length. Our results suggest that classical plate and shell 
theories are entirely adequate for predicting crack growth, within the limitations of 
applying any elastic theory to an inherently inelastic phenomenon. 

Introduction 
One computes stress-intensity factors for loaded, cracked elastic 

solids in the hope that, if the material is brittle, these factors may serve 
as a measure of the likelihood of crack growth. For infinite, elastically 
isotropic plates containing straight, through cracks and under simple 
in-plane or bending loads at infinity, stress-intensity factors may be 
computed from the classical two-dimensional theories of plane stress 
or plate bending, either as a limiting case of solutions for elliptic holes 
[1, 2] or directly, via singular integral equations [3]. 

Clearly, within the immediate vicinity of an edge, we cannot expect 
to infer accurately the true state of three-dimensional stress from a 
two-dimensional theory. This shortcoming is particularly acute in 
the classical theory of plate bending where imposition of the two 
contracted boundary conditions of Kirchoff at a free edge implies, 
except in special cases, that the twisting couple at the edge does not 
vanish, but is of the order of magnitude of the stress couples in the 
interior of the plate [4]. 

There have been two distinct approaches to correcting the defi-

1 This work was supported by the National Science Foundation under Grant 
No. MCS79-27135. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
August, 1980. 

ciencies of classical bending theory. The first is due to Reissner [5-7] 
who has developed an improved two-dimensional theory wherein the 
classical fourth-order biharmonic equation for the midplane normal 
deflection w is supplemented by a second-order Helmholtz equation 
for a stress function \p- Reissner's theory should predict significantly 
better values than the classical theory for the actual stress resultants 
and couples in the edge-zone because 

1 It can satisfy, at a free-edge, the three conditions that the 
transverse shear stress resultant, the twisting couple, and the bending 
couple must vanish. 

2 There are solutions that decay rapidly outside an edge-zone of 
width 0(h), where h is the plate thickness. 

(Note that we refrain, as does Reissner, from suggesting that predic­
tion of the thickness variation of the three-dimensional stress is im­
proved in the edge-zone.) For the special case of beinding of an infinite 
plate with a circular hole, Reissner's later plate theory agrees well 
numerically with the essentially exact three-dimensional solution of 
Alblas [8]. 

The other approach to correcting the deficiences of classical plate 
theory is to recognize the three-dimensional nature of the stress dis­
tribution in the vicinity of an edge but to attempt, by a proper scaling, 
to reduce the governing equations to two-dimensional ones in a strip 
formed by the intersection of the plate with a plane perpendicular to 
the edge and to the midplane. The solutions to these equations as one 
moves toward the interior of the plate are then matched to the solu­
tions of the classical plate equations as one moves toward the edge of 
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the plate. This approach was pioneered by Friedrichs [9] and elabo­
rated upon by Golden'veiser (see [8] for a list of references). Fortu­
nately, this rather tedious work has been given a simple physical in­
terpretation and variational formulation by Koiter and van der He­
ijden [8,9]. 

Beginning with Knowles and Wang [10], a number of authors 
[11-14] have computed "improved" stress-intensity factors for 
cracked plates and shells using some version of Reissner's plate theory 
or its shallow shell analog. In contrast to the classical theory, Reiss­
ner's refined theory predicts an angular variation of the stress couples 
around the tip of the crack that agrees with the exact theory of anti-
plane strain. And in contrast to the classical eighth-order theory of 
shallow shells, the refined, tenth-order theory predicts identical an­
gular variation near a crack tip for the stress resultants and couples. 
The bending stress-intensity factors computed from these refined 
theories differ significantly from those of the classical theory and thus, 
presumably, indicate the importance of thickness effects on crack 
growth predictions. 

It is our contention that, insofar as it is possible in a purely elastic 
theory to predict crack growth—an inelastic phenomenon—the most 
meaningful number to compute is the value of Sanders' path-inde­
pendent, energy-release rate integral I for the expected crack growth 
path. As we shall argue, the exact, three-dimensional expression for 
/ for a cracked, bent plate is approximated by the value of / from 
classical plate theory to within a relative error of 0(h/c) In (h/c), where 
c is the half crack length. Moreover, for an infinite plate with an el­
liptical hole, we shall show that classical plate theory approximates 
/ to within a relative error of 0(h/c)F(e), where F(e) is a shape factor 
that approaches In (1 — e) as the eccentricity e of the ellipse ap­
proaches one. 

We arrive at our conclusions by evaluating / over a path lying at an 
arbitrarily large distance from the crack. We begin with the results 
of a recent paper by Cheng [15] who has shown that the solution of 
the three-dimensional Navier equations for the bending of an elastic 
slab free of body forces and face tractions can be reduced to the sum 
of the solutions of two distinct types of two-dimensional problems. 
The first type involves the solution of two infinite sequences of 
Helmholtz equations, each admitting solutions that decay over a 
length equal to some numerical factor times the slab thickness. These 
may be called edge-zone solutions. The second type of two-dimen­
sional problem involves the single-biharmonic equation 

V2V2iu = 0, (1) 

where V2 is the Laplacian in the midsurface of the slab. The solutions 
of (1) may be called interior solutions and are discussed in detail in 
the books by Love [16, pp. 473-487] and Lur'e [17, pp. 199-230]. 

In circular cylindrical coordinates (r, 6, z), the associated three-
dimensional displacement components ({/ ' , V, Wl) and stress 
components (a'rn a'r0, a'rz) are given by [15, equations (39) and 
(40)] 

l / ' = -

y>=-

W' = 

G'rB •• 

- v dr 

•z 1 d 

vrdd 

1 - v + 

1 + -
2(1 

Ez 

l - v + 

- 2 2 V 2 

( 2 - K ) 
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4 6 

V2 

V2 

1-v2 

-Ez d 
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d2 (lb_ J_j)2 

dr2 \rdr r2d82, 
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*2 — V2w. 

2 - j / 

6 

2 2 | V 2 

z 2 V 2 

(2) 

(3) 

(4) 

w (5) 

(6) 

(7) 

We emphasize that (2)-(7) are exact solutions of the Navier equations. 
We also emphasize that the boundary conditions at the edge of a hole 
involve all of the separated solutions of the Navier equations, so that 
the determination of w involves the simultaneous consideration of 

the edge-zone solutions. This is a key point and we shall return to it 
momentarily. 

Sanders' energy-release integral / [18, 19] evaluated over the 
truncated cylinder r = R, \z\ <\h takes the form 

U 1 1 (.°rrU + areV + cr^VI, 
u-\h Jo 

w 

- frrrU- <TreV - OrzW)Rd8dz, (8) 

where the dot denotes the derivative with respect to some parameter 
that characterizes the shape of the hole. (For a hole whose cross section 
is always an ellipse of the same area, aligned with the x and y-axes, 
we shall take the parameter to be the length / of the ellipse.) In (8), 
o>r = clr + o"m U = U' + Ue, etc., where the superscript e denotes 
an edge-zone contribution. As R ~• <°, the edge-zone contributions 
will make a transcendentally small contribution to / . But as 1 is 
path-independent, it follows that / is determined by the interior-zone 
contributions alone. 

Substituting the right sides of (2)-(7) into (8), and carrying out the 
z integration, we obtain an expression of the form 

J
»2ir 

( - mrw , - mrsr^wj + Qrw 
o 

+ mrw,r + rhrer-^Wfi - 0ru>)[l + 0(h2/L2)]Rdd. (9) 

Here L is the wavelength of w, defined so that L2V2w, Ls(V2w,r, 
r-lV2w,e), L4(V2w,rr, r-^Vhv^, r-2V2w,M) = 0(w), 

mr = - D[w,rr + v(r xwte + r"2w,M)] 

mrB = - £>(1 - p)(r-1wie),r 

Qr = -D(V2io), r 

Eha 

D 
12(1 - v2) 

(10) 

(11) 

(12) 

(13) 

E is Young's modulus and v is Poisson's ratio. For conciseness, we have 
indicated partial differentiation by a comma. Note from equation (41) 
of [15] that the actual bending couple acting along a circle in the 
midplane of the slab is given by 

Mr = mr + h2D[(8 + v)/40][r-HV2w)ir + r-2(V2w),eB]. (14) 

If the loading on the infinite slab is such that 

V2w = c + 0(r~2) as r —<• <=, (15) 

then as R —• =>, the 0(h2/L2)-terms in (9) disappear, and / reduces 
to precisely the form it takes in classical plate theory. This happens, 
for example, if the slab is subject at infinity to a pure stress couple M 
turning about the y-axis, in which case 

•• -(6M/Eh3)(x2 - vy2) + 0(1), (16) 

and c = -12(1 - v)M/Eh3. 
It remains to investigate the influence on w of imposing exact 

boundary conditions at the hole rather than the approximate 
Kirchhoff conditions. Fortunately, Golden'veiser has carried out the 
rather tedious analysis that is required [20]. When all is said and done 
it turns out that, to a first approximation, the necessary corrections 
to classical plate theory are obtained merely by solving the classical 
plate equations subject to slightly modified Kirchhoff conditions. 
(Golden'veiser's results were given a simple energetic interpretation 
and derivation by Koiter and van der Heijden [8, 9], Moreover, 
Reissner has shown that his latest refined two-dimensional plate 
theory [7] implies a set of modified Kirchhoff boundary conditions 
for the classical plate equations that involve a numerical constant that 
is remarkably close to the one coming from Golden'veiser's three-
dimensional analysis. For an explanation of Golden'veiser's method 
in a simple nontrivial context see [4].) 

The modified classical solutions for a bent, infinite plate containing 
an elliptic hole have been computed analytically by van der Heijden 
[8]. His results are expressed in terms of the two standard complex 
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functions of classical plate theory [21]. Our first task is to express / 
in terms of these. 

I for Pla te Bending in Terms of Complex Variables. There 
exists a well-known duality between the theories of generalized plane 
stress and classical plate bending that we summarize in the following 
table: 

(17) 

Here F is Airy's stress function, u and G are, respectively, tangential 
displacement and moment stress function vectors, JV, M, E, and K 
are, respectively, stress resultant and bending couple tensors and 
extensional and bending strain tensors, and E - trace (E)I — ET, etc., 
where I is the identity tensor and the superscript T denotes the 
transpose. 

Plane stress — F 

Plate bending w 

u 

G 

fr 
K 

E 

-fit 

1/Eh 

D 

V 

— v 

In the theory of plane stress, 

7 = i j > * -• t • u)ds, (18) 

where C is a smooth closed curve and T is the traction vector acting 
across C [18]. This equation, as it stands, is not the dual of the coor­
dinate-free form of (9). However, if the net force and moment acting 
over C are zero (so that F and G are single-valued), then by introducing 
stress functions and integrating by parts several tinies, it may be 
shown that (9) and (18) are indeed duals. 

The theory of plane stress may be formulated in terms of complex 
variables. In the absence of body forces, Airy's stress function has the 
representation [22, equation (70.5)] 

![z<M2) + z<Mz) + X(2) + x(2)], (19) 

where $ and x are analytic functions of the complex variable z = x + 
iy. (z, of course, no longer stands for the third Cartesian coordi­
nate.) 

Sanders has shown [18] that in terms of <t> and \p = %'. 

/ = -2(Eh)~1 3 C (4>'i + j> i/')dz, (20) 

where 3 denotes "the imaginary part of." It now follows immediately 
from the duality expressed by (17) that Sanders' integral for classical 
plate bending has precisely the same form as (20) provided that the 
solution of (1) is represented in the form 

w = i[z<t>(z) + z<t>(z) + x(zj + x(z)l 

and (Eh)-1 is replaced by D. 

(21) 

Summary and Extension of van der Heijden's Results. The 
function 

where 

z = o)(t) = R ( r 1 + mf), 

a + b a — b 
R = , m = , 

2 a + b 

(22) 

(23, 24) 

maps the interior of the unit circle in the complex f-plane onto the 
region in the complex z-plane exterior to the ellipse 

x 2 y 2 

2 b2 
a 

(25) 

The inverse of (22) is given by 

f-QOO 
z - (z* - 4,R2m)V2 

2Rm 

• Rz-i + R3mz-S + Oiz-t), (26) 

where fi(z) is analytic in the z-plane with a cut joining the foci of the 
ellipse (25). 

van der Heijden considers an infinite plate with an elliptic cylin­
drical hole with cross section (25). A uniform stress couple of magni­

tude M acts at infinity about the y-axis so that (16) obtains.2 To an­
alyze the resulting stresses van der Heijden sets 

0Mf)) = KlfaM + (h/R)4>\(m 

where [8, equations (2.2.13) and (2.2.16)] 

1 J l - m t 

3 + p 

uo = 
2(1 + v) \ f 
m - 1 Km + ft , 1 
3 + v i*m - 1 1 - v \ fJ 

and 

K = - MR/2D. 

(27) 

(28) 

(29) 

(30) 

(31) 

4>i and \pi represent the classical plate theory solutions and 4>\ and \p{ 
represent the corrections to classical plate theory that result when 
increments are added to the Kirchhoff boundary conditions to make 
them agree with Golden'veiser's modified conditions. Since <j>{ and 
\pl correspond to self-equilibrated loads along the hole, they have 
series representations of the form 

« f ) = £ «n0", <Wf) = E / W , I f I < 1. (32, 33) 
l l 

It turns out that all we need from (32) and (33) in the evaluation of 
Sanders' integral are expressions for a\ and /?i. We shall compute 
these coefficients after we have verified this statement. 

Substituting (29)-(33) into (27) and (28), we obtain, for 0 < |f| 
< 1 , 

0Mn) = ^[a-1ri+a1r+oOT] 
^(co(f)) = K[6_ 1 r l + 6 ^ + 0 ( ^ ) 1 , 

(34) 

(35) 

where 

a-i = 2(1 + v) ' 
° i = „ , m . > + ~ ^ + (h/R)<*i (36, 37) 

2(1 + v) 3 + 1/ 

b-i= , 6i = + 
1-v l - v 3 + y 

+ (h/R)h (38, 39) 

With (22) and (26), (34) and (35) take the following form outside 
the ellipse (25) in the z-plane: 

<t>(z) = K[Aiz + A-iz-1 + 0(z~3)] (40) 

\ K z ) = X [ f l 1 z + B _ i z - 1 + 0 (z - 3 ) ] , (41) 

A1 = a~1R-1,A-i = a1R - a-imR (42,43) 

S i = 6- i f l - 1 , S_i = btR - b-imR. (44,45) 

where 

Computing the residue of <j>'(z)\f/(z) + 4>(z)\}/(z) from (40) and (41), 
we find that Sanders' integral (20) with (Eh)-1 replaced by D is given 
by 

I = - 4wDKlAi(KB-{)- - A-dKBi)-

+ B1(iCA_i)--fl_1(lfAi)-] . (46) 

But from (31), (36), (38), (42), and (44), 

M „ . M 
KB! = KA1 (47) 

2£>(1 - v) * 4Z)(1 + v) 

These quantities are independent of the parameters R and m that 
characterize the ellipse (25). Thus (46) reduces to 

2 The standard orientation, as used by Knowles and Wang [10], for example, 
is with the stress couple at infinity turning about the x -axis. However, for ease 
of transcription from and comparison with [8], we have retained van der He­
ijden's convention. The value of/ is, of course, independent of our stress con­
ventions. 
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I = -
2D 

„ n ,bi — mb—i GET — ma-i 
R2\— -+2 

1 + v 1 -v 
(48) K(m) = - \ In (1 - m2) + 0(1), mK'(m) 

E(m) 
- K(m) (60) 

It is useful to set 

itM2R 

2D 
Ic[l + {h/R)I% (49) 

1 - m 2 

E(m) = 0(X), mE'(m)=E(m)-K(m). (61) 

It follows from (32), (52), (59), and equation (2.2.35) of [8] that 

4C. 1 - m . 

where Ic is the dimensionless value oil from classical plate theory and 
(h/R)I? (the G is for Golden'veiser) represents the correction due to 
edge-effects. Prom (36)-(39) and (42)-(45) 

2(1 - m) 

1-v2 

m (50) 

Determinat ion of a\ and ft. van der Heijden has shown that 

«i = C./ . ' (0; m) = • : [K(m) - E(m)}. (62) 

van der Heijden did not derive an express for xpl, but from equation 
(2.1.38) of [8] and equation (79.10) of [22] we have 

(2 + 

, ( ft 

m) + v(2 -m)} 
3 + v 

R 
1-v2 

, *J±\ 

1 
1 + -

* + R 

fl 

+ 2m + i/(3 - 2m)' 
3 + i/ 

( ft 2«x \ 

K-c. 1 - m f 2 

where if = (3 + v)/(l — v) and 

1 

/,(f; m) - ««/.(£; m) 

r /> ^ L ^ g(o\m) 
</„(f;m) = — (* -do. 

2m «JH<T|=I C - f 

[8] 

Here 

« = C.J . (f ;m). 

( 3 - M 2 C , = ^ E 

/ . ( £ m) = 

ir5 i (2ft - l ) 6 

1 s* g(o; m)dcf 

2iri 

(52) 

= 1.26049 . . . , (53) 

(54)3 

> | = i <r--f 

Prom (33), (63), and (64), 

ft = C,[mJ'.(0; m) - KJ' , (0; m)] 

where 

1 r- g(o;m) 
</.(6; m) 

2ir( |„|=i 
d<r. 

On t/ie unit circle \a\ = 1 , (55) and (56) imply that 

g(o;m) g(<J-l;m) 2 (1 - m)(l - <74) 
h(o; m). 

(63) 

(64) 

(65) 

(66) 

(67) 

•l-i < r - f ' 

where 

and 

2 (1 - m)(g« - 1) , , . 
g(o; m) = — — h ( o ; m), 

ir o(oz — m) 

h(o\ m) = — 
2 (c2 - m)!/2(l - ma2)1'2 = hio'1; m). 

(55) 

(56) 

The function h(o; m) is analytic in the complex (r-plane, cut along the 
three segments (—<», — 1/y/m], [—y/m , Vm], [ lA/m , °°) of the real 
axis. For simplicity, we assume, initially, that 0 < m < 1. However our 
final results are valid for — 1 < m < 1. This is important because with 
van der Heijden's loading convention, whereby the uniform stress 
couple at infinity turns about the y -axis, the nontrivial limiting case 
of a crack is obtained as m -* — 1. That is, the ellipse approaches a slit 
of length 26 along the y-axis. The branches of h(o; m) are chosen so 
that (1 — m)1/2 = V l — m . I,(b m) is analytic in the complex f-plane, 
cut along the segments (—°°, —1/i/m] and [ l / \ /m , °°) of the real axis, 
van der Heijden has shown that 7„(f; m) may be expressed in closed 
form [8, equation (III.2.13)] in terms of the complete elliptic integrals 
of the 1st, 2nd, and 3rd kinds: 

a2 a2 w <T3(1 — ma2) 

As h(o; m) is analytic in the annulus Vm < | <r| < ll\fm , it may be 
represented as the sum of a function h<(<r, m) analytic for | o\ < lly/m 
and a function h>(o;m) analytic for |<r| > V m - Explicitly, [23, 
equation (117.01)], [8, equation (III.2.18)], 

h(<r, m) = [n(m<72; m) - K(m)} + U(mo-2; ro) 

= h<(o;m) + h>(o;m). (68) 

The function 

, 2 1 - m)(l - a4) 
g'^a; m).= — —h^m) (69) 

•K o6(l — mo*) 
is analytic in the disk ) <r| < 1/Vm , save for a simple pole at a = 0. 
With the aid of (59) and (68), 

Res |gi(0; m)\ = [K(m) - E(m)]. (70) 

The function 

, 2 (1 - m)(l - o4) 
g>(o;m)= — h>(a;m) ( 7 1 ) 

w o6(l — mo*) 
is analytic for |<r| > \fm , save for simple poles at o = ±l/\/m 
where 

J*i dx 

E(m) LV-l-x* 
-dx 

(57) 

(58) 

Res [g>(±l/Vm; m)\ •• 
1 1 - m 

-E(m), (72) 

where we have used the fact that (1 - m2)II(m2, m) = E(m). Fur­
thermore, as a —• oo, 

J* l dx 

o (1 - W) TT^^Vl - ™V 
= K(m) + (\2/m2)[K(m) -E(m)} + 0(X4). (59) 

I1(X2; m) is analytic in the complex X2-plane, cut along the segments 
(-co, —l] and [1, <=) of the real axis. For future reference, we note that 
[23] 

g>(a; m) < 
2 1 - m 

-K(m). (73) 

Thus, from (66)-(73), 

/ . ( 0 ; m) = 
2-wi 

<£ g'<(o;m)do+ (Q g'>*(o;m)dc 

4 1 - m 
\K(m) - E(m)]. (74) 

3 In van der Heijden's notation [8], / . = (1 — m)I. We have introduced 7, in 
place of I so that the dependence on m may be displayed explicitly. 

Finally, inserting (62) and (74) into (65) and recalling that k = (3 + 
c)/(l - v), we have 
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8(1 + v)C, 1 • 

(1 — v) m 

This result, combined with (62), yields 

/Si , 2«i _ 8C» (1 - m\2 

[ K ( m ) - £ ( m ) ] (75) 

l + ii \ — v (1 — i/)ir \ m 

so that, with the aid of (60) and (61), 

/ ft + JaiV = 8C, /l-m\ 

\1 + c 1 - v] (l-v)ir\maj 

2 + 2m + m2' 

[ / f ( m ) - £ ( m ) ] , (76) 

1 + m 
£(m) - 2if(m) m. (77) 

Consider a class of movements in which the elliptical hole in the 
midplane distorts, without rotating, into another elliptical hole of 
equal area and take ( ) ' = d( )/dl, where I is the length of the el­
lipse. (This is only one of many possible movements that, in the limit 
a s m ^ - 1 , yield the uniform extension of a crack. As equation (84) 
shows, (h/R)Ic, the correction to Ic, is independent of the movement 
of the hole.) Then 

= 4 f* V a 2 sin2 0 + b2 cos2 6 dB 
Jo 

= 4bE(k), 

where 

ft2 = 
6 2 - q 2 

62 

4m 

( 1 - m ) 2 

(78) 

(79) 

With irab a constant, it follows readily from (23), (24), (78), and (79) 
that 

db 

ml dl 

l + m\db 

R I dl' 

where 

dl. 
E(k)-± L \E(k) - K(k)) 

2m 

(80, 81) 

(82) 

Substituting (76), (77), and (80)-(82) into (50) and (51), we obtain 

4(1 - m) db 

(3 + v ) ( l - i > ) dl 
(83) 

jn 2(3 + v)C„ 

wm3 r=• 
1 c 

[(2 + 2m - m2)K(m) 

2(1 + m)E(m)} = (3 + v)~lP(m) = (3 + v)-lF(e), (84) 

where 

1 — m 
- 1 < m < 0, 

is the eccentricity of the ellipse. 
As m —• — 1, we have, with the aid of (60), 

(3 + v)C. 
In (1 + m). 

(85) 

(86) 

This limiting behavior is meaningless, however, because Golden'-
veiser's modified boundary conditions assume that the plate thickness 
is small compared to the minimum radius of curvature of the ellipse. 
Pig. 1 is a graph of F(m) which is independent of v, as a glance at (53) 
and (84) shows. 

I for a Cracked, Bent Plate Via Reissner's Theory. Knowles 
and Wang [10], Wang [11], and Hartranft and Sih [12] have all used 
Reissner's plate theory [5] to compute stresses and stress-intensity 
factors along and at the tip of a crack in a plate. 

The crack is represented by the segment (—1,1) of the a;-axis and 
its edges subject to a uniform bending couple M. To compute the re­
sulting stress field is the so-called residual problem. The stress field 
for a plate with a stress-free crack subject to a uniform stress couple 
M at infinity turning about the x-axis is obtained by adding the stress 

Fig. 1 Correction factors for /„ from Golden'veiser's and Reissner's theo­
ries 

field for an uncracked plate to that for the residual problem. The 
numerical results of [11,12] show that there are pronounced bound­
ary-layer effects that lead to significant differences from the classical 
values of some of the aforementioned quantities as h/c - • 0. Despite 
this, we shall show that Reissner's theory leads to a correction to Ic 

that is only of relative order (h/c) In (h/c). 
Knowles and Wang reduced Reissner's equations for a bent, cracked 

plate to the following singular integral equation [10, equation 
(3.23)]: 

J - I X -
1 - J-FI\JLZM 

0 ^ . , u(£)d£ = 7rx, 1*1 < 1 . (87) 
3 + v \ t 

Heree = h/c^/ia,v(^) is an even function, f denotes the Cauchy 
principal value, and 

Fix)- 2K2(x), (88) 

where K^(x) is the modified Bessel function. 
The bending moments may be expressed in terms of u(£) in the form 

[10, equation (3.17)] 

My ]=• 

Mx-

M 

2(3 + v) 

a p i 
+ v) J - i 

lmx(x - £,y) 

I rriy(x - £,y) 

nxy(x - £,y)J 

v($)dk, (89) 

where the kernels mx, etc., are given by equations (3.16), (3.19), and 
(3.20) of [10]. These formulas are for the residual stress couples. The 
associated residual complex potentials $ and SP may be computed 
from the formulas 

My-Mx + 2iMxy = 2D(1 - v)[z$"(z) + W(z)] (90) 

Mx + My = - 2D(1 - p)[*'(z) + i ^ i ) ] . (91) 

To compute J we need only the dominant terms in the expressions 
for the residual stress couples as r2 = x2 + y 2—• °°. With x = r cos 8, 
y = r sin 6, we find, from (89) and equations (3.16), (3.17), (3.19), and 
(3.20) of [10], that 
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Mx 

My 

Mxy 

-M 

2(3 + v)r2 

\ 

where 

1(1 - v)(sin4 6 + cos4 0 - 6 cos2 0 sin2 6) 

I (3 + z>)(sin2 0 - cos2 0) - 2(1 - K)(sin4 0 - 3 cos2 0 sin2 0) 

1 4 cos 0 sin 0 - 2(1 - v)(3 cos 0 sin3 0 - cos3 0 sin 0) 

(92) 

P = (2/TT) J^utt)d{. (93) 

Thus we do not need the complete solution of (87) but only its integral 
from —1 to + 1 . 

Adding the stress field for the uncracked plate, My = M, Mx = Mxy 

= 0, we readily deduce from (92) the following asymptotic behavior 
for the associated complex potentials $ and yp: 

c2P * M 

AD U + v (3 + v)z 

* • 

M 

2D(1 - v) 

(1 + v)c2P 

(94) 

(95) 
(3 + v)z 

It then follows from (20), with D = (Eh)'1 and ( )• = d( )/dl = 
\d( )/dc, that 

TTM2CP 
1 = (96) 

2D(3 + v)(l - v) 

Remarkably, Knowles and Wang [10] were able to obtain all their 
analytical results using only the classical plate theory solution 

u0(x) = VT- (97) 

which satisfies (87) if one formally sets e = 0. Thus we must extract 
more information from (87). We shall proceed formally with what we 
hope are convincing arguments. 

It is convenient to integrate both sides of (87) with respect to x, 
thereby obtaining the equivalent integral equation. 

£ [In |* - €| + (3 + lO-iGd* - € | / 0 ] 

X v(t)d£ = TT(IX2 + C). (98) 

Here, C is an unknown constant, 

G(x) = ---K1(x), (99) 

and K\ is the modified Bessel function. From the Appendix, 

f " G(x)dx =2ir. (100) 
Jo 

Hence, as e —• 0, 

G(\x-Z\/e)-+e4ir5(x-0, (101) 

where 5 is the Dirac 5-function. 
Let 

e(3 + v)ir6(x, e) = J ^ G(\x - £|/e)u(£)d£. (102) 

Then the solution of (98) may be expressed in the form [24, equation 
(8-191)] 

v(x;t) = 
1 

TV y/\ ~ X2 

= Vl~X2 + 

iVT=T2ti-t6'(it;*m , r 
£ - x 2 

e[Q(e)-Q(x;e)} 
(103) 

where 

and 

ir V l — x2 

eQ(e) = (2/TT) J ] 1 [u(f; e) - V F q ? ] d £ = P(e) - 1, (104) 

Q{x; e) = £ I (105) 
* - * 

(The constant C is hidden in Q.) 
Because u(x) represents the slope of the deformed midplane normal 

to the crack along the crack, v(x) —- 0 as x —• ±1 . Therefore, the term 
in brackets in (103) must vanish as x —• ± 1 , i.e., 

UmQ(x;e) as * —• ±1 . Q(e) (106) 

This value of Q leads, via (96) and (104), to the correction predicted 
by Reissner's theory to the classical value of / . 

To see how the limit in (106) occurs, first note that the structure 
of (87) and the graphs of various numerical results obtained by Wang 
[11] and Hartranft and Sih [12] indicate that as e -*• 0, u(x; e) exhibits 
a boundary layer at the crack tips. Simple order of magnitude argu­
ments imply that the width of the boundary layer is O(e) and that, in 
the boundary layer, v is 0(e1/2). We therefore assume that the solution 
of (87) has the form 

v(x; e) = v T ^ 2 + V~e [V(s; t) + 9(t; e)] + eV(x; e), (107) 

where 

1 + es = l-et. (108) 

We further assume that V(s; e) and all of its derivatives are 0(1) for 
s > & > 0 and vanish sufficiently rapidly as s -* <*>. 

To see the interior and boundary-layer structure of 8(x; e), rewrite 
(102) as follows: 

«(3 + v)ird(x; e) = f*G(\x - £\/e)[VT=I? + eV(£, e)]d$ 

Hxr^+xr+^+i>(|*-H 
(109) 

£ / \ e I 

Upon introducing the change of variables (108) and 

f = - l + e o - = l - « 7 j , (110) 

and noting (101), we see that d(x; e) takes the form 

6(x; e) = 4 v T ^ / O + v) + yft[Q(s; e) + Q(t; «)] 

+ e0(*;e). ( I l l ) 

This expression for 0(x; «), substituted into (105), yields, to lowest 
order, 

<2(*;0)= — - I n - — +V2 -f - ! 

3 + v \ l - x ^ J o < r - s 
• V 7 9 ' ( T ; 0) dT 

• ^ £ • n ' ( 1 1 2 ) 

T-t S + V 
To evaluate the integrals in (112) assume tha t / (a ) = \foQ'{o, 0) can 
be extended to be an analytic function of the complex variable v = a 
+ ir in a neighborhood of the positive d-axis. Furthermore, assume 
that as a —>• <», /(cr) \n1+s(a) —* 0,5 > 0. (This is a sufficient condition; 
for example, for the integrals in (112) to converge.) Defining 

l r-fMd" rf F(u) = — I , " # 
27TI Jo a — u 

[0, - ) , (113) 

where u = s + it, we have, by the well-known Plemelj formulas [24, 
equations (8-130) and (8-131)]. 

»/(<r)d£ 

• s 
F+(s) + F-(s) 

,J_ r-fWd 
irt Jo a — i 

(114) 
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F+(s)-F-(s) = f(s), 

where F ± ( s ) = lim F(s + it) as t -* 0 ± . 

By inspect ion , 

(115) 

F(u) = l[l+ (iM logu]f(u), (116) 

where F(u) is def ined in t h e complex u-plane cu t along t h e posi t ive 

s-axis a n d log u = In \u\ +id,0 < 8 < 2ir. T h u s , from (114), 

• V ^ e V ; 0)da 

io a — s £ • V s 6 ' ( s ; 0 ) l n s . (117) 

As x — - 1 , s — 0, a n d In (1 + x) = In (es) ~ l n s. T h u s , if Q(x; 0) is 
t o have a finite l imi t as x —• — 1, we m u s t r equ i re t h a t 

2^2 
l i m V J e ' ( s ; 0 ) = - : 

s—0 3 + v 
(118) 

By s y m m e t r y , t h e same conclusion holds as x -* + 1 . I t t h e n follows 

from (106), (112), a n d (117) t h a t 

Q ( e ) ~ - — ~ V l O J ? l n ( f c / c ) , 
3 + v 

a n d from (83), (96), (107), a n d (119), t h a t 

7rAf2C 

4 D 
-Icll +I*(h/c) In (h/c)]. 

(119) 

(120) 

T h e value of if is ind ica ted in Fig. 1. 

C o n c l u s i o n s 

Our resul ts , der ived wi th in t h e f ramework of l inear t heo ry for t h e 

special case of ben t , infinite p la tes , show t h a t Sande r s ' energy-release 

in tegra l / m a y be c o m p u t e d us ing classical p l a t e theory t o wi th in a 

relat ive error of 0(h/R) In (h/R) whe re R is some typical geometr ic 

length associa ted wi th t h e u n d e f o r m e d m i d p l a n e . T h e p a t h - i n d e ­

pendence of / was crucial t o our a rguments . Edge-zone layers of width 

0(h) a re charac te r i s t i c of shells as well as of p la tes . As / m a y be 

eva lua ted along a con tour lying to ta l ly in t h e in ter ior of a shell, clas­

sical shell theory—linear or nonl inear—can be expected t o be entirely 

adequa te for comput ing energy-release ra tes for slowly moving voids 

or cracks. 

A c k n o w l e d g m e n t 

W e t h a n k Professor Koi te r for po in t ing ou t t o us t h e significance 

of t h e sect ions on th ick p l a t e s in t h e books of Love and Lu r ' e . 
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APPENDIX 
T h e in tegra l in (100) is improper , b u t i t is only t h e behavior of t h e 

i n t eg rand nea r x = 0 t h a t m u s t be t r e a t e d wi th some care. T h e fol­

lowing s teps , t h a t employ a n in tegra l r ep re sen t a t i on for Kz [25, 

equa t ion 9.6 23] a n d a change of var iable , should be self-evident. 

i rG(X)dx=lim r p - _ ™ k 
4 Jo ,-.o Je [X2 X J 

l im - - f " f " y/W^T e~xtdtdx\ 

l im f e~etdt - P V * 2 - 1 f e~xtdxdt 
,->0 [J0 Jl Je 

J (sechs — e~")ds =\ir. 
0 

; l im 
e—0 

(121) 
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Boussinesq-Papkovich Functions for 
Creep Around a Spherical Cavity or 
a Rigid Inclusion in a Gravity-
Loaded Half Space 
Boussinesq-Papkovich stress functions are used to determine three-dimensional closed 
form solutions for steady creep around a spherical cavity or rigid inclusion in a half space 
under gravity loading. The ratio of cavity depth to radius is assumed to be greater than 
5, and the flow law of the half space is linear, which allows for solution in terms of a finite 
number of spherical harmonics. Numerical results are given to show the influence of the 
lateral stress component at infinity, the stabilizing effect of internal cavity pressure, and 
buoyancy forces associated with the motion of a rigid inclusion. 

Introduction 
In recent years much interest has been focused on the use of un­

derground caverns for storage of gaseous and liquid hydrocarbons and 
radioactive wastes. Relatively pure deposits of halite (salt) have been 
approved for cavern construction in certain instances, and, because 
of the compliant nature of the material at relatively low temperatures 
and stress levels, questions of creep around the cavern have arisen. 
Since the creep law for halite is a nonlinear (usually taken as a power 
law) function of the driving stress, numerical methods must be re­
sorted to for investigation of creep and cavern stability [1,2]. Confi­
dence in these calculations would be greatly reinforced if closed-form 
solutions to even the linear problem could be developed and used for 
comparison purposes. It is the purpose of this paper to provide such 
solutions for deep cavities using the elastic analogy for steady creep 
[3] and the Boussinesq-Papkovich stress function approach. A related 
problem, the motion of a rigid spherical inclusion embedded in a half 
space, is also studied using this method, and the Stokes solution for 
viscous flow about a sphere is obtained. 

In the present paper we treat an idealized problem of a semi-infi­
nite, linearly creeping body containing a spherical cavity of radius a 
and loaded by gravity and uniform pressure on the cavity surface. The 
center of the cavity is located at a depth H, and the ratio H/a is as-
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sumed to 5 or greater, whereupon stresses applied to the cavity wall 
are little felt on the planar boundary. The assumption is consistent 
with construction practice for caverns in salt domes. This considerably 
simplifies the analyses of Tsuchida and Nakahara [4, 5] as applied to 
a semi-infinite elastic body with an embedded cavity where traction 
boundary conditions on both the planar and cavity surfaces are sat­
isfied exactly with the aid of Hankel transforms and relations between 
spherical and cylindrical harmonics. 

As mentioned, the elastic problem of a spherical cavity in a half 
space has been treated in references [4, 5] for uniform tension applied 
at infinity and for the case of uniform pressure on the plane boundary 
or the surface of the cavity. Mitchell and Weese [6] used spherical 
dipolar coordinates to treat the same problems, but their results ap­
pear to differ significantly from those of [5] for the case of uniform 
pressure on the plane boundary. Atsumi and Itou [7] gave the elastic 
solution for the transversely isotropic half space under a uniform 
tension at infinity. Finally, there appears to be no exact solutions as 
yet for the case of the elastic half space with spherical cavity and 
loaded by a gravitational body force field, but it is clear that the 
method of Tsuchida and Nakahara could be used to supply such a 
solution. 

Basic Equations 
The origin of a spherical coordinate system (R, 8, tl>) is located at 

a distance H from the planar surface of the half space as shown in Fig. 
1. The spherical cavity is of radius a as shown, and is loaded by a 
uniform pressure p. The half-space material is linearly viscous with 
constant viscosity G. The density of the half space is p and under the 
action of the gravitational force a far field equilibrium system of 
stresses 

(To = -Xpgz, az = -pgz, r r ; •0 (1) 
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0 i FREE SURFACE 

Fig. 1 Geometry of the spherical cavity problem 

is developed.1 Here, the stress components are taken with respect to 
a cylindrical coordinate system (r, 8, z) with origin 0'. This stress field 
will put tractions on the cavity surface, which will be removed by the 
system of stresses developed below using the Boussinesq-Papkovich 
stress function representation and outer spherical harmonics. 

The basic equations for steady creep of a linearly viscous material 
are the equilibrium equations, the strain rate-velocity relations, and 
the constitutive equation. Under the "elastic analog" [3], these 
equations become the equations for linear incompressible elasticity 
where the elastic Poisson's ratio is taken as one half to reflect in-
compressibility of the creep strain rate, the viscosity becomes the 
shear modulus, and velocities and strain rates become displacements 
and strains, respectively. Elasticity solutions then carry over to linear 
steady creep solutions. 

A general solution of the displacement equations of equilibrium 
for the case of axisymmetric elasticity without torsion is given in terms 
of Boussinesq-Papkovich stress functions x and \p [8]. Taking Pois­
son's ratio equal to one half, in spherical coordinates the velocities 
(UR, WJ) are given by 

dx d^P 
2GUR = 1- R cos <t> cos 0SP 

dR dR 

1 dx d * 
2Gwd, = h cos 0 r sin 0 f 

Rd<j> d0 

while the stresses (07;, <TO, O^, TRJ,) are given by 

(2) 

<*R 

J o 1 

r)2x d2ty 
+ R cos 0 

dR2 dR2 

d * sin 0 d * 
cos <l> 1 

dR R d0 

1 1 dx cot 0 dx 
; + — T " + 
R dR R2 d0 R sin 

d ^ 

d0 

_ J _ d ^ x j ^ d x cos 0 d2>fr sin </> d'fr 
a'" ~ R~2 d<p RdR R d02 R d0 

1 d2x 1 dx d 2 * c o s 0 d ^ 

* R dfld0 R°- d0 i)Rd<l> R d</> 

(3) 

and where, in the absence of body forces, x and ^ satisfy 

V2x = 0, V 2 * = 0. (4) 

Solutions to equation (4) for the spherical cavity problem are given 
in terms of outer spherical harmonics possessing singularities at 
R = 0 and being regular for R > a, 

m=0 
m{u) 

R" 
* : 

m=0 

mi.11) 

R" 
(5) 

where fi = cos 0 and Pm is the Legendre polynomial of order in. 
Our objective is to produce a solution for the half-space problem 

that contains a cavity with no traction on the cavity boundary. This 
requires that we superimpose on the stress solution, equation (1), a 
complementary stress distribution, which annihilates the stresses on 
the cavity boundary produced by the solution represented by equation 
(1). To do this we expand the tractions (OR, TR$) on the cavity surface 
caused by the stress field equation (1) in terms of Legendre polyno­
mials and then to use the negative of the tractions as boundary con­
ditions to determine a solution of equations (3) and (5); i.e., determine 
the constants Am, Bm, m = 0 ,1 , 2 , . . . . Converting the stress state, 
equation (1), into spherical coordinates and spherical stress compo­
nents and then expanding in Legendre polynomials gives the unique 
finite series representation, 

trR(a) 1 

pgH 
- (1 + 2X) + - (3 + 2X) PiGu) 

3 5 

2 2K 
+ -(\-\)P2(VL) + T(1-\)P-,(IX) 

3 5 

TR4, (a) 
- ( 1 - X) IKP,'W + ]-P2'(IX) + ~PS'W 

5 6 15 
(6) 

pgH sin 0 

In equation (6) K = a/H. Substituting equation (5) into the first and 
last of equation (3), setting R = a in the resulting equations, and then 
equating2 to equation (6) gives a set of equations for the coefficients 
Am,Rm,m = 0 , 1 , 2 , 

Ao = — (-7 + 16X) 
18 

Ai = - — ( I - X ) K 

A2 = - - (1 - X) 

A3 = — (1 - X)K 
19 

* - ! 

S i = b- (1 - X) 

B,-£(l-> 

B 3 = 0 

(7) 

The sum of this solution given by equations (2), (3), (5), and (7) and 
the solution given by equation (1) will correspond to the half-space 
solution under gravity loading and proportional lateral stress at in­
finity and with no traction on the cavity surface. There will, however, 
be traction on the planar surface. For H/a > 5 this traction will be 
shown to be small. 

When an infinite elastic body is subjected to a uniform pressure p 
on the wall of a spherical cavity of radius a, the Boussinesq-Papkovich 
functions take the simple form 

* - £ • *S° <8) 

from which the stress components and velocities in spherical coor­
dinates can be derived. On the plane boundary of Pig. 1 the stress 
components T „ , <JZ are 

W2 

(H2 + r 2 ) 3 ' 2 (H2 + r 2 ) 5 / 2 

i*Hr 

p 2(H2 + r2)5'2' 
(9) 

1 X is a parameter that reflects the magnitude of the lateral stress, which is 
also proportional to distance from the planar surface. If, for instance, X = K/(1 
— v) where v is the elastic Poisson's ratio for the half-space material, then the 
lateral stress would enforce a zero lateral displacement at infinity. 

2 Recurrence relations between Legendre polynomials and their derivatives 
must also be used to arrive at a form consistent with the representation in 
equation (6). 
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Fig. 2 Velocity field around a stabilized cavity (p = pgH) in a half space 
under hydrostatic loading (X = 1) 

For H/a > 5 the stress components at the planar surface are less than 
one percent of the applied pressure on the cavity wall. 
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Fig. 3 Variation of hoop stress on the cavity surface for various values of 
X, K = 0 

Numerical Results 
The velocity components (u, w) corresponding to the stress state, 

equation (1), for a linearly viscous material of viscosity G can be shown 
to be (in cylindrical coordinates) 

2Gu = - (1 - X) pgrz, 2Gw = - - (1 - X) pg (2z2 + r2). (10) 
3 6 

When X = 1, the state of stress is hydrostatic and the velocity field is 
identically zero. Also, referring to equation (7), we see that the solution 
around the cavity is particularly simple since Ao = J and Bo = K/3 are 
the only nonzero coefficients in the polynomial representation. For 
definiteness we display this solution for pressure p on the cavity 
surface and a hydrostatic gravitational loading pg: 

1 

2GuR 

pgHa 

2GW4, 

pgHa 

OR 

PgH 

0~0 _ Q> 

pgH pgH 

21 pgHJ\RJ 3 \R, 
cos 0 

sin 0 

l + /c + 1 -

(* 
1 + K — COS 0 

pgHJ \Rl 

(11) 

pgH] \Rl 

cos 0 

and 

TRJ, 0. 

Inspection of the radial velocity component of equation (11) shows 
that for deep cavities (K = a/H « 1) and p < pgH the deformation 
is essentially a uniform collapse of the cavity. Of greater interest, 
however, is the case when the applied cavity pressure equals the 
overburden pressure at the cavity equatorial plane. Here, the velocity 
field on the cavity wall is given by 

2GUR 2 , 2Gw$ 
K COS 0 , 

3 

1 
- K sin 0 (12) 

pgHa 3 pgHa 3 
and is a volume preserving rise of the cavity as shown in Fig. 2. This 
buoyancy effect had been observed previously in numerical investi­
gation of nonlinear creep around a cavity in halite [1]. 

Setting K = 0 in equation (7) gives the solution for cavity under 
biaxial compressive stress field pgH and XpgH at infinity. With AQ 
= (7 + 16X)/18, A2 = - 2 (1 - X)/9, and S i = 5 (1 - X)/9 being the only 
nonzero coefficients, the following stress components are obtained: 

Fig. 4 Contour values of hoop stress around the cavity for K = 0.2 and X : 

0.5 

= —cos2 (b — X sin2 0 -) I— P 0 

PgH 3 \RI 

( -7 + 1 6 X ) | - f + 5 ( l - X ) Pi 

TR4, 

pgH sin 0 
-(1 — X) cos 0 + d-x)M.'! 

R 
5 - 8 

PgH 

PgH 

, • , x o , ( 4 X - 1 3 ) / a \ 3 
(sin2 0 + X cos2 0 + - P 0 

18 \R 

(13) 

+ 2(1 
^ / a \ 5 ( l - X ) / a \ 3 

Fig. 3 illustrates the variation of a J pgH around the cavity surface 
for X = 0, i 1,1, and 1. The case X = 0 agrees with the well-known so­
lution (see reference [8], for instance) for a spherical cavity in an in­
compressible elastic material submitted to uniform axial compression 
at infinity. The stress concentration factor is 39/18 as determined by 
the value of 0$ at the equator of the cavity. 

Fig. 4 illustrates a contour plot of the hoop stress 09 around the 
cavity for K = 0.2 and X = 0.5, and in Fig. 5 the values of oe on the 
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Fig. 5 Values of hoop stress on the plane surface of the half space for K : 

0.2 and \ = 0.5 

planar surface are shown. Legendre polynomials and their derivatives 
up to and including order 3 are present in this solution. As can be seen 
from Figs. 4 and 5, the hoop stress along the planar surface is less than 
one percent of its maximum values on the cavity surface. Fig. 6 illus­
trates the deformed shape of the cavity surface for the case K = 0.2 and 
A = 0.5. The deformed shape was produced from displacements found 
by applying the velocity field over a time period At where At is used 
for scaling the resultant deformation. 

The Boussinesq-Papkovich functions can also be used to obtain 
the solution for slow, viscous flow about a spherical inclusion in a 
gravity loaded half space. Here, we take A = 1 and, hence, the velocity 
field away from the inclusion is identically zero. Presuming that the 
inclusion is rising with a velocity uu because its density, p\, is less than 
that of the surrounding medium and that the inclusion is bonded to 
it, we must have the boundary conditions, 

UR = — uo cos 0, w,j, = uo sin </> on R = a. 

Substituting equations (5) into equations (2) and setting equal to the 
foregoing velocity boundary values at R = a then gives all zero coef­
ficients except for Bo = 3Guna/2 and Ai = —Guoa3/2. The velocities 
and stresses in spherical coordinates are then found to be 

(14) 

(15) 

Fig. 6 Deformation of the spherical cavity, K = 0.2 and A = 0.5 

We can calculate the force on the inclusion from the stress field, 
equation (15) evaluated at R = a as 

27ra: X"'' cos <j> OR — sin (j> TR$\ sin < 

Equating to the weight of the spherical inclusion then gives a 
relation between the velocity of rise and the density contrast 
p - pi as 

2"2S' 
« o : 

9 G 
{p- Pi)- (16) 

This formula can be reduced to the classical Stokes formula for the 
drag on a sphere moving slowly through a linearly viscous fluid [9]. 
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Viscoelastic Analysis of Adhesively 
Bonded Joints1 

In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends 
are elastic and the adhesive is linearly viscoelastic. After formulating the general problem 
a specific example for two identical adherends bonded through a three parameter visco­
elastic solid adhesive is considered. The standard Laplace transform technique is used 
to solve the problem. The stress distribution in the adhesive layer is calculated for three 
different external loads namely, membrane loading, bending, and transverse shear load­
ing. The results indicate that the peak value of the normal stress in the adhesive is not 
only consistently higher than the corresponding shear stress but also decays slower. 

1 Introduction 
In its simplest form an adhesively bonded structure consists of three 

components of different mechanical properties, namely, the adhesive 
and the two adherends. Because of the nonhomogeneous nature and 
of the geometrical complexity of the medium, even for the linearly 
elastic materials the exact analytical treatment of the problem re­
garding the stress analysis of the structure is, in general, hopelessly 
complicated. The existing analytical studies are, therefore, based on 
certain simplifying assumptions with regard to the modeling of the 
adhesive and the adherends. The adherends are usually modeled as 
an isotropic or orthotropic membrane (e.g., [1]), a plate (e.g., [2,3]), 
or an elastic continuum (e.g., [4-6]). The primary physical consider­
ation used in the selection of a particular model is generally the ratio 
of the thickness of the adherend to lateral dimensions of the bond 
region. For example, for adherends with a very small relative thickness 
the bending stiffness may be neglected whereas if the thickness of the 
adherend is not small even the plate assumption may be erroneous. 
As for the adhesives, generally the thickness variation of the stresses 
is neglected and the adhesive layer is modeled as a linear shear or a 
tension-shear spring. 

In most applications of structural adhesives the operating tem­
perature is such that the adhesive remains in its initial glassy stage 
through the entire loading period and hence it is not necessary to 
consider the time-dependent behavior of the stress-strain relations 
in performing the stress analysis of the joint. However, in certain 

1 This work was supported by NASA-Langley under the Grant NGR 39-
007-011 and by NSF under the Grant ENG 78-09737. 

2 Permanently, Faculty of Engineering and Architecture, Technical Uni­
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applications, the temperature and the load duration may be such that 
the rheological behavior of the adhesive may no longer be negligible. 
In this paper the adhesively bonded joint problem is considered by 
assuming that the adhesive is a linear viscoelastic material. 

2 Formulation of the Problem 
In formulating the adhesively bonded joint problems unless the 

thickness of the adherends is at least two orders of magnitude smaller 
than the length characterizing the bond region the generalized plane 
stress or the membrane assumption does not seem to be very realistic. 
On the other hand in an adhesive joint between relatively thin ad­
herends, even if it were possible to formulate the problem by assuming 
the adherends as elastic continua, the numerical analysis involve such 
severe convergence problems that the accuracy of the results may be 
highly questionable [5]. In such problems the plate assumption in 
modeling the adherends appears to be a fairly good compromise. Thus, 
in this paper, the problem will be formulated under the following 
primary assumptions: (a) the adherends are treated as linear elastic 
plates and the transverse shear effects are taken into account; and (6) 
the adhesive is considered as a viscoelastic solid in which the in-plane 
strain as well as out-of-plane strain and shear strain are assumed to 
be nonzero. The secondary assumptions under which the specific 
problem is formulated and solved simplify the analysis quite con­
siderably but do not affect the character of the solution. These as­
sumptions are: (a) the problem is one of plane strain, that is, the 
bonded joint is very "wide" and undergoes cylindrical bending; (b) 
the adherends have the same thickness and are made of the same 
material; and (c) the structure is a single lap joint. The elastic version 
of the problem neglecting the transverse shear effects in the adherends 
was considered in [2]. The solution of, again, the elastic problem for 
different adherends with a somewhat simpler adhesive model may 
be found in [3].3 

3 Needless to say, the problem has been very widely studied. Some references 
to further analytical work and to finite-element-type solutions may be found 
in [3]. 
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Fig. 1 Geometry of the bonded joint and the viscoelastlc adhesive model 

It should be pointed out that at present the continuum elasticity 
solution of the problem appears to be intractable. To appreciate the 
difficulties involved, one may refer to [4] where the elastostatic 
problem for a "lap joint" is considered. In [4] the problem could be 
solved only under rather severe simplifying assumptions. The two-
dimensional elasticity problem formulated in [4] is actually that of 
an infinite strip (-<» < x < °°, — h < y < h) containing two semi-in­
finite cracks in the midplane (y = 0, \x\ > a) of the strip. Uniform 
tension is applied at infinity to the lower half on one side (at x = °°, 
—h < y < 0) and the upper half on the other (x = - °°, 0 <y <h). The 
problem is then solved basically as a crack problem.4 

The geometry of the problem under consideration is shown in Fig. 
1(a). Prom the equilibrium of the plate elements for the adherends 
1 and 2 the following differential equations may be obtained: 

ox 
'T, 

Wo.. 

dx 

where Nix, Qi> 

dQu 

ox 

*Q2x _ 

dx 
o, 

dMlx 

dx 

dM2x 

dx 

= Qi 

Q2 

hi + ho 

2 

h2 + h0 

T, (1 a-c) 

T, (2 a-c) 

Mix are, respectively the standard membrane, 
transverse shear, and moment resultants, the index i = 1,2 referring 
to the adherends 1 and 2, hi, h2, and ho are the thicknesses of the 
adherends and the adhesive as shown, and a(x, t) and T(X, t) are the 
interface normal and shear stresses. In modeling the adhesive it is 
assumed that the stress components ay(x,y, t) = a(x, t) and Txy(x, 
y,t) = T(X, t) in the adhesive layer are independent of they-coordi­
nate. 

Assuming cylindrical bending, eu = 0, t2z — 0. The stress resul­
tant-displacement relations may then be expressed as 

(3 a-c) 
diii 

dx 

du2 

dx 

= CiNu, 

= CiN2x, 

?fh_* 
dx 

afe 
dx 

= DiMu, 

= D2M2x, 

di>i 

dx 

dv2 

dx 

+ 01r 

+ 09r 

-On 
Bi 

-%2* 
B2 

(4 a-c) 

4 On the other hand in this paper the lap joint problem is formulated as a fi­
nite plate problem under certain boundary conditions. Nevertheless, qualita­
tively the elastic results found in this paper (equations (71) and (73)) agree with 
that given in [4]. 

where 

Ci 
Eihi 

L, A = 
12(1 - m2) 

Eihi* ' 
Bi=-mhi, (i = 1, 2) 

6 

(5 a-c) 

Ei, Mi, Vi, (i = 1,2) are the elastic constants, u;(x, t) and u,(x, t), (i = 
1, 2) are x and y-components of the displacement vector and ft-*, (i 
= 1, 2) is the rotation of the normal to the midplane of the adher­
ends. 

It may be seen that as stated the problem has 14 unknown func­
tions, namely, a, T, Nix, Qix, Mu, (i = 1, 2). Equations 
(l)-(4) provide 12 relations. The remaining two relations necessary 
to complete the formulation of the problem are obtained from the 
continuity conditions for the displacements in the bond region. To 
do this the mechanics of the adhesive layer, specifically its constitutive 
relations need to be considered. 

Referring to Fig. 1(6) the average strains in the adhesive may be 
expressed as 

hi 

€y = (Vl -

dx 

H i • 
h2 

, . „ • " 2 | 
2 2 

v2)lho, 

hi d j3 l x 

2 dx dx 2 

/hQ 

h2d$2 

dx n (6 a-c) 

Noting that all the remaining strain components in the adhesive are 
zero and defining 

e = (£* + ey)/3, (7) 

the strain tensor for the adhesive may be decomposed as follows: 

7*y/2 0" 

€y 0 

0 0, 

= 
e 0 0 

0 e 0 

.° ° e. 
+ yxy/i 

Similarly, noting that ay = o 
sive may be decomposed as 

tx~e Yxy/2 0 

7*y/2 ey - e 0 

0 0 - e 

(8) 

dx 

T 

0 

T 0 " 

a 0 

0 a. 

= 
's 0 0" 

0 s 0 

0 0 s 
+ 

'ffx — S T 0 

T a — s 0 

0 0 az — s 

r, the stress tensor for the adhe-

(9) 

where, the hydrostatic component of the stress tensor s is defined 
by 

S = (ffx + ff+ (T2)/3 (10) 

The constitutive equations of linear isotropic viscoelastic materials 
may be expressed in terms of either hereditary integrals by using creep 
compliance or relaxation functions, or differential operators6 [7-9]. 
In this paper the latter approach is adopted and it is assumed that 

Piisij) = Qi(eij), (£,;) = 1,2,3, 

P2(s) = Q2(e) 

(ID 

(12) 

where s,-y and e/y (i,j,) = 1, 2,3, are the deviatoric components of stress 
and strain tensors, respectively, as given by (8) and (9), s and e are 
defined by (10) and (7), and Pi , Qi, P2, and Q2 are differential oper-

n 
ators of the form Y. a*(t) dk/dth, the coefficients a& being generally 

o 

6 The two formulations are, of course, related through Laplace transforms. 
For example, the creep compliance J(t) is the inverse Laplace transform of 
P(s)/sQ(s) where P and Q are the related differential operators operating on 
a and c, respectively, and s is the transform variable. 
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functions of temperature. More explicitly, from (7)-(12) it may be seen 
that 

Pi(2ox - a - az) = Qi(2«x - ey), 

Pi(2<r -<rx- <r2) = Qi(2£y - ex), 

Pi(2<r2 - ox-a) = -Qi(e x + ey), 

Pi(r) =-Qi(yxy), 

P2(<rx + a+crz) = Q2(ex + (y). 

(13) 

(14) 

(15) 

(16) 

(17) 

Since Y. sii ~ 0 and Y. <?II = 0, equations (13)-(15) are not linearly 
i j 

independent. Equation (14) may be obtained by adding (13) and (15) 
and will, therefore, be ignored in the remainder of the analysis. 

Practical experience indicates that under a hydrostatic stress state 
most viscoelastic materials behave elastically. Hence, it may be as­
sumed that 

Pi=l, Q2 = 3K, 

<jx + a + az = <SK(tx + ey) 

(18) 

(19) 

where K is the bulk modulus of the adhesive. Eliminating o> and az 

from (13), (15), and (19) and using (6 a-c), the constitutive equations 
may now be written 

3P, K 

Q 

l d m 

2 dx 

l d u i 

.2 dx 

hi d/3i, 1 du2 h2 d^2x , "i -
H 1 1 

4 dx 2 dx 4 dx ho 

V2 

Pi(r) = -Qi 

hi'dPu l d u 2 , / i 2d/? 2 , 2 
1 1- — (ui - u2) 

4 dx 2 dx 4 dx ho 

1 {(..-£»..- «2 - — /32x //Jo 

(20) 

(21) 

Equations (20) and (21) with (l)-(4) provide the system of 14 relations 
necessary to solve for the unknown functions a, T, U,, D,-, ftx, A',,, Qix, 
and Mix,(i = 1,2). 

3 Example 
As an example we consider a single lap joint which consists of two 

identical adherends bonded through an adhesive layer which may be 
represented by a three-parameter viscoelastic solid (Fig. 1 (c)). For 
the adherends we have 

h1=h2 = h, C^ = C2 = C = 

12(1 - v2) 
D D2 = D=-

Eh* 

Eh 

B1 = B2 = B •• - uh. 
6 

(22) 

For the adhesive, referring to Fig. 1(c) it may be shown that 

Pi = l + a i — , Qi 
ot 

bo+bi 
dt 

where 

O l 
X2 

bo--
kik2 

6i = 
\2ki 

(23(1,6) 

(24) 
k\ + k2 k\ + k2 h\ + h2 

For a nondecreasing strain under sustained load the following in­
equality must be satisfied: 

fei > aifao- (25) 

Generally, the coefficients ai, fe0, and b\ are functions of temperature, 
hence implicitly, functions of time if the temperature does not remain 
reasonably constant during the period of loading. In the example 
considered, it is assumed that these coefficients are constant. 

Through a relatively straightforward elimination, the governing 
equations (l)-(4), (20), and (21) can be reduced to a pair of differential 

equations in the unknown functions <r(x,t) and r(x,t). By carrying 
out this elimination, using (22) and the operators defined by (23) we 
obtain 

bo d2r d'V 
+ ai 

dx2 dx2dfc 2h0 

2C + — (h + h0) 

_6j_ 

2h0 

hD 
2C + — (h + ho) 

2 

dr 

dt 

bphD 

ih0 
Qo(t) 

bxhD dQp 

4ho dt 
(26) 

d4<r d5ff 
3 — - + 3 o i — — + 

dx4 dx4d£ 
^DW-b0)--l-W+2bo) 
.2 hoB 

d2<r 

dx2 

-DWcn -bi)- — (3Kai + 2b i) 
.2 hoB 

d'% 

dx2dt 

2 2 dc 
+ — D(3K + 2b0)a + — D{3Kai + 26j) — = 0. (27) 

ho ho dt 

Assuming that no external transverse shear load is applied to the 
composite plate in —/ < x < / and noting that r(x,t) is the average 
shear stress acting on the adhesive, referring to Fig. 1(a) the equi­
librium of transverse shear resultants gives 

Qix(x,t) + Q2x(x,t) s Qo(t), (-1 < x < I). (28) 

Equation (28) has been used in deriving (26). 
The differential equations (26) and (27) are uncoupled and may 

easily be solved by first reducing them to ordinary differential 
equations through the use of Laplace transforms. Assuming that the 
bonded joint is initially stress-free, the functions a(x,t) and T(X,£) are 
zero for t < 0 and from (26) and (27), we find 

d2F 
--*F-f> 

dx4 ' dx2 

(29) 

(30) 

where F(x,s) and G(x,s) are the Laplace transforms of T(X,4) and 
<T(X,£), respectively, and 

„ [4C + hD(h + h0)](b0 + bis) 

6(1 + ois) 

4ho(l + Ois) 

hDQ0(b0 + blS) 

4hos(l + Ois) 

— ( 3 X + 2b0) - -£> (3K - b0) 
hoB 2 

+ s 

2D 

(3/fai + 26i) - - D ( 3 K a i • 
HQB 2 

°i) 

-[3/C+260 + s(3Kai + 26i)]. 

(31) 

(32) 

(33) 

. ... (34) 
3/j0(l + «i«) 

In the example it is assumed that the external loads are given by (see 
Fig. 1(a)) 

Na(t) = N0H(t), -Mi(t) = MiH(t) , M2(t) = M2H(t), 

Q„(t) = QoR(t) (35 a-d) 

where H(t) is the Heaviside function. For example, the nonhomo-
geneous term /3 which appears in (29) and which is given by (32) is 
obtained by using (35d). 

The general solution of (29) and (30) may be written as 

F(x,s) = A\ sinh (ax) + A2 cosh (ax) -> (36) 
a1 

G(x,s) = A^ sinh (0ix) + A4 cosh (</>ix) + A$ sinh (<j>2x) 

+ A6cosh(02x) (37) 
where 

0, = [72 + (74 _ ^y/2\mt 0 2 = [72 _ (74 _ ta,4)l/2)l/2> (38) 
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and the unknown functions Ads),. . . , Ads) are determined from the 
boundary conditions. 

The problem is solved under three separate loading conditions 
shown in Fig. 2. 

(a) Membrane Loading (Fig. 2(a)). 
For this case the boundary conditions for plates 1 and 2 are given 

as follows: 

JV1I(/,() = 0, Mu(l,t) = 0, QuU,t) = 0, (39a-c) 

Nlx(-l,t) = Noli(t), Mlx(-l,t) 

= -N0^-^H(t), QiA~l,t) = Q, (40a-c) 

N2x(l,t) = N0H(t), M2x(l,t) 

-No^^mt), Q2x(U) = 0, (41o-c) 

N2x(-l,t) = 0, M2x(-l,t) = 0, Q2x(-l,t) = 0, (42a-c) 

Considering the symmetry of the problem in geometry and materials, 
after some lengthy manipulations it can be shown that (39)-(42) are 
equivalent to the following conditions: 

r(x,t) = r(-x,t), C r(x,t) dx = -JVoH(t), (43a,b) 

a(x,t) = a{-x,t), \ o(x,t) dx = 0, (44o,b) 

-D(3K - b0)cr(l,t) + -D(3Kai - bx) — a(l,t) 
2 2 bt 

(3K + 2b0) 
ho 

— (3Ka1 + 2b1) 
h0 

-a(l,t)+-(h + h0)Notl(t) 
B 2 

-— a(l,t) + - (h + ho)Nod(t) 
B dt 2 

d2 d3 

+ 3—-<r(/,t) + 3ai——<r(l , t ) = 0. (45) 
dx2 oxlot 

In this problem since Q0 = 0, /? = 0 and substituting from (36) and 
(37) into (43)-(45) we obtain 

A1(s) = 0> A2(s): 

A3(s) = 0, Ads) 

Ads) = 0, Ae(s) 

otNo 

2s sinh (al) 

(h + ho)N0o>4 sinh (<fel) 

4s02Aa(s) 

(h + ho)N0o)4 sinh (0 t/) 
(46) 

4s<l>iAa(s) 

where 

A0(s) = 02 cosh (0i/) sinh (</>2l) - <f>i sinh (ct>\l) cosh (cfe/)- (47) 

(6) Bending (Fig. 2(6)). 
For this problem the nonhomogeneous boundary conditions are 

Mlx(-l,t) = Moli(t), M2x(l,t) = M0H(t) , (48a,6) 

and the remaining stress and moment resultants at x = ±1 which 
appear in (39)-(42) are zero. Again, considering the symmetry of the 
problem these conditions may be shown to be equivalent to the fol­
lowing: 

r(x,t) = — T(—x,t), (49) 

d d2 hD 
— r(l,t) + a i —— T(l,t) = - —-MolboH(t) + bi8(t)], (50) 
ox oxot 4h0 

(51) 

(52) 

a(x,t) = — <r(—x,t), 

I a(x,t)x dx = M0H(t), 

H(t)-*f- © hoh 

® T 

(a) 

_ _ - ^ » X 

•4»N0 H(t) 

2X 

( 

1 
© 

MoH(t) —J p^7-7Aqg; 

h0 h 

4=i 
© 

1.1 1 i 1 

(b) 

T 
) x 

/ M n H f t ] 

H ( t ) T 

© 
7777 

hO h Q Q H ( t ) 

t : 

I ' M . = 
© • 

(c ) 

Fig. 2 The loading conditions 

(3K - b0) — <ri.l,t) + (3Kai - bi) — — <r(/,t) 

(3K+ 2b0) 
h0 

• — (3Kai + 2bi) 
/io 

- ( r ( / , t ) + M o H ( ( ) 

- — a(l,t) + DM0S(t) 
Bat 

d2 d3 

+ 3—-<7(/,t) + 3 a i — T - o - a , t ) = 0. (53) 
dx2 dx2d£ 

In this problem, too, 13 = 0, and substituting from (36) and (37) into 
(49)-(53) we obtain 

hDMoibo + bis) 
Ms) • 

Ads) •• 

Ads) •• 

4hoots{l + a\s) cosh (al) 

O)4MQ cosh (fal) 

2s<j>2Ab(s) 

a>4Mo cosh (<jiil) 

, A2(s)=0, 

Ads) = 0, 

Ads) = 0 
2s<l>iAb(s) 

Ai(s) = (j>2 sinh (<l>il) cosh (<fe0 - <t>i cosh (0i/) sinh (<fe/)- (54) 

(c) Transverse Shear (Fig. 2(c)). 
For the loading given in Fig. 2(c) the nonhomogeneous boundary 

conditions are 

Mlx(-l,t) = -QolH(t), Qu(~l,t) = QoH(t), (55a,b) 

M2x(l,t) = QoM(t), Q2x(l,t) = QoH(t), (56a,b) 
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and the remaining stress and moment resultants at x = ±1 are zero. 
It may again be shown that these boundary conditions are equivalent 
to 

T(x,t) = T(~x,t), C r{x,t)dx=0, (57 o,fa) 

a(x,t) = o(-x,t), f a(x,t)dx = - Q 0 H ( t ) , {58 a,b) 

hD hD d 
— (3K - b0Ml,t) + —{3Kai - fai) — a(l,t) 

2 2 dt • 

{3K+ 2b0) 
ho 

1 
(3Koi + 2bi) 

fto 

- <T(^,£) + DQ0lH{t) 
B 

Bdt 
a{l,t) + DQ0lS{t) 

d2 d3 

+ 3—-a{l , t) + 3ai——- a{l,t) = 0. (59) 
dx2 dxzdt 

In this case ,8 is given by (32) and the functions A\(s),. . ., A6{s) are 
obtained as follows: 

A1{s)=0,A2{s). 

As{s)=0,A4{s)' 

V 
a sinh (al) 

Qo[u>Hi cosh (<fel) - u*l s inh feO] 

Ab(s) = 0, A6{s) = -

2s (/>2 Ac (s) 

Qol'^'fe cosh (0iO - o)4/ sinh {fal)] 

2s0iAc(s) 

Ac(s) = <l>2 cosh (0i/) sinh (<fe') - <l>i sinh (0i/) cosh (</>2/). (60) 

4 Solution and Results 
After determining the functions Aj{s), (i = 1,. . ., 6) the unknown 

functions r{x,t) and <r(;t,t) may be obtained by substituting from.(36) 
and (37) into the inversion integral. In each case the constant c giving 
the line of integration is determined by analyzing the singular be­
havior of the functions F{x,s) and G{x,s) in the complex s-plane. 
Because of the existence of a number of branch points in the complex 
plane the exact inversion of F and G becomes very complicated and, 
in light of the fact that the inversion integrals can be evaluated in a 
straightforward manner numerically, does not seem to be worth the 
effort. Thus making the following change in variable 

s = c + iy, — °° < y < • 

the functions r and a may be expressed as 

1 
r{x,t) =— j F{x,c + iy)etfc+i^dy, 

G{x,c + iy)e^c+iy^dy, 
1 r™ 

2\r J-= 

(61) 

(62) 

(63) 

It can be shown that the imaginary parts of the integrands in (62) and 
(63) are odd functions in y and therefore the integrals give real re­
sults. 

Examining the functions F and G in the complex plane it is found 
tha ts = 0 is a simple pole and all the remaining singularities lie in the 
left-hand plane. Hence c is a positive constant. To evaluate the inte­
grals in (62) and (63) first they are expressed in (0, °°) as follows: 

S-Jiy)dy=So"my)+fi' •y)]dy. (64) 

Even though there are routine techniques for evaluating infinite in­
tegrals, it is generally a good practice to obtain the asymptotic be­
havior of the integrands for large values of the argument before se­
lecting a particular technique. In the problem under consideration 
the integrands do not decay exponentially. Consequently, the nu­
merical integration requires more care. One way to insure that no 
significant accuracy is lost due to the slow decay of integrands is to 
evaluate the integral in closed form for large values of the argument. 
For example, in the lap joint under membrane loading No (Fig. 2(a)), 

after analyzing the asymptotic behavior of the function F, the shear 
stress T may be expressed as 

r{x,t) 

where 

1 rA 

27T J O 
c + iyje'fc+'y) + F{x, c - iy)et(c-'y)]dy 

No 
-ym/a\ ect 

27T sinh (l^/m/a 

cosh {x^m/ai) r"° sin {ty) 111 P° 
7) JA 

-dy (65) 

m = b^AC + h(h + h0)D]/{4h0) (66) 

and A is a "large" number. The second integral is known in closed 
form and the first is evaluated numerically. The proper selection of 
A requires some trial calculations. In this problem A selected in 20 
to 30 range gives good results. It may also be pointed out that the 
numerical calculations show the results to be insensitive to the choice 
of the constant c. 

In the numerical example considered it is assumed that the ad-
herends are aluminum alloy plates with the following elastic constants 
and dimensions (Fig. 2): 

E = 107 psi = 6.895 X 1010 N/m2, v = 0.3 

h = 0.09 in. = 0.229 X 10-2m, / = 0.5 in. = 1.27 X 10"2m. 

In the three parameter viscoelastic solid adopted for the adhesive the 
coefficients which appear in the operators P\ and Qi (see equations 
(23a, 6)) are related to the constants shown in Fig. 1(c) by (24). To 
relate these constants to somewhat more conventional material 
properties consider the response of the model given in Fig. 1(c) to an 
input T = ToH(£) which is found to be 

Iy(t) = r [*od - e-l/t°) + oie- ' / 'o], t0 = ~ = ^ , 
^ Ol Oo « 2 

where to is called the retardation time. Now defining 

To TQ 

Y(°°) 
Mo = 

7(0+) 
/ i « 

from (67) it is seen that 

2MO = — = ki, 2yu.= 
a i 

b0 = 
k\k% 

(67) 

(68) 

(69) 
ki + k2 

Thus the moduli MO and /u- and the retardation time tQ may be se­
lected as the three parameters representing the viscoelastic solid. 

For the particular epoxy used as the adhesive the properties at 
t = 0 are assumed to be 

h0 = 0.004 in. = 1.016 X 10"4 m 
E0 = 5.797 X 106 psi = 39.968 X 10s N/m2 

/no = 2.225 X 105 psi = 15.341 X 108 N/m2 

The bulk modulus K is assumed to be constant and may, therefore, 
be calculated in terms of Eg and the shear modulus no as 

K-
Eono 

(70) 
3(3/xo - E0) 

In the example it is also assumed that 

[in = Mo/3, to = 4 hr. 

If it is assumed that the adhesive layer is linearly elastic having the 
constants Ea and va, with the adhesive model used in this paper the 
solution may be obtained in a straightforward manner. For example, 
in the case of membrane loading described by (39)-(42) the adhesive 
stresses are found to be 

TeU) 
iVoae cosh (aex) 

2 sinh {aj) 

- , , i L TT^C + hD{h + h0)], 
4(1 + va)h0 

ae(x) = B4 cosh (mix) + Bn cosh {m-zx), 

Ea 

(71) 

(72) 

(73) 
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t r ( x . t ) 

N 0A* 

xA* 

Fig. 3 The shear stress Txy = T ( X , f) in the adhesive layer 

Fig. 4 The normal stress ay = a(x, t) in the adhesive layer 

x/l * 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

-2.24x10"' ' 
-4 

-3.67x10 

-9.81x10"'* 

- 2 . 8 5 x l 0 " 3 

- 8 . 3 6 x l 0 " 3 

-0 .026 

-0 .072 

-0.212 

-o.em 
-1 .834 

-5-391 

Table 1 Variation of T(X 

0.01 

-2.26x10"'* 

-3.71x10"' ' 

-9.95x10"'' 

- 2 . 8 9 x l 0 - 3 

-8 .48x lo" 3 

-0.025 

-0.073 

-0.213 

-0.624 

-1.828 

-5.351 

0.1 

-2.73x10"'' 

- 4 . '(2x10"'' 

- 1 .16x l0" 3 

- 3 . 2 9 x l 0 - 3 

-9.A5xlO~3 

-0.027 

-0 .078 

-0.22/) 

-0.641 

-1.838 

-5.265 

t)/(N0/l) for the case of tension (f in hr) 

0.5 

-5.29x10"'* 

-8.15x10"' ' 

- 1 . 9 8 x l 0 - 3 

- 5 .24x lo" 3 

-0 .014 

-0 .038 

-0 .100 

-0.266 

-0.702 

-1.843 

-4.812 

1.0 

-9.12x10"'' 

- 1 . 3 5 x l 0 " 3 

- 3 . 1 0 x l 0 " 3 

- 7 . 7 8 x l 0 " 3 

-0.020 

-0 .050 

-0.125 

-0 .309 

-0.759 

-1 .839 

-4.382 

2.0 

- 1 . 8 4 x l 0 - 3 

- 2 . 6 1 x l 0 " 3 

- 5 . 5 3 x l 0 " 3 

-0.013 

-0 .030 

-0.071 

-0.164 

-0.373 

-0.833 

-1.816 

-3-838 

4.0 

- 4 . 0 2 x l 0 - 3 

- 5 . 4 0 x l 0 " 3 

-0.010 

-0.022 

-0 .048 

-0.101 

-0.213 

-0.441 

-0.891 

* 1.757 

-3.466 

0 0 

-0.012 

-0.015 

-0.023 

-0.041 

-0.075 

-0.139 

-0.258 

-0.481 

-0.896 

- I . 6 7 0 

-3.112 

Table 2 Variation of <r(x, f)/(W0/f) for the case of tension (f in hr) 

x/l * 

0 

0.1 

0.2 

o-3 
0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0 

l . O l x l o ' 5 

- 4 . 6 l x l O - 5 

-4.45x10"' ' 

- 2 . 4 5 x l 0 " 3 

-0 .011 

-0.044 

-0.153 

-0.457 

-1.052 

-0.882 

9-0'7__, 

9.01 
I . 18x l0" 5 

- 4 . 3 3 x l O - 5 

-4.38x10"' ' 

- 2 .44x lo" 3 

T O . 0 1 1 

-0.044 

-0.152 

-0.456 

-1.048 

-0.876 

8.971 

Q . l 
2.05xl0" 5 

-3 -O lx lo" 5 

-4.12x10"'' 

- 2 . 4 0 x l O - 3 

-0.011 

-0.044 

-0.154 

-0.460 

-1.052 

-0.866 

8.938 

0.5 

5.8Oxl0"5 

2 . 7 7 x I 0 - 5 

-2.90x10"' ' 

- 2 . 2 0 x I 0 " 3 

-0.011 

-0.045 

-0.158 

-0.469 

-1 .050 

-0.808 

8.656 

1.0 

9.57xlO~5 

8.59xl0~ 5 

-1.69x10"'* 

- 2 .00x lo" 3 

-0.011 

-0 .046 

-O. I63 

-0.478 

-1.048 

-0.755 

8.397 

2.0 

1.48x10"'* 

1.67x10"'' 

- 8 . 2 8 x l 0 " 7 

_LLZMSL2. 
-0 .011 

-0 .048 

-0 .169 

-0.489 

-1.045 

-0 .690 

8.096 

4.0 

1.99x10"'' 

2.46x10"'' 

1.61x10"'' 

- 1 . 4 9 x l O - 3 

-0 .011 

-0.049 

-0.174 

-0.498 

-1.040 

-0.639 

7.872 

0 0 

2.29x10"'* 
-4 2.92x10 H 

- 4 2.50x10 M 

- 1 . 3 8 x l O - 3 

-0 .01) 

-0.050 

-0.177 

-0.502 

-1.037 

-0.621 

• 7.801 
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0 
1 
2 
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Fig. 5 Variation of maximum shear and normal stresses in the adhesive as 
functions of time 

B4, = -e^Noih + h0) sinh (m20/(4m2A), 

Be = ti4N0(h + h0) sinh (mi/)/(4m1A), 

A = m2 cosh (mil) sinh (m20 — mi sinh (mil) cosh (m2l), 

2DEM ~ va) 

h0(l -Pa- 2va
2) 

mi = [712 + ( 7 l
4 - eW*Y-l\ m2 = [yt • 6 i 4 ) 1 / 2 ] 1/2 

Ti = 
(1 - «<a)£0 

( ! - ! / „ - 2va*) 
' 1 

B/i0 

hDv„ 
(74) 

4(1 - OJ 
On the other hand, in the case of viscoelastic adhesive the elastic 

response for t = +0 and t = °° may also be determined by using the 
limit theorems for the inversion of Laplace transforms. For example, 
again for the case of membrane loading, from (36) and (46) the shear 
stress in the adhesive may be obtained as 

T(X, + 0) = -

bi 

Afoaocosh (aox) 

«o' 
Ahoa\ 

2 sinh (aoO 

[AC + hD(h + ho)}, 

and 

T ( * , c o ) : 
Noce„ cosh (a„x) 

2 sinh (a„l) 

bo 
a J = -X-[4C + hD(h + h0)]. 

Ah0 

(75) 

(76) 

(77) 

(78) 

Note that at t = +0, jxa = EJ2(1 + va) = no and Ea = E0, and from 
(69), (72), and (76), it follows that ao = ae. Hence, the initial response 
given by (75) is the expected elastic solution given by (71). Similarly, 
at t = <», na = M». and (69), (72), and (78) show that a„ = ae, and 
hence T(X, OO) = re(x). Also, it can be shown that a(x, <=°) corresponds 
to the elastic solution obtained by using na = /J™ and the bulk modulus 
of the adhesive which is assumed to be a time-independent con­
stant. 

Table 3 Variation of T ( X , 

t 
x/l 

0. 

0.1 

0.2 

0.3 

O.k 

0.5 

0.6 

0.7 

0.8 

0 .9 

1.0 

0.01 

0. 

- 2 . 3 8 x l 0 " 3 

-7.82x10 3 

-0 .023 

-0 .068 

-0 .200 

-0 .587 

-1 .720 

-5 .036 

- I * . 7 A 

-43.15 

0 .1 

0 . 

- 2 . 8 1 x l 0 " 3 

- 9 . 0 7 x l o " 3 

- 0 .026 

- 0 . 0 7 6 

-0 .219 

-0 .629 

-1 .803 

-5 .171 

-14 .82 

-W. I16 

f ) / (M 0 / / 2 ) for the case 

0.5 

0 . 

- 5 . 0 1 x l 0 " 3 

-0 .015 

-0 .042 

-0.113 

-0.303 

-0 .808 

-2 .143 

-5 .658 

-14 .86 

-38 .81 

1.0 

0 . 

- 8 . O 9 x l 0 " 3 

- 0 .024 

-0 .062 

-0 .159 

-0 .401 

-1 .005 

-2 .495 

-6 .123 

-14 .83 

-35 .34 

of bending (f in hr) 

2 .0 

0 . 

-0 .015 

-0 .042 

-0 .103 

-0 .245 

-0 .573 

-1 .324 

-3 .010 

-6 .718 

-14 .64 

-30 .95 

4.0 

0 . 

-0 .029 

-0 .077 

-0 .175 

-0.382 

-0 .818 

-1 .720 

-3.553 

-7 .185 

-14 .17 

-27 .14 

Table 4 Variation of o~(x, 

x / * £ 

0. 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.01 

0. 

-5.94X10"11 

- 4 . 7 2 x l O - 3 

-0 .026 

-0.118 

-0.465 

-1.621 

-4.847 

-11.15 

-9 .318 

95.43 

0.1 

0 . 

-4.84X10"1 1 

-4 .45x1O" 3 

- 0 .026 

-0 .118 

-0 .469 

-1 .638 

-4 .891 

-11 .19 

-9 .209 

95.09 

f)/(Af0//2) for the case of bending ((in hr) 

0.5 

0 . 

5 . 5 0 x l O - 6 

- 3 . 1 9 x l 0 " 3 

-0 .023 

-0 .117 

-0 .480 

-1 .686 

-4 .991 

-11 .17 

-8 .599 

92.09 

1.0 

0 . 

5.00x10 

- 1 . 9 3 x 1 0 ^ 

-0 .021 

-0 .116 

-0 .491 

-1 .733 

-5 .084 

-11 .15 

-8 .031 

89-33 

2 .0 

0 . 

1 . 1 9 x l 0 " 3 

- 1 .85x10 " ' ' 

-0 .019 

- 0 . U 6 

-0 .506 

-1 .796 

-5 .205 

-11 .11 

-7 .341 

86.13 

4.0 

0 . 

1 .88x lo " 3 

1 .51x lo " 3 

-0 .016 

-0.115 

-0 .521 

-1.852 

-5 .301 

-11 .06 

-6 .802 

83.75 

Table 5 Variation of r (x , t)/(Q0/l) for the case of shearing (f in hr) 

x / £ ' 

0 . 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.01 

4.030 

4.029 

4.024 

4.009 

3.964. 

3.832 

3.445 

2.312 

-1 .004 

-10 .71 

-39 .12 

0.1 

4.030 

4.029 

4.023 

4.006 

3.956 

3.813 

3.404 

2.229 

-1 .139 

-10.79 

-38 .43 

0.5 

4.028 

4.027 

4.016 

3-990 

3.919 

3.729 

3.225 

1.890 

-1 .626 

-10 .83 

-34 .78 

1.0 

4.025 

4.021 

4.007 

3.969 

3.873 

3.631 

3.027 

1.537 

-2 .091 

-10 .80 

-31 .31 

2 .0 

4.017 

4.011 

3.988 

3.928 

3.787 

3-459 

2.709 

1.022 

-2 .686 

-10 .61 

-26 .92 

4.0 

4.000 

3.989 

3.949 

3.854 

3.649 

3.214 

2.312 

0.479 

-3.153 

-10 .14 

-23 .11 

Table 6 Variation of a(x, t)/(Q0/l) for the case of shearing (f in hr) 

*/t ' 

0. 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1.0 

0.01 

1.37X10"11 

-3 .86x10" ' ' 

- 4 . 2 1 x l 0 " 3 

-0 .024 

-0 .109 

-0.433 

-1 .521 

-4.595 

-10.79 

-10.47 

82.09 

0 .1 

2.25x10 H 

-2.53X10"11 

- 3 - 9 3 x l o " 3 

-0 .023 

-0.109 

-0 .438 

-1 .538 

-4.635 

-10 .84 

-10 .38 

81.77 

0.5 

6 .02x10" ' ' 

3 .33x10" ' ' 

- 2 . 6 8 x l 0 " 3 

-0 .021 

-0 .107 

-0 .445 

-1 .578 

-4 .726 

-10 .83 

-9 .832 

79.09 

1.0 

9.78X10"11 

9.21X10"11 

- 1 . 4 2 x l 0 " 3 

-0 .019 

-0 .106 

-0 .454 

-1 .619 

-4 .811 

-10 .81 

-9.322 

76.62 

2 .0 

1 .50x l0 " 3 

1 .73x lo " 3 

3.10X10"1* 

-0 .016 

-0.105 

-0.466 

-1 .674 

-4 .921 

-10 .79 

-8 .707 

73.76 

4 .0 

2 . 0 0 x l 0 " 3 

2.53X10"3 

1 . 9 8 x l o ' 3 

-0.014 

-0.104 

-0 .479 

-1 .724 

-5.009 

-10.75 

-8.225 

71.63 

For the three types of loading shown in Fig. 2, the calculated results 
for T(X, t) and o(x, t) are shown in Tables 1-6. To visualize the vari­
ation of the stresses in time and along the bond region some sample 
results are also given in Figs. 3-5. Figs. 3 and 4 show the distribution 
of shear and tensile stresses in the bond region in a single lap joint 
under membrane loading for some fixed values of time. As expected, 
there is a certain redistribution of stresses with increasing time. This 
may also be seen in Fig. 5 where the variation of the maximum values 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 337 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



of T and a is given. P r o m Figs. 3-5 and Tab les 1-6 it m a y be observed 
t h a t the peak values of the tensile stress a in the adhesive are no t only 
higher t h a n t h e corresponding shear values b u t also decay slower. T h e 
values T and a given in Tables 1 and 2 for t = 0 and t = «• are obta ined 
from t h e elast ic solut ions (71) a n d (73) by using t h e bu lk modu lus K 
which is a s sumed t o b e i n d e p e n d e n t of t i m e and t h e cor responding 
/to a n d /it*,. 
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A Micromechanical Description of 
Granular Material Behavior 
Considered is a sample of cohesionless granular material, in which the individual granules 
are regarded rigid, and which is subjected to overall macroscopic average stresses. On the 
basis of the principle of virtual work, and by an examination of the manner by which adja­
cent granules transmit forces through their contacts, a general representation is estab­
lished for the macroscopic stresses in terms of the volume average of the (tensorial) prod­
uct of the contact forces and the vectors which connect the centroids of adjacent contact­
ing granules. Then the corresponding kinematics is examined and the overall macroscopic 
deformation rate and spin tensors are developed in terms of the volume average of rele­
vant microscopic kinematical variables. As an illustration of the application of the gener­
al expressions developed, two explicit macroscopic results are deduced: (1) a dilatancy 
equqtion which both qualitatively and quantitatively seems to be in accord with experi­
mental observation, and (2) a noncoaxiality equation which seems to support the vertex 
plasticity model. Since the development is based on a microstructural consideration, all 
material coefficients entering the results have well-defined physical interpretations. 

1 Introduction 
Suppose a medium consisting of rigid cohesionless granules carries 

a set of overall macroscopic stresses through forces transmitted across 
contact points on the microscopic scale. It is natural to expect that 
the overall macroscopic mechanical properties of this material are 
expressible in terms of the coefficient of contact friction, and pa­
rameters such as size and shape distributions, and the void ratio (the 
ratio of the void volume to the solid one). Many authors have dealt 
with various aspects of this rather intriguing and fundamental 
problem. For example, the dilatancy induced by shearing in granular 
masses examined by Reynolds [1], has been studied from various 
points of view over the past decades; see, e.g., Newland and Allely [2], 
Rowe [3, 4], Home [5, 6], Satake [7], Oda [8], Matsuoka [9], and 
Nemat-Nasser [10], for treatments involving particulate approaches, 
and Drucker and Prager [11], Shield [12, 13], Drucker, et al. [14], 
Jenike and Shield [15], Nemat-Nasser and Shokooh [16] for a phe-
nomenological plasticity approach, and finally see Cowin [17] for a 
review of microstructural continuum theories.1 In addition, it has been 
experimentally verified (see, e.g., Drescher and de Josselin de Jong 
[19], Oda and Konishi [20], and Drescher [21]) that during the de­
formation of granular materials, the principal directions of the overall 
macroscopic stress tensor at each instant are not, in general, coinci-

1 The book edited by Cowin and Satake [18] contains a large number of rel­
evant references. 
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dent with the principal directions of the corresponding macroscopic 
deformation rate. This property is usually referred to as noncoaxiality 
in the literature; for theoretical treatment of this property, see, e.g., 
Mandel [22], Spencer [23], de Josselin de Jong [24,25], and Mehrabadi 
and Cowin [26]. All plasticity theories which are based on a smooth 
flow potential that depends only on the basic stress invariants (as well 
as some measures of the deformation history) yield coaxiality of stress 
and plastic deformation rate, the exception being vertex models re­
cently discussed by Rice [27], Christoffersen and Hutchinson [28], 
and Mehrabadi and Cowin [29]. 

In this work we shall consider a sample of cohesionless granular 
material, in which the individual granules are regarded rigid, and 
which is subjected to overall macroscopic average stresses, try, i, j = 
1, 2, 3, where a fixed rectangular Cartesian coordinate system, *;, is 
employed. On the basis of the principle of virtual work, Hill [30], and 
by an examination of the manner by which adjacent granules transmit 
forces through their contacts, we shall establish a general represen­
tation for the macroscopic stresses, rJy, in terms of the volume average 
of the (tensorial) product of the contact forces and the vectors which 
connect the centroids of adjacent contacting granules; see equation 
(12). We shall then examine the kinematics in an effort to obtain the 
overall macroscopic deformation rate and spin tensors in terms of the 
volume average of relevant microscopic kinematical variables. For 
simplicity in presentation, this last program is carried out for two-
dimensional problems only, although, like stresses, the deformation 
rate and spin tensors can be given a complete microscopic represen­
tation in three dimensions. As an illustration of the application of the 
general expressions developed, we shall deduce two explicit macro­
scopic results: 

1 A dilatancy equation which both qualitatively and quantita­
tively seems to be in accord with experimental observation. 
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Fig. 1 

2 A noncoaxiality equation which is in accord with the vertex 
plasticity model. 

Since the development is based on a microstructural consideration, 
all material coefficients entering the results have well-defined physical 
interpretations. 

In developing our kinematical relations, we are led to distinguish 
between contacts which are instantaneously inactive in the sense that 
instantaneously no sliding takes place at these points and the critical 
contacts at which instantaneous sliding occurs. It has been known— 
see, for example, Rowe [4] and Davis and Deresiewicz [31, p. 80]—that 
at each instant, groups of instantaneously mutually immobile granules 
are formed in the course of the deformation of granular masses. This 
is required by compatibility of the deformation, and is expected to 
occur even in the case of a collection of spherical granules. At each 
instant the groups move relative to adjacent groups, while trans­
mitting forces through a finite number of active critical contacts with 
their neighbors. The structure, size, and shape of these instanta­
neously rigid groups change with deformation, and therefore both the 
density of the critical contacts and the distribution of the orientation 
of unit normals on these contacts change, as new critical contacts are 
continually developed, while some existing ones are rendered inactive. 
To obtain a complete solution to the problem stated at the beginning 
of this section, namely, to express the macroscopic deformation rates 
as functions of the corresponding macroscopic stress rates using a 
microscopic model, we first need to establish the manner by which 
the density of active contacts and the distribution of their unit nor­
mals evolve with deformation. The results presented in this paper, 
however, do not depend on this evolution, and are valid at each instant 
during the course of flow. 

2 R e p r e s e n t a t i o n of S t r e s s in Granular M a t e r i a l s 
Consider a macroscopically homogeneous element of a granular 

material consisting of rigid granules. The material is carrying an 
overall macroscopic stress oyy through internal forces /, acting at the 
contact points. We set out to find a representation for the overall stress 
in terms of these contact forces. 

Consider two granules, labeled A and B, with centroids at x A and 
x B and contacting each other at xAB; see Fig. 1. Let ffB and ffA de­
note, respectively, the forces exerted on grain A by grain B and vice 
versa. Thus 

ffB + ffA = 0 ( 1 ) 

Balance of forces acting on grain A requires 

t ft" = 0, (2) 
0=i 

where K is the coordination number for grain A, i.e., the number of 
grains contacting A. Balance of moments requires 

± ft» (xf - xf) = ± ff (xfe - xf). (3) 
/3-i /3=i 

Summing over all grains interior to the surface of the material, and 
noting that each contact point contributes with terms such as 

ftB (xfB - xf) + ffA (xfB - xf), 

we obtain 

N N 
Zf?d]=Y.f?df, (4) 

«=i «=i 

where a stands for contacts such as AB, N is the total number of 
contacts in the considered volume, and where 

dfB = xf-xf (5) 

is the vector connecting the centroid of A to that of B. Note that from 
each pair of contact forces at a given contact point, only one enters 
the summations in (4) according to the choice of the vector df, that 
is, ffB is chosen when df = dfB. 

Equation (4) also holds when A and B represent two instanta­
neously rigid groups (clusters) of grains. In this case df should be 
interpreted as the vector connecting the centroids of the two rigid 
groups. Note that then a will represent the instantaneously critical 
contact between the two rigid groups, and N will be the number of 
critical contacts in the considered volume. This interpretation is ad­
vantageous in two respects. First, it is generally believed that during 
the deformation of granular materials, at each instant granules form 
rigid groups (i.e., groups of mutually immobile granules) and that the 
overall deformation occurs by instantaneous sliding of these rigid 
groups against one another before they reform into new groups; see, 
e.g., Rowe [4] and Davis and Deresiewicz [31]. Second, the interpre­
tation of N as the number of critical contacts will facilitate the for­
mulation of the constitutive relations in that the overall (macroscopic) 
kinematical quantities involve summations over the critical contacts 
only. 

To relate the contact forces to the overall stresses, we employ the 
principle of virtual work in the manner discussed by Hill [30], Let the 
granular body be subjected to overall tractions T; on its boundary S, 
i.e., 

Ti = OijVj on S, (6) 

where v is the exterior unit normal to S. Consider a suitably smooth 
overall virtual displacement, u,-, which results in the virtual dis­
placement (separation) Af of the a th contact forces. If the tractions, 
Ti, are in equilibrium with the contact forces ff, then the virtual work 
principle requires 

E / 7 A ? = f7 C TmdS. (7) 
„=i VJs 

Let the boundary displacement u; be chosen to be linear so that 

ui = <t>ijxj + a on S, (8) 

where <t>ij is an arbitrary constant tensor, and c is a constant vector. 
It can be shown (see Appendix) that, to a first order of approximation, 
it is reasonable to set 

Af = fajdj. (9) 

Substituting (8) and (9) into (7), and employing the divergence the­
orem, we obtain 

kjiou- T, ffdf)-0, (10) 
\ (Y=l / 

where 

*ij = T, f ondV (11) 
V *y V 

is the volume average of stress. Since fyj is an arbitrary tensor, we 
conclude from (10) that 

*ij= E T,(ffd] + ffdf), (12) 
o;=l & 
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Fig, 2 

where we have used the balance of moments, relation (4). It should 
be remarked that the virtual work principle, in the context of granular 
materials, has also been employed by other workers in this field. For 
example, Satake [7] employed this principle to define an "anisotropy 
tensor," and Kishino [32] used it to obtain the average stress as 

1 M 
°U'TrT.xtft, (13) 

where M is the number of contacts on the boundary. We note, how­
ever, that (13) can be obtained (without using the virtual work prin­
ciple) by considering the relation between the volume average of stress 
and the integral of tractions over the surface of the body; e.g., Drescher 
and de Josselin de Jong [19] and Cowin [33]. 

Summarizing the results so far, we have obtained a relation for the 
balance of moments, equation (4), and a relation for overall stresses 
in terms of the contact forces, equation (12). These relations can be 
written as 

(fidj-fjdi) = 0 , (14) 

Vij = hN(fidj+fjdi), (15) 

where ( ) denotes the average over N critical contacts in a (suitably 
large) unit volume.2 These relations hold in three as well as two di­
mensions. 

For simplicity, however, we shall, from now on, restrict our attention 
to the two-dimensional problems. Also it is advantageous to represent 
(14) and (15) in terms of the unit vectors nf and sf which are, re­
spectively, normal and tangent to the contact «. These unit vectors 
are defined by 

n" = sin /3«e(1> + cos /3"e(2) 

and s" = cos 0«e<]> - sin /3"e<2>, (16) 

where e'1 ' and e(2) are orthogonal unit vectors in the direction of fixed 
rectangular Cartesian coordinate axes. In terms of n" and s", the in-
terparticle force f" and the vector d" have the form 

ff = f« (cos <l>«nf +sink's f), (17a) 

df = d"(cos d«nf + sin 6«sf), (176) 

where f" is the magnitude of (", <l>" is the angle between f" and n", d" 
is the magnitude of d™, and 6" is the angle between d" and n", see Fig. 
2. Substituting from (17) in (14) and (15) we obtain 

</ofsin(<A-0)>=O, (18) 

Oij = N </d[sin 0 sin 88ij + cos (<t> + d)n.inj 

+ Js in (<l> + 6)(msj + njsi)]), (19) 

where 5y is the Kronecker delta. These relations are the two-dimen-

2 Henceforth, N will refer to the number of contacts per unit volume. 
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sional version of the balance of moments, relation (14), and the av­
erage stress, relation (15). Some results based on (18) and (19) will be 
discussed in Section 4. 

3 K i n e m a t i c s 
As mentioned earlier, the overall (macroscopic) deformation of the 

granular mass results from instantaneous sliding of rigid groups (or 
clusters) of grains. At each instant, each group consists of a collection 
of mutually immobile grains, which moves relative to its neighboring 
groups. Since a relative movement of these clusters causes changes 
in the magnitude and direction of the vectors d", we make the fol­
lowing simple assumption concerning the rate of change of d" and the 
resulting overall average velocity gradient tensor: 

df = IfjdJ, (20) 

1 N 
Lij = - £ Ifj, (21) 

•N «=1 
where superposed dot denotes the rate of change, and Ly is the av­
erage overall (macroscopic) velocity gradient. We further assume that 
the vectors n" and s™ remain orthonormal, and that the vector (l/d")d" 
remains a unit vector after an (infinitesimal) increment of deforma­
tion has taken place. With these assumptions, (17b) and (16) yield 

df = ( ^ Sij + Rf]\d], (22) 

where Rfj, the spin of df, is given by 

Rfj = (#« 4- 8")(sfnJ - sjnf). (23) 

Substituting for df from (22) into (20) and rearranging, we obtain 

dflltj-^Sij-Rfjl^O. (24) 

Thus Ifj has the form 

da 
lfj = — &ij + R"j + 7"(cos 6"sJ - sin B«nJ)itf (25) 

d" 

for some scalar y" and some unit vector Kf. We define the angle K" 
by 

Kf = cos K" nf + sin K" sf, (26) 

substitute from this and (23) into (25), and enter the result into (21) 
to obtain 

Dij = ( - + 7 sin K cos d\ &ij - ( 7 sin {6 + K)re;rey) 

+ J <7 cos (0 + K)(riiSj + njSi)), 

Wij = < [$ + 6 - i 7 cos (6 - K)}(sinj - sjm)>, (27) 

where, by definition, the overall deformation rate and spin tensors 
are 

Dij = l(Lij + Zji) and Wtj = i (!„ - Lji). 

Equations (27) represent these average macroscopic kinematical 
quantities in terms of the microscopic kinematical variables for the 
considered two-dimensional model. Note that the inclusion of the as 
yet unknown quantities 7 and K; is essential, as it bears on the com­
patibility of the overall deformation of the granular mass. 

Before closing this section let us examine the rate of energy dissi­
pation. To this end we assume that, at each instant, energy is being 
dissipated only by frictional sliding of rigid clusters of grains as they 
move relative to one another. A similar hypothesis has been used by 
others; see, e.g., Home [5]. For the model considered here, this as­
sumption results in 

akmDkm= E (l".8«)(d«-s«), (28) 
«=i 

where dot denotes the scalar product, and where d" defined by 
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V 

df- dp - R?jdj, (29) 

is the (objective) rate of change of d" as measured by an observer ro­
tating with d«. Substituting from (17a) and (29) into (28) we ob­
tain 

ffkmDkm = N ((f sin 0 sin 0)d >, (30) 

where (22) has been used. This is an interesting equation as it shows 
that frictional sliding must be accompanied by changes in the mag­
nitude of vectors which connect the centroids of adjacent clusters of 
mutually immobile grains. Since this observation applies indepen­
dently of shape of individual grains, it is seen that compatibility in­
deed requires formation of noncircular (in the two-dimensional case) 
groups even when the granular mass consists of a collection of cylin­
drical rods with circular cross sections. 

4 A n E x a m p l e 
The equations obtained in the preceeding sections for the overall 

stress and kinematical quantities, are rather complicated. Therefore, 
further insight into their physical implications requires additional 
simplifying assumptions. To this end consider equation (18) which 
is obtained from the balance of moments, and let all averages be taken 
over only the critical contacts; this implies that the angles 0", a = 1, 
2 , . . . , N, equal the average frictional angle 0 (= constant). Then (18) 
becomes 

ix = tan 0 : 
(fd sin 0) 

(fd cos 0) 

Now, assume further that f" and d", the magnitudes of the contact 
forces and the vectors d<" connecting the centroids of adjacent groups, 
are not statistically correlated with the angles 0" which define the 
orientation of da with respect to the corresponding contact normals; 
see (17). Then the foregoing equation becomes 

Li = t a n 0 • 

admitting the following solution: 

(sing) 

(cos0) ' 
(31) 

a cos0 = (cos0), a sin 0 = (sin0), (32) 

for some scalar a. A more restrictive solution, of course, is 

(33) H« = if>» s i 

which states that at each critical contact the contact force is parallel 
to the line which connects the centroids of the corresponding con­
tacting adjacent groups. For our purposes we shall consider the more 
general solution (32) and then later on seek to explore results 
stemming from assumption (33). 

Let us now make a further assumption, namely, that the quantities 
/ " and d" are not correlated with n" (and, hence, also with s"). Then, 
with the aid of (32), from (19) we obtain 

aij = 2p (sin2 0S;J + cos 20 (ntrij} + \ sin 2§{rnsj + nys;) j , (34) 

where 

p = idkk = iaN{fd) (35) 

is the mean pressure. 
Before discussing the kinematics, we pause briefly to examine some 

features of equation (34). Employing (16), it can be shown from (34) 
that 

tan 2ij/ = -

fl=-=|(sin2/?>2 + <cos2/3)2l1/2, 
P 

(sin 2/3) cos 20 + (cos 2/3) sin 20 
(cos 2/3) cos 20 - (sin 2/3) sin 20 

(36) 

tan 2 ty - 0), 

(37) 

where R is the stress ratio; and T, \p, and \p' are defined by 

2T 2 = ff'n a'n 

tan 2\p • 

tan 2\p' = — 

2 J12 

Cll — C22 

(sin 2/3) 

(38) 

(39) 

(40) 
(cos 2/3)' 

where in (38), a y = atj — \ SijOkk is the average deviatoric stress, and 
<7i and <?2 are, respectively, the major and the minor principal stresses. 
In the terminology of Curray [34], used by Oda [35] and Konishi [36], 
the quantity in the right-hand side of (36) is the "degree of concen­
tration" or the "vector magnitude" of the contact normals (nf), and 
\f/ defined by (40) is their preferred orientation. Konishi [36] reported 
measured values of the degree of concentration and the preferred 
orientation of the contact normals, n". His consideration, however, 
is based on all contacts rather than only the critical contacts which 
enter our work. In other words, the averages measured by Konishi are 
defined by (for some quantity /) 

(41) 

in terms of the probability density distribution of contact normals, 
£(/3); Oda [35]. The averages appearing in (36) and (37), on the other 
hand, have the form 

</> f Eiff) P(/3)/(/3)d/3, 
Ja 

(42) 

where P(/3) is the probability of sliding; Oda [8]. In (41) and (42) Q 
represents a unit circle. We recall that the macroscopic stress may be 
formulated either in terms of averages taken over the critical contacts 
only, or in terms of the averages taken over all contacts. In the former 
case we observe that the quantity d™ then represents the vector which 
connects the centroids of two adjacent clusters of mutually immobile 
grains, whereas in the latter case all individual grains are included; 
see the discussion after (5). The two formulations are of course, 
equivalent. 

Returning to the example, we assume that 7 " sin K" and 7" cos K" 
appearing in (27) are not correlated with either 6" or the unit vector 
n". Employing this assumption together with (32) we reduce (27) 
to 

Da 
'd\ 
—) + cos 0 (7 sin K) bij — [cos 0 (7 sin K) + sin 0 (7 cos K)] 

X (mnj) + £ [ c o s 0 (-ycosK) - sin 0 (7 sin K)]{WSJ + njsi), (43) 

2W12 = 2(/3 + 0) - [cos 0 ( 7 cos K) + sin 0 ( 7 sin K)). (44) 

Similarly, employing (32) and the assumption tha t / n d« and d«/da 

are uncorrected, it follows from the energy dissipation relation (30) 
that 

akmDkm = aN sin2 <j>(fd) M = 2p sin2 0 (-' (45) 

where (35) has been used to obtain (45). 
Now components of (n;rtj) and (ra;Sj + njSi) are not all indepen­

dent, as can be seen from (16). Noting this, it follows from (34) and 
(43) that 

- ' TT< T 

PhmD 

&lkDk2 ~ 02kDkl ' 

[sin 0 ( 7 cos K) — cos 0 ( 7 sin K)\, (46) 

• [cos 0 ( 7 cos K) + sin 0 ( 7 sin «)]. (47) 

The rate of volume change is obtained from (43), 

Dkk = 2(d/d) + cos 0 ( 7 sin K) — sin 0 ( 7 cos K). (48) 

Employing (44), (45), and (48), we eliminate the average quantities 
appearing in the left-hand sides of (46) and (47). The final result can 
be written as 
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(sin2 4, - fl2) -e ' k m p ' h m = R cos2 0 Dkk, (49) 
T 

_ v_ y_ _ 2 T _ — _ 
0";fc07y — (TikCTkj ~ ~Z (OikDkj ~ DikOkj), (50) 

H 

corresponding, respectively, to (46) and (47). In these relations R 
denotes the stress ratio defined by (36), and the stress rate, a, is de­
fined by 

V_ _1 — — 
a'j = aU ~ ®ikO~kj — &jk<Jki, (51) 

where fl is a skew-symmetric tensor with components 

Oi2 = - Q 2 i = W i 2 - < / ? + e > - ^ . (52) 

In component form, (49) and (50) are 

(sin2 <p - R2)[(Du - D22) cos 2<}> + 2Dn sin 2^] 

- R cos2 <f> (Du + D22) = 0, (53) 

(Du - D22) sin 2\p - 2D12 cos 2\p + 2fl(Wi2 - (P + 8)) = 0. 

(54) 

These relations are similar in form to the relations developed by de 
Josselin de Jong [24, 25], Spencer [23], and Mehrabadi and Cowin [26, 
29], using a completely different approach. In particular, de Josselin 
de Jong's idea of "free rotation" is clearly expressed by the quantity 
— (/? + 6) in (54). It is interesting to note, however, that under a 
steady-state circumstance when the statistics of the critical contacts 
remain time-invariant3 so that ( ( / ) ) ' = (/>, and when $ and /3 are 
uncorrelated (e.g., when R = constant), then (37) yields 

<A = - < £ > . (55) 

If, in addition, the more restrictive assumption (33) is used instead 
of (32) then it follows from (52) that fii2 = W12 and the stress rate in 
(51) becomes the Jaumann rate. 

Relations (49) and (50) are similar in structure to those proposed 
by Rice [27] for the rigid plastic yield-vertex model. However, the 
coefficients and the stress rate involved are different in the two 
models. The advantage of (49) and (50) over their counterparts in all 
the aforementioned works is that, due to the microstructural approach 
adopted here, all the macroscopic material coefficients are determined 
explicitly in the present work in terms of the average friction angle 
<f> and the stress ratio R. 

For example, since the rate of plastic work is positive, 

OkmDkm > 0, (56) 

it follows from (49) that 

Dkk < 0 (dilatation) for R > sin <j>, 
Dkk = 0 (no volume change) for R = sin <f>, 
Dkk > 0 (densification) for R < sin (j>, 

which are in accordance with the experimental results. 

5 Summary of Assumptions and Discussion 
Based on the principle of virtual work, a relation for average stresses 

in terms of the contact forces and vectors joining the centroids of 
granules (or mutually immobile clusters of granules) is derived in 
Section 2; see equation (12). The major assumptions used to obtain 
this result are: (i) the virtual separation of two contacting granules 
at a typical contact point a resulting from a prescribed virtual dis­
placement field (equation (8)) can be written by equation (9) where 
<t>ij is the constant virtual displacement gradient; and (ii) the contacts 
do not transmit moments (equation (3)). This last assumption yields 

3 In general the density of the critical contacts as well as the density function 
defining the distribution of the critical contact normals changes with the de­
formation; e.g., new critical contacts are continually formed while some existing 
critical contacts are rendered inactive. Therefore, in general, ({/))• 7̂  {/). 

(4) which in turn leads to a symmetric overall stress field. Of course, 
without this assumption, couple stresses would be present. 

The "microscopic" description of the overall stress field given by 
(12), which holds in two as well as three dimensions, seems to be of 
a fundamental nature in the sense that it relates the macroscopic 
stress field to the microstructure (or the "fabric") of the granular 
mass. 

In Section 3, kinematic relations for the plane deformation are 
developed. The involved basic assumptions are: (i) the rate of change 
of d (the vector joining the centroids of two contacting clusters) gives 
rise to a microscopic (local) velocity gradient l"j whose average taken 
over all critical contacts results in the average overall macroscopic 
velocity gradient for the sample; and (ii) the unit vectors n" and s" 
(the contact normal and the sliding direction at contact a) remain 
orthonormal. Under these assumptions, expressions for the rate of 
deformation and the spin tensors are obtained in terms of the contact 
normals and tangents; equation (27). Also in Section 3, an hypothesis 
is made with regard to the rate of energy dissipation: it is assumed that 
energy is dissipated only by frictional sliding of rigid clusters of 
granules as they move relative to one another; this is given by equation 
(28). 

Finally, an example of the class of constitutive equations which 
emerges from the development of Sections 2 and 3, is given in Section 
4. This example is concerned with the case where the quantities of the 
type 

(Antrij) or {B(msj + njSi)) 

which appear in the stress equations (19) and the kinematic relations 
(27), can be written as 

<A><n;nj) or (B) {msj + njst). 

It is shown that under this assumption, the resulting constitutive 
relations resemble those of de Josselin de Jong [24], Spencer [23], and 
Mehrabadi and Cowin [26]. Of course, more general constitutive 
relations can be obtained by assuming that A and B statistically de­
pend on nfnf; see Mehrabadi, Nemat-Nasser, and Oda [37]. 
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APPENDIX 

T o calculate A" in equa t ion (7), consider two rigid granules , deno te 

the i r respect ive cen t ro ids by A a n d B, a n d a s s u m e t h a t t h e y are in 

con tac t a t po in t C. Cons ider a v i r tua l d i sp l acemen t field which in­

t roduces t h e re la t ive d i s p l a c e m e n t A f a t con tac t C, i.e., 

- ufB - ufA, (57) 

where aCA and uCB are t h e displacements of the contact point C when 

viewed as belonging t o gra ins A a n d B, respect ively. Since t h e grains 

are rigid, we can wri te , for example , for gra in A, 

ufA = uf + ooffixf - xf), (58) 

where oiff = —afA is t h e r o t a t i o n of C re la t ive t o A, a n d u f is the 

d i sp l acemen t of cen t ro id A; a s imilar equa t ion appl ies to gra in B 

(replace A wi th B in equa t ion (58)). 

E q u a t i o n (57) is now w r i t t en as 

A f = (uf - uf) - (uf - uf) 

+ wfA (xf - xf) - oofjB(xf- xf), (59) 

where (58) is also used a n d uf is to be def ined nex t , a n d t h e n it is as­

s u m e d t h a t t h e d i sp l acemen t s a n d ro ta t ions , uf, a = A, B, and cof/ 

a n d cof/, conform to some s m o o t h fields u; a n d « y , a n d t h a t u p = 

Ui(xc) is t h e value of u; a t t h e con tac t p o i n t C. T h e n we have wff = 

aff = o>y ( x c ) , and 

du; 

dXi 
(xc)(xf - xf) + . (60) 

with a s imilar express ion co r respond ing t o grain B. H e n c e (59) be­

comes 

A? = 
du, 

dxj 
(xC) - eoij(xc) (61) 

where dAB = xf T o t h e first o rde r of app rox ima t ion , t h i s is 

ident ical w i th equa t ion (9), p rov ided t h a t we identify t h e q u a n t i t y 

inside t h e b r acke t s wi th 0;7. 
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Germany Based on experimental evidence and thermodynamics it will be shown that the stored en­
ergy function of an ideal rubber membrane is determined by the entropy alone. The mem­
brane is represented by a two-dimensional surface for the purposes of thermodynamics, 
and its thickness is taken into account by a scalar parameter so that incompressibility 
of the membrane can be described. The entropy of the membrane is calculated from a ki­
netic model and hence results the surface stress as a function of temperature and defor­
mation for arbitrary shape of the membrane. 

1 Introduction 
The subject of this paper is the application of thermodynamics of 

two-dimensional surfaces to ideal rubber membranes. Just as in bulk 
rubber the thermodynamic theory is supported by arguments from 
the kinetic theory of rubber. 

A continuum theory of bulk bodies has been applied to ideal rubber 
membranes by Kubo [1], Adkins and Rivlin [2], et al., with good results 
for spherical and cylindrical membranes. However, it seems impos­
sible to extend those approaches to arbitrary shapes of the membrane 
because of the difficulty of determining the hydrostatic pressure in 
the membrane. This difficulty is explained in Section 2. 

The present approach is given entirely in terms of thermodynamics 
of two-dimensional surfaces and there is no problem in considering 
membranes of arbitrary shapes. The formulation of a thermodynamic 
theory of a two-dimensional surface implies the definition of a surface 
entropy, which must be determined by a constitutive relation. This 
constitutive relation is derived here from a variant of Kuhn's [3] ki­
netic theory of rubber. It seemed necessary at the beginning to modify 
Kuhn's theory to take care of the fact that in a thin membrane the 
rubber molecules are strung out along the membrane. It turned out 
in the end that the effect of curvature was minimal. This is explained 
in Section 4. 

The concept of two-dimensional surfaces is familiar in thermody­
namics of thin bodies (e.g., see Wang and Cross [4,5], Green, Naghdi, 
and Wainwright [6]). In particular the paper of Green, Naghdi, and 
Wainwright deals with an elastic Cosserat surface. The authors assign 
a director to every surface point, so that the surface can support couple 
stresses. 

Rubber membranes do not support couple stresses and therefore 
director fields are not needed. What is needed in rubber is a scalar 

Contributed by the Applied Mechanics Division for publication in the • 
JOURNAL OP APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, July, 
1979; final revision, March, 1980. 

thickness parameter among the state variables, because otherwise the 
incompressibility of rubber would not reflect itself in the two-di­
mensional theory. 

However, if the director field in the Cosserat theory is replaced by 
the scalar field of the thickness parameter, the present theory can be 
classified as a spherical case of a Cosserat surface (e.g., see [6]). 

2 Phenomenology and Existing Theories of Rubber 
Membranes 

Rubber is an isotropic incompressible material, distinguished from 
other such materials by the fact that its stress is proportional to the 
temperature. 

The pecularities of the stress-strain relation of a rubber membrane 
are best illustrated by the dependence of the pressure difference [p] 
- pi ~ PE between the interior and exterior of a spherical rubber 
balloon on its radius r. Qualitatively this dependence is plotted as the 
solid curve in Fig. 1 where R is the radius of the balloon in the un­
loaded reference configuration. 

Attempts to describe this curve include those by Kubo [1] and 
Adkins and Rivlin [2], both of which approach the problem by use of 
the ideas of continuum mechanics of bulk bodies, but in a different 
manner. 

Both approaches start from the momentum balance in equilibrium, 
viz., 

&tijnjdF = 0 (1) 

and from the representation 

ttj = - Pdij + aBtj + b(B% (2) 

of the stress ttj in an isotropic incompressible body. P is the hydro­
static pressure which must be calculated from the balance of mo­
mentum and the boundary conditions and By is the left Cauchy-Green 
tensor, while a and b may be scalar functions of temperature T. The 
dotted line in Fig. 1 results from setting b = 0. Kubo has only con­
sidered the case b = 0, but in principle his method would also work 
for the general case. Rubber with 6 = 0 and a = constant is usually 
called ideal rubber. 
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Kubo's method starts by considering the membrane first as a bulk 
body and calculates P from dtij/i>Xj = 0 in the body and from {tijrij)i 
= —(pni)j and (tyn ;)E = — (pn;).E on its surfaces. Subsequently Kubo 
lets the width of the membrane tend to zero. This method is excellent, 
except that it turns out to be extremely difficult to determine P in the 
case of complex shapes of the membrane. 

The method of Adkins and Rivlin avoids the aforementioned dif­
ficulty of Kubo's approach, because they determine P from the re­
quirement 

t,r — 0 as S — 0, (3) 

where trr is the normal stress and 5 is the thickness of the balloon. 
Thus Adkins and Rivlin obtain 

P = aBrr+b(B\, 

and they proceed as follows: 

1 They define a surface stress 

(4)1 

t' 
o 

*dr (A = e,$), 

2 They integrate dtij/dxj = 0 over the width of the membrane and 
obtain 

t% + tir(8) - f>(0) = 0, 

3 With the boundary conditions 

(tHni)i 

they get 

(pn'h, (tlJnJ)E •• 

i& - \PW = 0. 

(pnl)E 

(5)2 

(6) 

(7) 

Thus Adkins and Rivlin start out with arguments from the theory 
of elasticity of bulk bodies and they arrive at an equation of balance 
of momentum for a two-dimensional surface in equilibrium (see, 
equation (11)). 

However, the approach by Adkins and Rivlin is not without prob­
lems, because the boundary conditions (6) will not in general be 
compatible with (3). 

Even so the assumption (3) may be justified in approximate form 
as follows. From Kubo's arguments we may determine trr and ob­
tain—in the limit of a thin membrane—the value trr = V2 (pi + PE)-
Setting t r r equal to zero, Adkins and Rivlin neglect the effect of (p/ 
+ PE) on the deformation of the membrane; indeed, in most cases the 
values of trr are small as compared to the coefficients a and b in 
(2). 

1 r, 0, $ are the polar coordinates appropriate to a spherical balloon. 
2 A semicolon denotes the covariant derivative with respect to the surface 

coordinates 9 and $. 

, 3 T h e r m o d y n a m i c s 
(a) Fields of Thermodynamics in an Incompressible Mem­

brane. For the purpose of thermodynamics we represent the mem­
brane by a two-dimensional surface whose particles are characterized 
by the surface parameters Ur (Y = 1, 2). 

The objective of thermodynamics of membranes is the determi­
nation of the fields 

Surface Mass Density 

Ps(Ur, t), 

Motion 

xKuT, t), 

Absolute Surface Temperature 

Ts(U
r, t), 

(8), 

(8)» 

(8)3 

for all times, x' determines the position of a surface particle in a 
Cartesian frame. 

Experience shows that incompressibility of a body, i.e., constancy 
of volume and density, strongly influences its mechanical behavior 
and that is true for membranes as well as for bulk bodies. However, 
the two-dimensional surface has no volume and therefore it would 
seem impossible to describe the influence of incompressibility in a 
thermodynamic theory of two-dimensional surfaces. We can get 
around this difficulty, by introducing an additional surface field, 
called 

Thickness Parameter 

such that 

&(Ur,t) 

Ps = pS, 

(8)4 

(9) 

where p is the volume density within the membrane. Thus incom­
pressibility of the membrane is expressed by setting ps/8 constant, 
and the model of a two-dimensional surface is preserved. 

For the determination of the fields (8) it is necessary to have field 
equations and these are derived from the equations of balance of 
mechanics and thermodynamics which we proceed to write down 
next. 

(b) Equations of Balance. We consider the membrane im­
mersed in an inviscid heat-conducting fluid. The membrane is im­
permeable and moves with the velocity V„(UT, t) and its mean and 
Gaussian curvatures are &M and ka, respectively. While x'(Ur, t) 
determines the position of the membrane in its present configuration 
Kt we introduce XA(Ur) for its position in a reference configuration 

The equations of balance of mass, momentum, and internal energy 
read3 

dps 

dt 
+ (vrr - 2kMvv)Ps = 0, 

Ps —- - t% - l-p»'] = 0, 
dt 

ot dua 

2 dt I dU*} 

(10) 

(11) 

(12) 

The field equations for the determination of the thickness pa­
rameter S follows from (9) and (10), because the volume density is 
constant. It reads 

— +(Vr
T-2kMVv)8 = Q 

dt 
(13) 

The newly introduced notation in (10)-(13) and further quantities 

3 e.g., see [7, p. 233]. 
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relevant to the future development of the theory may be read off from 
the following list: 

i * : 

NA> 

dxl 

dUA 

Wikr\A\ 
dXA 

dUA 

eABCTBTC 

\eABCTBTC\ 

gAT = T'AT'T 

dr'A . 
v' 

GAP = TiTA 

dx'(UT, t) 
u', = 

dt 

= V rT' r + 

S V 

IPI 

is 

[qivi] 

Tangent vector in K» to coordinate 
lines UA = constant 

Normal vector to the surface in Kt 

Tangent vectors in Ko to coordinate 
lines UA = constant 

Normal vector to the surface in K0 

Metric tensor in Kt 

Curvature tensor in Kt 

Metric tensor in KQ 

Curvature tensor in KO 

Decomposition of the velocity u'„ of a 
surface particle 

Decomposition of the surface stress t'A 

Pressure jump across the surface 

Specific internal energy of the surface 

Normal component of the heat flux 
across the surface 

For later use we list the identity (e.g., see [8, p. 500]) 

Idg 
V?r - 2kMVv •• 

2gdt 
(14) 

where g is the determinant of gAr-
(c) Constitutive Equations. To obtain field equations the 

equations of balance must be supplemented by constitutive relations 
for the following quantities: 

SA*,SA,qA, e„p±,q>±. 

These are constitutive quantities and they can be split into two 
groups: 

The first group consists of SAr, SA, qf, es and we assume that in 
a homogenous, isotropic, thermoelastic, incompressible membrane 
these quantities are related to the fields ps, x

l, Ts, and 8 by the 
equations 

sAr = sAr p s ( &> gA 2 j G A S > 6 A & B A & TS 
dTA 

dUAj' 
wheres A r = s r A (15)x 

sA = 0, 

QA ~ 9? IPs. 8, gA2, GA2, &A2, BA2 , TS, 

(s = es\ps, 8, gAs, GAS, °AZ, BAZ, TS 

dTs 

dUA, 

dT\ 

(15)2 

(15)3 

(15)4 

SA = 0 and the symmetry of S A r are typical for a membrane theory 
and they distinguish this theory from a shell theory. The metric 
tensors g A2 and G A2 together form a measure for the deformation of 
the membrane from its reference configuration. 

The second group of constitutive equations consists of p± and ql±. 
These quantities may depend on the same variables that occur in (15) 
and, in addition, on the variables that determine the state of the fluid 
on side + or —, respectively, of the surface. 

Insertion of the constitutive equations into the equations of balance 
leads to a set of six field equations for the six fields ps, x\ Ts, and 8. 
A solution of these field equations is called a thermodynamic pro­
cess. 

However, the explicit form of the constitutive equations is not 
known and we rely upon the entropy principle to introduce restric­
tions on the generality of the constitutive functions. 

(d) Entropy Principle and Its Consequences. The entropy 
principle used here is an adaption to two-dimensional surfaces of the 
one proposed by Miiller [9] for bulk bodies. It reads 

(i) The entropy of a membrane—represented as before by a 
two-dimensional surface—is an additive quantity so that it obeys an 
equation of balance 

ps^r+ri\A +WV>] = <TS. 
at 

(16) 

(ii) The specific entropy r}s and the surface flux 0A of the entropy 
are constitutive quantities. In particular we assume that r;s is given 
by 

Vs = VslPs, 8, gAT, GAT, &Ar, ̂ Ar, Ts 

dTA 

dUA) 
(17) 

in a thermoelastic membrane of the type considered here. 0A is taken 
to be equal to the heat flux qA divided by temperature 

4>h = Qs/Ts. (18)4 

The entropy flux </>•> of the fluids on either side of the membrane 
is given by (see [9]) 

V = q'/T, (19) 

where T is the absolute temperature of those fluids. 
(Hi) The production density o"„ of the entropy is non-negative for 

each thermodynamic process 

di)s 

' dt 
+ 4>U + Wv>\ a 0. (20) 

Insertion of (17) and (18) with (15)3 into this inequality leads to an 
expression on its lefthand side that is linear in the derivatives 

d2x dps 55 dps d8 

~dT'^t'd~U^'dlp;'dUTdUA 

d2V„ dTs d2Ts d2Ts 

T & 
dt 

dVT dV„ 

'dUA' dUA' 

d3x' 

dUAdUr' dt ' dtdU1" dUTdUA' dUrdUAdUx' 
(21) 

But several of these derivatives are constrained by the field equa­
tions (10)-(13) and we rely on the method of Lagrange multipliers to 
take care of those constraints. This method was introduced by Liu 
[10] and according to him we may replace the entropy inequality (20) 
by the new inequality 

A ^ + * k + [ * ' V ] - A » ( ^ + ( V ! r . 
dt \ dt 

t i A • 

• 2kMV„)p, 

-pvl 

-A«-(p.^+g?.A+toM-^ 

-A' 

dt dUA, 

\dt 
2kMV„)8 k o (22) 

4 It is possible to derive (18) from the assumption that $£ is a constitutive 
quantity of the same type as (15>3 provided that ̂  and qf are linear functions 
of T,,A. For brevity we anticipate that result by assuming (18). 
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and require t h a t th is new inequal i ty be satisfied for all analyt ic fields 

of 

ps(U
v, t),x'(Uv,t), TS(U

T, t), S(Ur, t). 

T h e newly in t roduced quan t i t i e s A'", A"1, As», and A* are called 

Lagrange mult ipl iers by Liu and they may depend on all variables in 

t h e cons t i tu t ive re la t ions and on u's. 

T h e exploitation of this inequali ty is cumbersome bu t i t follows the , 

by now, s t a n d a r d p rocedure . S o m e of t h e resul t s m a y be used t o 

identify t h e Lagrange mul t ip l ie rs : 

A"» = Ps 
dps dps)' 

A S ldl>* 

A"i = 0, 

A< d 6 s ) 
- A < s — . 

d<5J 

A«» = — 

(23) 

After some calculat ion one concludes t h a t r)s a n d 6S a re indepen­

d e n t of dTs/dUA and t h e cu rva tu r e tensor &Ar and t h a t t h e der iva­

t ives of ris and es wi th respec t t o ps, g&r, Ts, a n d <5 are re la ted by t h e 

equa t ions 

de. TsT,s 

dTs 
' = - Vs, -\P 

, <>e. 

<>Ps 

TsVs , , <>es - Tsti, 
• + pso 

+ 2p, 
&es 

d8 

-TsVs 

dgAr 
(24) 

So far constraints on the derivatives dps/i>t, dd/dt, dgAr/d£ have been 

t a k e n in to accoun t by use of Lagrange mul t ip l ie rs . B u t t h e field 

equa t ions (10) and (13) u p o n in tegra t ion imply cons t ra in t s on ps, 8, 

a n d gAr themselves , namely , 

Ps : * S 5"«\/-, (25) 

where G is t h e d e t e r m i n a n t of G&r- T h e iden t i ty (14) was used to 

derive (25). T h u s it is possible to replace es, (ps, &, gAr, Ts, G&r, B A r ) 

and i)s(p„ <5, gAT, Ts, GAT, B A r ) by functions es and J)S of gAr, Ts, G A r , 

BAr only and t h e re la t ions (24) m a y thus be shor t ened to 

des - Tsfis 
-Vs, 2p> 

Se s - Tsfis 
= SA (26) 

<>TS OgAT 

These two equa t ions imply an in tegrabi l i ty condi t ion for es — Tsris, 

viz., 

dgAT 2Pi 

S& 
dS* 

HT, 
(27) 

As was m e n t i o n e d in t h e In t roduc t ion as a basic observat ion wi th 

rubber , t h e s t ress of r u b b e r is p ropor t iona l to t h e t e m p e r a t u r e T s . 

There fore we conclude from (27) t h a t t h e in te rna l energy of rubbe r 

is i n d e p e n d e n t of deformat ion . T h i s is a m o s t r emarkab le p r o p e r t y 

of rubber , because i t impl ies t h a t t h e stress is d e t e r m i n e d by t h e 

specific e n t r o p y alone r a the r t h a n by t h e specific values of b o t h en­

t ropy a n d in te rna l energy. 

Indeed , by (26)2 we have 

S A r = - 2 p f 7 ,
s - i / -4-G dfi. 

g <>gAr 
(28) 

This formula forms the basis for the further development of the theory 

in the nex t chap te r . 

For future reference, I emphasize tha t , while the en t ropy principle 

forbids t h e d e p e n d e n c e of TJS on bAr it m a y still d e p e n d on t h e cur­

v a t u r e tensor flAr m t n e reference configurat ion. T h u s S A r m a y de ­

p e n d on BAT as well. 

3 Kinetic Theory of Rubber Membranes 
( a ) S c o p e of T h i s C h a p t e r . T h e objective of th i s chap te r is 

t h e calculat ion of t h e s t ress -deformat ion re la t ion in a r u b b e r m e m ­

brane . T h i s goal can be reached by t h e calculat ion of t h e specific en­

t ropy 7]s from a kinet ic theory , because , by (28) the knowledge of T;., 

implies t h e knowledge of SAT. 

Fig. 2 

T h e basis for t h e calcula t ion of ij s is t h e idea—proposed by K u h n 

[3] and reviewed by Treloar [11]—that a rubber molecule forms a long 

en tang led cha in whose l inks are r a n d o m l y or ien ted . T h e en t ropy of 

such a chain will be d e t e r m i n e d first. 

T h e m e m b r a n e par t ic le in th i s mode l is r e p r e s e n t e d by a ne twork 

of such chains. T h e en t ropy of a par t ic le resul ts by the summat ion of 

t h e en t rop ies of i ts chains . 

(b) E n t r o p y of a S i n g l e R u b b e r M o l e c u l e . T h e individual 

l inks of t h e chain , which r ep re sen t t h e rubbe r molecule in K u h n ' s 

model, can be oriented randomly as shown schematically in Fig. 2. T h e 

m a c r o s t a t e of th i s chain m a y be given by t h e eucl idean d i s tance r of 

its ends and a typica l mic ros ta t e is given by assigning a direct ion 

vector d" (a = 1, 2 , . . . , N) t o each l ink. 

W h e n Afd is t h e n u m b e r of l inks po in t ing in t h e di rect ion d, t h e 

n u m b e r of possibil i t ies to realize a m a c r o s t a t e r is given by 

N\ 
R = TT777. w h e r e E ^ d = N a n d £ d & = r. (29) 

b is the length of one link. This number R de termines the equilibrium 

e n t r o p y by B o l t z m a n n ' s formula 

H = k\nR, (30) 

where k is t h e B o l t z m a n n cons tan t . 

T h e en t ropy t u r n s ou t t o be fairly insensi t ive to different as­

s u m p t i o n s a b o u t t h e possible d i rec t ion which m i g h t be a s sumed by 

the individual links of the chain. Indeed, in a strongly entangled chain 

wi th t h e four different choices 

(i) d = ( ± e i ) 

(ii) d = ( ± e i , ± e 2 ) , 

(Hi) d = d\e\ + d2e2, 

(it)) d = d i e i + d 2 e 2 + d 3 e 3 , 

where ey is an o r t h o n o r m a l base, lead to similar en t ropies namely , 

H(B) = k \N In ap — i 
Nb-

(/? = i), ii), Hi), iu)) (31) 

In par t i cu la r t h e d e p e n d e n c e of H on r and N is t h e same in all four 

cases and the coefficients bg are all of t h e order of magn i tude 1, while 

a g is an u n i m p o r t a n t cons t an t . 

( c ) E n t r o p y of a M e m b r a n e P a r t i c l e , (a) Tangential and 

Normal Chains. A m e m b r a n e par t ic le m u s t be visualized as a ne t ­

work of rubbe r molecules . L e t t h e r e be n such cha ins in a par t ic le . 

W h e n the idea of the membrane as a two-dimensional surface is taken 

seriously, all pa r t s of the network have to lie on t h a t surface. In Section 

(/?) we shall indeed exploit t h a t idea and calculate the en t ropy which 

is con t r i bu t ed by such t angen t i a l cha ins . 

However , j u s t l ike in t h e r m o d y n a m i c s of m e m b r a n e s we have t o 

accoun t for t h e incompress ib i l i ty of t h e rubbe r a n d th is will m a k e it 

necessary to a t t r i bu te a th ickness to the m e m b r a n e . In the model th is 

th ickness is t a k e n into cons idera t ion by allowing p a r t s of t h e cha ins 
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to lie in the direction normal to the membrane. The contributions of 
these normal chains to the entropy of the particle is calculated in 
Section 7. 

((3) The Entropy of a Particle Due to Tangential Chains. If NT 

is the number of the links of a chain which are constrained to lie on 
a line of the two-dimensional surface, it can be shown that the entropy 
of the chain is given by 

HT(X,NT) = k\NTln2- _ „ , J . (32)5 — I -
2NTb2} 

X is the length of the chain along the line, rather than the euclidean 
distance of the ends. 

If the chain is free to choose between different lines connecting the 
ends along the surface, it will choose the geodesic, because this makes 
Hr a maximum. 

Four assumptions precede the calculation of the entropy of a net­
work of tangential chains: 

(i) All n chains of one particle have the same number of links. 
Thus the entropy 3ir of the particle reads 

Kr = £ HT(\', N[) = £ HT(X') = E HTWZ(\), (33) 
; = i j = i x 

where Z(X) is the number of chains with the length X. 
(ii) In the reference configuration KO the number Z(L) is pro­

portional to the number of possibilities R = e1'* Hr to realize the 
length L: 

It follows that 

Z , 0 ( L ) « C e !/*»*<« 

ZKt(£) = ZK0(L) 

(34)6 

(35) 

holds, because the number of chains does not change in the defor­
mation. 

(Hi) The deformation of the end to end distance of the chains is 
affine to the membrane particle. 

(iu) For the calculation of the entropy of the tangential chains 
it is useful to imagine that one end of each of the n chains in a mem­
brane particle with coordinates Ur lies in a central point P. The other 
end lies at 91-, 9 2 in the reference configuration Ko and at t?1,1?2 in the 
deformed configuration tct where 0 r and t}r are geodesic coordinates 
within the particle with the origin at P.7 This means that the chains 
are situated on certain lines 9 r = constant and t? r = constant. For 
simplicity we choose the 9 r ' s as polar geodesic coordinates such that 
in KQ the chain lies along a line d2 = constant and L is equal to 61. 

We assume that the number of end points between 9 r and dr + d 9 r 

in KQ is proportional to the element of area y/G d 9 1 d 9 2 . A corre­
sponding assumption applies to Kt(Q) and thus we have 

Zm(L) = zK0(L) y/G dG^G2 and ZKI(£) = zKt(£) y/gd^dO2; 
m W (36) 

G A r and g^r are the metric tensors of the parameters nets 9 r and 
t>r . 

Therefore, by (33), the entropy of a particle in the deformed con­
figuration reads 

ft" = SHr(£)zKt(£) yTgd^dd2, (37) 
(•») 

where £ = y/gAr^A^r- By assumption (iu) we may write (35) with 
(34) as W 

zKt(£) yfgddH^2 = C el'kH'M y/G dQHQ2 (38) 
(») (0) 

6 This case corresponds to choice (i) in the Section (b). Proof of the formula 
(32) can be found in [12]. 

6 The geodesic length A will be denoted by L in the reference configuration 
Ko and by £ in the present configuration Kt. 

7 Thus the particle Ur is put under a magnifying glass and its different points 
are labeled by 6 r and i5r, respectively, in K0 and Kt. 

and C has the value 

C = 
J - e l /AH r (L )^ /Q d e i d Q 2 ' 

O) 

(39) 

because the total number of chains in the particle is n. Thus we 
have 

W/ = n-

SHr(£)eVkH*My/G dQ^Q2 

(e) 

SeVWMy/G dQ^dQ2 ' 
(O) 

(40) 

£ is related to L by assumption (Hi) in a complex manner which is 
specified in [12]. Furthermore G Ar is related to G^r and its first two 
derivatives by the equation (6) 

GAT = (1 0 \ 

(6) loo*)2- y,Kam*hr 
where KG is the Gaussian curvature of the membrane particle UT in 
to-

Integration of (40) leads to the following expression for the entropy 
of the tangential chains of the particle Ur: 

(41) 

# ? = nk\Nr In 2 - V2gArG^(l - Ve NTb2Ka)\ (42) 

and we conclude that the entropy of the particle Uv depends on the 
values of gAr(^ 2) and GAT(UX) and on the second derivatives of 
GAT(US) as represented by KQ. 

(7) The Entropy of a Particle Due to Normal Chains. To ac­
count for the thickness we assume a part of each chain to be normal 
to the membrane. The number of normal links is denoted by iV„. The 
entropy of a normal chain is, according to Section (a), 

H»(rKt,Nv) = k(NAn 2 - ^ - ) , (43) 

where tH is the distance vector of the ends of the chain which is parallel 
to the normal v of the membrane particle. 

Just like for the tangential chain we assume affine deformation of 
the chain length and the membrane thickness, such that 

(44) 

where S is the thickness parameter introduced in (8)4. 
In addition we assume—again like for the tangential chains—that 

in the reference configuration K0 the number of chains with the length 
rK0 is proportional to the number of ways to realize this distance. 
Therefore the mean value of r2„is 

r2
m = N„b2 

and, by (43) and (44), the mean value of H'J is 

' H? = k in, In 2 • 

By (25)2 we obtain 

2 \oJ I 

m' = k\NAn2---

(45) 

(46) 

(47) 

and, since the membrane particle contains n chains, the entropy o( 
the normal chains of the particle is given by 

tH'' •• n m nk\Nv\n2 1. 
2g 

(48) 

(5) Entropy of a Membrane Particle. The entropy of the 
membrane particle in the deformed configuration is the sum of j ¥ " 
and IH'i derived in the foregoing. If M denotes the mass of a chain we 
obtain the specific entropy of the membrane in the form 

Vs = - A7 In 2 - 1 / 2 ^ 0 ^ ( 1 • 
M \ 

y6Nrb
2KG)-y, 

G\ 
(49) 
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We conclude that this result is consistent with the thermodynamic 
result according to which ?)s is independent of the curvature tensor 
&Ar in the present configuration Kt. In the contrary, thermodynamics 
allows a dependence of ?js on the curvature tensor B^v in the reference 
configuration Ko and this dependence is indeed realized by the kinetic 
theory, because i)s in (49) depends on Kg. However, the dependence 
on KG is weak indeed, because NTb2Ka « 1 under all realistic cir­
cumstances. We are then left with the formula 

i ? .=^( iVln2-y 2 LrG A r + -J).. (50) 

It is easy to confirm that 

VV ~ V? < 0, (51) 

so that the reference configuration has the biggest entropy. 
(d) Surface Stress of a Membrane Particle. Insertion of rjs 

from (50) into the thermodynamic relation (20) for the surface stress 
leads to 

SAr = e!hll /G{GAr_9.gAr) ( 5 2 ) 

M V g \ g I 

Experiments with spherical membranes show that this formula is 
valid for deformations up to 250 percent.8 This restriction of the range 
of validity is due to the assumptions which have led to (50). In par­
ticular at large deformations the assumption of a strong entanglement 
of the chains is no longer valid. 

The formula (52) shows that the temperature dependence of S A r 

is linear as it must be according to observations related in the Intro­
duction. 

It remains to be shown that the aforementioned expression for S A r 

is compatible with the observations reported in Fig. 1. To this end we 
consider the case of a spherical membrane which is deformed by an 

. increase of the radius. In this case 

= (r2 0 \ /** 0 \ 
8AF \Q r 2 s in 2 e /Ar ' A r lo /?2sin2eJAr' 

b±? = £ .° , J <53> l0 r sin2 9/Ar 

holds, so that 

„ s=*-(iVln2-4-i*-4), (54) 

M A 0 / R* i I 
\ I 1 r 6 | s i n 2 e / 

The equation of balance of momentum in equilibrium is expressed 
by the two equations 

Sff = 0 and [p] = S A r b A r (56) 

and insertion of (55) shows that (56k is identically satisfied while [p] 
is given by 

e.g., see [13]. 
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pfkTsll IR\6\ 

M-'Vr-rt))- (57) 

This function can be compared directly with the curves of Fig. 1 and 
it turns out that (57) with an appropriate factor coincides with the 
dashed curve of Fig. 1. This curve is confirmed by experiments up to 
r/R » 2,5 which is the range where we expect this theory to hold).9 

If one follows the derivation of the expression (57) for [p] closely, 
one finds that the summand (fl/r)6 in (57) results from the contri­
bution of the normal chains. It is thus seen that the contribution of 
the normal chains dominates the behavior of the membrane at small 
deformations. In particular, this term guarantees the existence of a 
configuration for which [p] = 0 and S A r = 0 this is the configuration 
where r = R. The effect of the tangential chains dominates the be­
havior of the membrane at large deformations to the right of the 
maximum in Fig. 1. 

In the stress-free configuration r = R the entropy (54) has a maxi­
mum. Here again we conclude that the contribution of the normal 
chains is most important. Indeed, if it were absent, the maximum of 
the entropy would occur at r = 0 and the membrane would therefore 
contract to a point. 
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Instability of a Transversely Isotropic 
Elastic Slab Subjected to Axial 
Loads 
After obtaining the relations between incremental stresses and incremental strains, we 
analyzed the instability problem stated in the title on the basis of Biot's mechanics of in­
cremental deformations. The slab, made of a hypothetical transversely isotropic com­
pressible elastic material, is assumed to be stronger in its transverse direction than in its 
axial direction. The analysis shows that, no matter what the anisotropy strength of the 
slab is or its thickness is, it can become unstable under tension as well as under compres­
sion. The critical load is higher for the stronger anisotropy in the compressive case, while 

. it is lower for the stronger anisotropy in the tensile case. In other words, the reinforcement 
in the "wrong" direction weakens the slab under tension with respect to its stability. Fur­
thermore, the weakly anisotropic slab can become unstable only after the axial resultant 
force reaches its maximum, while the strongly anisotropic slab can lose its stability before 
the force reaches its maximum. 

1 Introduction 
By "instability" of an elastic body we understand here a situation 

when for certain prescribed boundary loads there exist several adja­
cent states of displacement that are in equilibrium with these loads. 
The smallest load (stress) at which this state is possible is called the 
"critical" load. 

There are many papers concerning instability problems, even if we 
direct our attention to an elastic slab or a thick plate or a rectangular 
block under axial loads. Most of these papers considered a slab made 
of a general or special incompressible isotropic material [1-6]; the 
special one is of the neo-Hookean or Mooney-Rivlin type. Unlike 
these, Southwell [7] and Kerr [8] treated the case in which the stresses 
and strains, whatever their magnitude, are connected by Hooke's law, 
and Hill and Hutchinson [9], and Young [10] considered a wide class 
of materials that is initially isotropic or orthotropic with respect to 
the geometric axes, incompressible, and incrementally linear. The 
compressible isotropic case was investigated by Burgess and Levinson 
[11]. Furthermore, the author [12] examined the instability of a slab 
of a compressible isotropic elastic material reinforced by inextensible 
completely flexible fibers. 

Wesolowski [1] paid special attention to the instability of a slab 
subjected to a tensile axial load, and found that instability would arise 
only after the applied force reaches its maximum. This conclusion was 
also reached by Hill and Hutchinson [9]. In contrast to their conclu-
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sion, it follows from [12], though not explicitly stated, that the fiber-
reinforced slab under tension loses its stability though the tensile 
resultant force has no maximum. 

Here we thus examine the instability of a transversely isotropic 
compressible elastic slab subjected to uniform axial loads. The slab 
is assumed to be stronger in its transverse direction than in its axial 
direction, and to be in a plane strain state both prior to and after be­
coming unstable. 

In the next section, we first obtain the relations between incre­
mental stresses and incremental strains by taking the material time 
derivative of the stress-deformation equations of transversely iso­
tropic, compressible, elastic solids. The incremental stresses are de­
fined as the product of the time increment and the objective corota-
tional stress rate, so that they are identical with those in Biot's me­
chanics of incremental deformations [13]. 

A special form of the strain-energy function for a transversely iso­
tropic, compressible, elastic material is proposed in Section 3. The 
stress-deformation relations resulting from the proposed form of the 
strain-energy function contain the following two special cases: those 
of the isotropic Blatz-Ko foam rubber [15] and the idealized fiber-
reinforced Blatz-Kp foam rubber [12]. 

Next, using the derived incremental stress-incremental strain 
relations and the proposed form of the strain-energy function, we 
solved the aforementioned instability problem on the basis of Biot's 
mechanics of incremental deformations [13]; the equilibrium equa­
tions for incremental stresses are regarded as equations of neutral 
equilibrium for examining the stability of the finite, uniform, axial 
extension or contraction of the slab. The buckling condition comes 
about in consequence of the fact that there must exist nontrivial so­
lutions for the infinitesimal deformations superposed upon the uni­
form extension or contraction. 

Some numerical results in the last section show that the 
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transversely isotropic, elastic slab under compression, including the 
isotropic case, becomes unstable at a certain critical load for all 
wavelength-to-thickness ratios l/h. The critical load decreases for the 
larger ratios. On the other hand, when the load is tensile, the slab 
becomes unstable for all wavelength-to-thickness ratios l/h and for 
all anisotropy strength parameters k. The critical load decreases and 
is asymptotic to that of the idealized fiber-reinforced slab according 
to the increase in the anisotropy strength; in other words, the fiber-
reinforcement in the transverse or wrong direction weakens the slab 
under tensile load with respect to its stability. Furthermore, the 
critical load does not depend on the wavelength-to-thickness ratios 
for the anisotropy strength parameter k > k0 =a 0.86, but does depend 
on these ratios for the anisotropy parameter k < ko. Finally, for the 
anisotropy parameter k < ko including the isotropic case k = 0, the 
slab under tension loses its stability after the axial resultant force 
reaches its maximum, while for the parameter k > k0, the slab under 
tension becomes unstable before the resultant force reaches its 

maximum. 

2 I n c r e m e n t a l S t r e s s - I n c r e m e n t a l S t r a i n Re la t ions 
Let X and x be the positions occupied by a material point X in a 

fixed reference configuration and in the present configuration, re­
spectively. Identify the position x with the deformation function, and 
the particle velocity v is given by v = dx/dt. The deformation gradient 
F and the velocity gradient L are defined as 

F = dx/dX, L = dv/dx, 

between which there is the relation 

L = F F-1. 

(1) 

(2) 

In terms of these gradients, we may express the right and left Cau-
chy-Green deformation tensors, C and B, the deformation rate tensor 
D, and the spin tensor W as 

c = F r F > B = F F r 

D = (L + L r ) / 2 , W = (L - L^)/2. 

In the foregoing equations and also in what follows, ( ) denotes the 
material time derivative, ( ) T and ( )~x the transpose and the in­
verse of the tensor, respectively. 

Further, let H„ denote three mutually orthogonal unit vectors in 
the reference configuration. Analytically, 

d H „ / d i = o , dH„/dX = o, t r (H„®H{,) = 8ab, (4) 

where tr ( ) denotes the trace and ( )®( ) the tensor product. The 
symbol 5„t is the Kronecker delta. The indices a and b take on the 
values 1, 2, 3. The deformation carries the vectors H„ into the vec­
tors 

K = FHa, 

in terms of which the six scalars are defined as 

r a 6 =tr(h a®h(,). 

(5) 

(6) 

If the transversely isotropic material considered here has a 
strain-energy function, the function W should depend on the defor­
mations only through the five invariants of C 

I = tr C, II = J {(tr C)2 - tr C2|, III = det C, 

IV = r c c , V = r c a r c o , (no sum on c) (7) 

under rotations about the preferred direction Hc [14]; that is, 

W = W(I, II, III, IV, V). (8) 

In equations (7) and in what follows, the double suffix notation for 
summation is applied to the indices but not to the index c. The 
stress-deformation relations for the transversely isotropic, com­
pressible, elastic material are given by [14] as 

T = #01 + * l B + 4 - i B - 1 + * 2hc®h c + * 3 (Bh c®h c + hc®Bhc), (9) 

where T is the Cauchy stress tensor, I the unit tensor, and the response 
coefficients ** = $fe(I,II,III,iV,V), (k = -1,0,1,2,3) are expressed in 
terms of the strain-energy function W as 

*o = (2/Vra)(IIdnlV + IIIdmH'), $ i = (2/vTlDdilV, 

* - i = - 2 v / f i l d n W , *2 = (2/VTlDdivlV, #3 = (2/Vul)dvW. 

(10) 

Here and henceforth, di, dn, etc., denote the partial differentiation 
with respect to the respective invariants. If the material is initially 
unstressed, 

diW + 2duW + dmW = 0, dlvW + 2dvW = 0, (11) 

when I - 3 = I I - 3 = I I I - 1 = I V - 1 = V - 1 = 0. 
From equations (l)-(6), we can easily obtain the following for­

mulas: 

B = (DB + BD) + (WB - BW), C = 2FTDF, 

h„ = (D + W)ha, r a 6 = 2 t r ( D h a ® h 6 ) , (12) 

and we define the incremental stress tensor s, the incremental strain 
tensor e, and the incremental rotation tensor o> as 

s = fAt, e = DAt, ai = wAi, (13) 

where At is a time increment and t = t - WT + TW the objective co-
rotational stress-rate tensor. 

Differentiate the stress-deformation relations (9) with (10) and (8) 
with respect to time t and then use the formulas (12) and the defini­
tions (13), and we are to obtain the relations between the incremental 
stresses and the incremental strains 

s = $i(eB + Be) - $_!(eB_ 1 + B_1e) + *2(ehc®hc + hc®ehc) 

+ $3f(eB + 2Be)hc®hc + hc®(eB + 2Be)hc 

+ Bhc®ehc + ehc®Bhc) + 2 tr (eB)diE 

+ 2(11 tr e - III tr (eB-^jdnE + 2III(tr e)dfflE 

+ 2 tr (ehc®h)divE + 2 tr (Bhc®ehc + ehc®Bhc)dvE, (14) 

where E(I, II, III, IV, V) is given by 

E = * 0 1 + $ i B + $ _ i B _ 1 + $ 2 h c ®h c + * 3 (Bh c ®h c + hc®Bhc). 

(15) 

3 A S p e c i a l F o r m of the S t r a i n - E n e r g y F u n c t i o n 
Blatz and Ko [15] proposed a particular form of the strain-energy 

function for an isotropic, compressible, elastic material, which they 
adopted in an attempt to characterize the experimental data obtained 
in tests on foam rubber. This particular form of the strain-energy 
function is, according to our notation, 

(16) W = hn\(lI/IU - 3) + 2(VTII - 1)) 

where n is a material constant. From this follows 

1 
' ( • ' 

on 
:B~ (17) 

In the previous paper [12], the author considered, in connection 
with the instability problem, the reinforcement of this Blatz-Ko foam 
rubber by the inextensible, completely flexible fibers along the pre­
ferred direction. The stress-deformation relations for this idealized 
fiber-reinforced Blatz-Ko foam rubber are given, with the help of the 
theory of ideal fiber-reinforced composites [16, 17], as 

T = fi f l - — = = B - ! - Q h c ® h c , (18) 
III 

with the kinematical internal constraint 

tr (hc®hc) = 1, (19) 

if the preferred direction is given by Hc. The last term on the right-
hand side of equation (18) represents the reaction stresses due to the 
internal constraint. 
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II t t r 

'0 
Fig. 1 Transversely Isotropic slabs before loading and under axial loads 

Here, let us consider the Blatz-Ko foam rubber reinforced by "ex­
tensible" fibers along the preferred direction Hc, and let us treat this 
rubber as a transversely isotropic material possessing rotational 
symmetry relative to the direction Hc. As one of the simplest forms 
of the strain energy function for such a transversely isotropic rubber, 
we consider the following special one: 

w = J MKH/III - 3) + 2(Vni -1) + i A(iv -1)2), (20) 

where k a 0 is an additional material constant characterizing the re­
inforcement by extensible fibers or the strength of the anisotropy. 
Henceforth, let us refer to this constant as an anisotropy parameter. 
This function satisfies the natural state conditions (11). It follows from 
equations (20), (9), and (10) that 

T = M 1 -
III 

B" 
III 

( IV - l)hc®hc (21) 

This stress-deformation equation coincides with equation (17) in the 
limit k -> 0. On the other hand, when k -><» and tr (hc®hc) -» 1, this 
equation agrees with equation (18), provided that 

fi lim ft(IV-DA/HI =-Q. (22) 

This limiting provision may be intuitively understood to be reasonable 
from equations (5)-(7) and (19). For the specified strain-energy 
function (20), the incremental stress-incremental strain relations (14) 
and (15) reduce to 

s = (ju/VIIlHeB-1 + B-!e + B"1 tr e + fe(2hc®hc tr (ehc®hc) 

+ ( IV - l )(ehc®hc + hc®ehc - hc®hc tre))] . (23) 

This equation also agrees, when k -* °°, tr (hc®hc) —• 1 and tr (ehc® hc) 
—- 0, with the counterpart of the theory for ideal fiber-reinforced 
composites, provided that 

At lim k\2 tr (ehc®hc) - (IV - 1) tr ej/VHI = -q, (24) 

where q is the indeterminate incremental reaction stress due to the 
inextensible constraint. 

4 Deformation and Stress in a Slab Under Axial 
Loads 

Let (X, Y, Z) and (x, y, z) denote, respectively, the material coor­
dinates and the spatial coordinates, with the bases (i, j , k), of a point 
when referred to the same Cartesian system. Consider an infinite 
elastic slab of thickness 2H in its natural state and having a thickness 
of 2h when subjected to the uniform axial stress T0 at infinity, as 
shown in Pig. 1; the strain-energy function of its material has the form 
like in equation (20), and the symmetry axis is in the X-direction. 
Tha t is, 

Hc = (25) 

Furthermore, the slab is assumed to be free from tractions on its x = 
±h boundaries and to be in a plane strain state with A3 = 1. 

Denote the principal stretches in the X, Y, and Z-directions as Ai, 
A2, A3, respectively, and the deformation gradient is clearly 

from which follow 

and 

• Aii®i + A2j®l + k®k, 

B = Ai2l®i + A2
2J®| + k®k 

I = A12 + A2
2 + 1, II = A12 + A2

2 + A!2A2
2, III = Ai2A2

2, 

IV = AX
2, V = A!4 

(26) 

(27) 

(28) 

wherein we have used equations (3), (5)-(7), and (25). Substituting 
equations (26)-(28) into equation (21) yields, with the aid of equation 
(5), 

Txx = At|l - A r ^ r 1 + feAAa-HAx2 - 1)), 

Tyy = Aid - A r ^ j - 3 ) , (29) 

TZ! = AI(1 - Ai-iAiT1). 

These are the nonzero components of the Cauchy stress tensor T. From 
the condition of traction-free boundaries and from the loading con­
dition at infinity, we get 

and 

A 2 - A r 3 + /2Ai(Ai2- l ) = 0 

T0 = n(l - A!-iA2-3). 

(30) 

(31) 

5 Instability of the Slab 
In order to examine whether the finite deformation and the stresses 

of the slab obtained in the previous section are statically stable or not, 
let us superpose an infinitesimal plane deformation on that finite 
deformation. Equilibrium equations for incremental stresses due to 
the superposed infinitesimal deformation are regarded as equations 
of neutral equilibrium for examining this stability. 

As shown by Bazant [18], the incremental stresses defined by Biot 
[13] are identical with those defined as the product of a time increment 
and the objective corotational stress rate. Therefore, it may be pref­
erable to adopt Biot's formulation of the infinitesimal deformations 
of continuous bodies under initial stresses from among various 
mathematical formulations. The equilibrium equations for the in­
cremental deformations in rectangular Cartesian coordinates are 

dsij/dxj + Tjkdcoik/dxj + Tikdwjk/dXj - ejkdTik/dxj = 0, (32) 

where sij, eij, and o>;;- are the Cartesian components of s, e, and co de­
fined by equations (13). The incremental boundary forces per unit 
initial area are 

A/; = (sij + TkjWk + Tijekk - Tikej^rij, (33) 

where nj is a unit normal to the initial boundary surface. In equations 
(32) and (33), the sum is taken from 1 to 3 with respect to the repeated 
indices. 

For the sake of simplicity, the superposed deformation is also as-
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Fig. 2 Classification of equations (36) In a k - \2 plane and critical axial stretch curves X2 = X2c represented by dashed curves 

sumed to be in a plane strain state. Consequently, the components 
of incremental displacement are given by 

u = u(x, y), v = v(x,y), w = 0. (34) where 

These equations and equations (25)-(29) reduce the incremental 
stress-incremental strain relations (23) to the forms 

Sxx = <l>uexx + 0 1 2 ^ , 

sVv = <l>2zeyy + fee**, "yy ' (35) 

Sxy = <l>oex. 

where 

(36) 

0ii = M A i A s r ^ X r 2 + fcXi2(3X!2 - 1)|, 

022 = M(XIX2)-M3X2- 2 ) , 

012 = M(XIX 2 ) -MXI- 2 - * X i W - l)j, 

021 = M(AIX2) - 1 X 2 ~ 2 , 

0o = M ( X I A 2 ) - 1 I ( X I - 2 + X2-2) + hWiXS - l)j. 

Substituting equations (29) and (35) into equations (32), we obtain 
a set of governing equations in terms of the incremental displacement 
components u and u: 

\pud
2u/<)x2 + d2u/dy2 + \pi2d

2v/dxdy = 0, 

fedVdx2 + d V d y 2 + \pnd
2u/dxdy = 0, 

where 

4>u = 3 + feXi4(3Xi2 - 1), 

fe = i | l + A X i 2 X 2 W - l ) } , 

«Ai2 = X ! 2 ( X r 2 + X2"2 ) , 

^2i = JX2
2(Xi-2 + X2-2). 

(37) 

(38) 

Since the slab is free from tractions, the incremental boundary forces 
(33) should vanish at x = ±h; using equations (29)-(31), (34)-(36), 
and (38), we obtain 

\pudu/dx + \podvldy = 0 at x = ±h, 

du/dy + du/dx = 0 at x = ±h, 

^ 0 = l - f e X i W - - l ) . 

(39) 

(40) 

The differential equations (37) have the following formal solutions 
for the antisymmetric mode: 

u = \Ai cos (£iirx/l) + Ai cos (fax/l)} cos (iry/1), 

v = |AIKI sin (fairx/l) + A 2 K 2 sin (fax/l] sin (ivy II), 

where A\ and A2 are integral constants, and / is the half wavelength 
in the axial direction. The constants fi and f2 are given by 

f„ = [|-6 - (-1)«(62 - 4a)1/2)/(2a)]1/2 (a = 1, 2), 

which are two of the four roots for the algebraic equation 

a? + b$2+l = 0 

with the coefficients 

a = ^11^22, b = \f/n + fe - ^12^21-

Furthermore, the constants K\ and K2 are given by 

K„ = Wnf„ 2 + D/iinM (a = 1,2). (45) 

On reference to the boundary conditions (39), the solutions in (41) 
yield homogeneous linear algebraic equations with respect to the 
unknowns Ai and A2. For a nontrivial set of solutions of these equa­
tions, the determinant of the coefficients must vanish, resulting in 
the following buckling expression: 

Wiifi - </Wl)(l ~ /a f i ) - 1 tan tfnrh/l) 

- Wnfz - *0K2)(1 - 12k)-1 tan (fair/i//) = 0. (46) 

The counterparts of equations (41) and (46) for the symmetric mode 

(41) 

(42) 

(43) 

(44) 

u = \Ai sin (fiinc/7) + A2 sin (&irx/l)\ cos (try/I), 

u = ~\AtKi cos (fiirx//) + A2K2 cos (fax/l)} sin (iry/l), 
(47) 
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Table 1 Classification of equations (36) 

Region in Fig.2 

© 
© 
© 
© 

Cj_ and c2 

Both real 

Real and purely imaginary 

Both purely imaginary 

Both complex 

b -4a>0, a>0, b<0 

a<0 
2 

b -4a>0, a>0, b>0 

b2-4a<0 

Type of eqs. (36) 

Hyperbolic 

Mixed hyperbolic-elliptic 

Elliptic 

Elliptic 

-5 

\lf* 

-2 -

-1 

2 3 
l/h — -

Fig. 3 Critical load under compression 

and 

tyiifi - tfwciKl - (Cifi)-Vtan (fi7r/i//) 

- tyiifi - ^o«2)(l ~ K2f2)~7tan (fah/l) • 0, (48) 

where the constants ft, f2, K\, K2 are given by equations (43) and (45) 
again. 

The solutions (41) and (47), and therefore the equations in (46) and 
(48) as well, are formal expressions and may be rewritten in other 
forms depending on what type the differential equations (37) are 
classified into. This classification can be carried out according to 
whether the two roots fi and f2 are both real, real and purely imagi­
nary, both purely imaginary, or both complex. This is summarized 
in Table 1 and shown in Fig. 2; the k — X2 plane is divided into several 
regions, marked from (T) to @, by solid curves. 

6 Numerical Computations 
From equation (30) it follows that X2 is a single-valued function of 

Xi. The use of this in equation (46) [or (48)] then gives an equation 
for Xi which has multiple roots. After these are found for the given 
l/h and k, we choose a root such that X2 is nearest to unity (the max­
imum for compression and the minimum for tension), say X2c- The 

VP 

Synmetrlc mode 

L, 

Fig. 4 Critical load under tension as a function of anisotropy parameter 

axial load corresponding to this root obtained through equation (31) 
is a critical, or buckling load, such as Tc. 

However, for the case of tensile loads and when k > ko =* 0.86, a set 
of roots X2 corresponding to the multiple roots Xi does not have a 
minimum but an infimum, as is proved by examining equation (46) 
[or (48)] in the region © in detail. This infimum is given by the 
equation a = 0 instead of equation (46) [or (48)] and falls on t h e © - ® 
boundary in Fig. 2. That is, this boundary is a locus of points of ac­
cumulation of roots X2 of equation (46) [or (48)]. We regard the cor­
responding load for this infimum as a critical value, such as Tc 

again. 

In Fig. 2, the dashed curves represent the X2 = X2c curves for some 
wavelength-to-thickness ratios. For the compressive case (X2 < 1), 
all these curves are within the ellipticity regions ® and @. For the 
tensile case (X2 > 1), the curves are on the (2)-® boundary, within the 
ellipticity region (3), or even within the hyperbolicity region (J). Within 
this hyperbolicity region, there might be hyperbolic solutions possibly 
carrying weak discontinuities or strong discontinuities, though we 
have assumed continuously differentiable solutions from the outset. 
These possible discontinuities lie beyond our scope. The vertical line 
marked Xc in the upper middle of the figure is an asymptote of the 
©-(3) boundary curve and at the same time an asymptote of the X2 

= X2c curve. The approximate value of \c is given as 1.466 in [12]. 

For the compressive case, Fig. 3 shows how the critical load depends 
upon the wavelength-to-thickness ratio l/h for the anisotropy pa­
rameters k = 0.0,1.0, <=, meaning isotropy, transverse isotropy, and 
ideal fiber-reinforcement, respectively. The slab becomes unstable 
for all l/h > 0. In particular, the transversely isotropic slab, including 
the isotropic case, becomes unstable for l/h —• 0. The critical load in 
this limit coincides with that of a "surface instability" of an elastic 
half space. The critical load for the antisymmetric mode, which is 
smaller than for the symmetric mode, decreases according to the in­
crease in l/h. The stronger anisotropy makes the critical load higher; 
in other words, a stronger reinforcement makes the critical load 
higher. 

For the tensile case, Figs. 4 and 5 show how the critical load depends 
on the anisotropy strength k and the wavelength-to-thickness ratio 
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Fig. 5 Critical load under tension as a function of wavelength-to-thickness 
ratio 

l/h. In sp i te of t h e tensi le load, t h e s lab becomes u n s t a b l e for all l/h 

a 0 and for all k £ 0. For k>ko^ 0.86, t h e crit ical load does no t de ­

p e n d on l/h b u t does d e p e n d on l/h for k < k0. T h i s d e p e n d e n c e on 

l/h for k < k0 is shown in Fig. 5; the incipient instability occurs for the 

an t i symmet r i c m o d e for some values of l/h a n d for t h e symmet r i c 

mode for other values of l/h. Fu r the rmore , t h e critical load decreases 

according t o t h e increase in k; in o the r words , t h e re in forcement in 

t h e t ransverse or "wrong" d i rec t ion weakens t h e slab in regard t o i ts 

stabili ty. T h e asymptot ic critical load in the l imit k -> <*> is T0c = M ( 1 

- A," 3 ) [12]. 

Fig. 6 shows t h e X2 = X2c curves and t h e X2 = X2m curve wi th X2 m 

being t h e value the pr inc ipa l s t r e t ch in t h e axial d i rec t ion assumes 

when t h e tensi le r e su l t an t force 

F = 2 H X i T 0 (49) 

reaches its m a x i m u m . For k < ko, X2c > X2m . T h i s m e a n s tha t , for t h e 

an i so t ropy t h a t is weaker t h a n w h e n k = kg, t h e ins tabi l i ty can ar ise 

only after t h e r e su l t an t force reaches its m a x i m u m . T h i s is the s a m e 

conclusion as t h a t reached by Wesolowski [1] and Hill and Hutchinson 

[9]. In con t r a s t to t h a t conclusion, for k > kg, X2c > X2 m . T h a t is, for 

t h e an i so t ropy t h a t is s t ronger t h a n when k = k0, t he ins tabi l i ty can 

occur before t h e r e su l t an t force reaches its m a x i m u m . 
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Large PIane»to-Surface 
Deformations of Membranes 
With Inclusion1 

For large deformations, the strain-energy density function for a neo-Hookean membrane 
is dominated by the sum of squares of the two principal stretch ratios. This property re­
duces the displacement equations of equilibrium for the class of problems considered to 
three uncoupled linear equations. The nonlinear coupling appears only in the algebraic 
stress calculations. In light of the scarcity of exact solutions to nontrivial problems, the 
approximate but explicit solutions obtained here should be of some practical value. 

1 Introduction 
The theory of the finite deformation of a nonlinearly elastic 

membrane has been studied by many authors (see [1-5], for example). 
Because of the nonlinearity of the equations involved, the application 
of the theory to particular problems is in general very difficult. Aside 
from the few simple problems solved by a semi-inverse approach (see 
[6], for example), exact solutions are few. 

In the context of the theory of plane stress, the solutions to the class 
of axisymmetric problems, originally studied by Rivlin and Thomas 
[1], may be considered exact in that the governing equations may be 
reduced to two uncoupled first-order ordinary differential equations. 
This reduction was accomplished by Yang [7]. The class of solutions 
obtained by Varley and Cumberbatch [8] is exact, but is based on an 
assumed special strain-energy density function. 

In the general case where at least either the undeformed or the 
deformed surface is not a plane, the number of exact solutions is even 
fewer. Axisymmetric deformations of initially cylindrical membranes 
may be solved exactly [9-12]. These are perhaps the only nontrivial 
additions to the semi-inverse solutions mentioned in [6]. Effective 
numerical formulations for a large number of nontrivial problems, 
however, can be found in [13-15]. 

For very large deformations, explicit asymptotic solutions are very 
often possible. The needed asymptotic analysis depends very much 
on the type of membrane material involved (see [16-20], for example). 
A summary of this discussion may be found in [21] in which the re­
duction of Wang and Shield [17] was generalized to plane-to-surface 
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7905462. 

2 Presently, Hunter Corporation, Hammond, Ind. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OP APPLIED MECHANICS. 
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10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, July, 
1980. 

deformations. This simplification is extremely significant in that it 
reduces a nonlinear problem to one that is even simpler than a linear 
problem. This is illustrated by the many problems solved in [17] and 
a recent solution by Wu [22]. The solutions given in this paper give 
another indication of the usefulness of the reduction. 

2 Nonlinear Membrane Theory 
Consider an elastic membrane surface characterized by a constant 

thickness H and a characteristic linear dimension R. The membrane 
is made of a neo-Hookean material with an elastic constant Ci. We 
shall use R and RHC\ as a length scale and a force scale, respectively, 
and shall henceforth be dealing with dimensionless quantities 
only. 

Let Xi = x' be a set of rectangular cartesian coordinates with unit 
vectors e; = e'. The position vector x = Z of a point on a surface S may 
be expressed in terms of two surface coordinates 6" = 8a. Specifically, 
we write 

Z = Z(fl«) = Z i (0 a )e i =Z, ' (<ye i (1) 
The covariant base vectors A„ and the components Aap and A"13 of the 
metric tensors are 

A„ = Z,« = Zj„e; (2) 

(3) 

A,, (4) Aafl._ 

= A« • A, 

-1 g«X e0n£ 

where ea^ are the components of the two-dimensional alternator, 
and 

A = det [Acfi]. (5) 

Suppose that the surface S is deformed to a new surface s. Let x = 
z be the position vector of a point on s which, in the undeformed state, 
had position Z. The deformation may be defined by 

z = z(ea)=zi(6a)ei=-zi(da)e
i. (6) 

On the deformed surface s, the base vectors aa and the components 
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aap and a"*3 of the metric tensors may be derived from (2)-(5) by re­
placing the kernel letters by their lower case counterparts. 

Let dL and dl be, respectively, the arc elements on S and s. 
Then 

(7) A2 = f—Y = (aalid6°'d6li)l(Aapdd<'d8<i) 

where A is the stretch ratio. The two invariants / and J of (7) are 

I = A? + A | = A"»aali (8) 

J = A2 A | = a/A (9) 

where Ai and A2 are the principal stretch ratios. For a neo-Hookean 
membrane subjected to large deformation, the dimensionless 
strain-energy density W per unit area of the undeformed surface may 
be approximated by 

W = / - 2. (10)3 

For zero body force and surface load, the three displacement equations 
of equilibrium are [21] 

d0, 
(11) 

(12) 

which, for W defined by (10), become 

d8a \ d6p, 

If the undeformed surface S is in the plane Z3 = 0, and if Z\ and Z2 
are taken as the surface coordinates, then (12) becomes 

d2 d2 

f>Zl d Z | hm0- (13) 

Let t dl be the traction vector on the deformed line element dl. 
Then 

t = 2 A 1 / 2 A a 8 e a „ — a 8 . 
dl 

The line elements along the coordinate curves are 

dl„ = a)!« d8" (no sum). 

Substituting (15) into (14), we obtain the traction vectors 

l„ = 2A1/2 Aytey„ —ŷ &i, (no sum on a) 
a „ 

3 E l l ip t i c Inc lus ion 
We begin by introducing two complex variables 

Z = Zi + iZ%, 

f = f i + tf2 = pe'" ( p > l , O < 0 < 2 T T ) , 

and a transformation 

Z = fi(f) = f + m / f ( - l < m < l ) . 

(14) 

(15) 

(16) 

(17) 

(18) 

(19) 

boundary. The shape of the inclusion depends on the choice of m: 

— 1 line inclusion of length 4 on the Z2-axis. 

0 circular inclusion of radius 1. 

+ 1 line inclusion of length 4 on the Z]-axis. 

For large values of k, the outer boundary is almost circular. Our ob­
jective is to determine the deformation of the membrane due to the 
application of certain displacement boundary conditions specified 
along the inclusion boundary p = 1 as well as the outer boundary 
p = k. 

Let (i be a set of body-axes attached to the inclusion such that «,-
coincide with e,- in the undeformed configuration. The set of body-axes 
is rotated through the sequence of Euler-angle rotations: <j> about 63, 
7 about 61, and \p about es. The effect of these rotations may be 
characterized by a matrix R with components Ri,„ = Klm defined 

by 

fin = cos (j> cos \p — sin \p sin <l> cos 7 

R12 = sin il> cos \j/ + sin \p cos </> cos 7 

fiis = sin \p sin 7 

fi2i = —cos (j> sin \p — cos \p sin </> cos 7 

-R22 = —sin (j> sin \p + cos \p cos <f> cos 7 (22) 

fi23 = cos \p sin 7 

R;n = sin (j> sin 7 

#32 = —cos 4> sin 7 

.R33 = cos 7 

The matrix R satisfies the relation RT = R_1. If u is a vector with 
representations 

then 

u = u*e; = u ;e ' = filti = ixit1, 

H' = R'JUj, ul = RJifij. 

(23) 

(24) 

The boundary conditions along the inclusion boundary p = 1 are 
those effected by a rigid-body translation A,e ' and a rigid-body 
rotation characterized by R. We have 

where 

ZJ = A; + flijZi + R2JZ2 

ZJ = Ay + RjZ + RjZ 

Rj = 2 (Rij — iRij)-

(25) 

(26)4 

(27) 

The conditions along the outer boundary p = k are assumed to be of 
the following form: 

The parameters p and 6 define a set of curvilinear coordinates in the 
Z-plane. We choose them as the surface coordinates introduced in 
Section 2 and write 

zj = YjZ + TjZ (28) 

di = 81 = p, , = 02 = 0. (20) 

where the T's are expressed in terms of three parameters Xi, X2, and 
/? by the expressions 

In terms of the curvilinear coordinates, we may characterize an 
elliptical annulus by the expression 

1 < p < k (21) 

where p = 1 defines the boundary of the inclusion and p = k the outer 

Ti = H(Xi + A2) + <*i - A 2 ) e - i 2 a 

r 2 = 7 [ ( X 1 - X 2 ) e - ^ - , ( X 1 - r X 2 ) ] , 
4 

r3 = o. 

(29) 

(30) 

(31) 

This choice is motivated by the observation that as k -*• <=, Xi and X2 
are just the constant principal stretch ratios Ai and A2 at infinity, and 
/3 is simply the angle between the Zi-axis and the Ai-direction. 

3 The complete expression is W = I + J-1 — 3. A discussion on various re­
strictions on the applicability of (10) may be found in [21]. 1 (") = complex conjugate of ( ) 
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The functions 0; must now be determined to satisfy (13), (26), and 
(28). The solution is elementary and the result is 

N = (t2 X l2 - T2)1'2 = 2a2} a1'2, (47) 

1 \ _ - d: di 
,s - A; 1 - — - l n p + bj{ + bj! + -j: + -L 

Ink f f 
where 

bj< 
k2-l 

1 

[ik2Tj + mTj) - (Rj + mRj)}, 

k2-l 
[~ik2Tj + mTj) + k2(Rj + mRj)}. 

(32) 

(33) 

(34) 

where aa/j can be explicitly obtained by using (32), but the lengthy 
algebraic expressions are not given here. 

4 E x a m p l e s 
Pulling and Twisting of a Circular Inclusion. The membrane 

is uniformly stretched at the outer boundary with Xi = X2 = X, and 
the inclusion is pulled out of the plane by a force Fes and a couple Ce3. 
Setting 

We proceed to calculate a number of quantities pertinent to the so­
lution. 

Using the parametric representation defined by (19) and (20), we 
have 

Au = -A22 = -A1'2 = l-2-cos2d + ?!-, (35) 
P P P P 

A12 = A12 = 0. (36) 

The traction acting on the membrane along the inclusion boundary 
may be calculated from (16). It is 

-i2dl2 = -2\A1'2An —I eidd 
\ dp/P=i 

we obtain 

m = 0 = ^ = T = A 1 = A2 = O, 

F 
A3 = — In ft, 

4ir 

z\ = flip) cos 6 + f2(p) sin 8, 

z2 = flip) sin 6 - f2ip) cos 6, 

F F 
z3 = — In ft In p, 

4ir 4-7T 

(48) 

(49)6 

(50) 

(51) 

(52) 

where 

, , ^ ft2X — cos <j> ft2 (X — cos <A) 1 , v 

fiip)=—~0—:—P ——; , (53) 

= 2 — - - (bi - di)eie - ibt - d,)e-w]e, dd. (37) 
In ft 

k2-l 

t 1 \ sin't' I fe2 
hip) = ——7 p 

k2-l p 

(54) 

The total force that must be applied on the inclusion is just 

F = j " - t 2 d ( 2 = — - A i e ' . 
In ft 

(38) 

Let C be the total couple that must be applied on the inclusion. 
Then 

k 2 - l \ p 

The couple C is related to the Euler angle <j> by the expression 

„ 8irft2X . , s 

C = — — - s i n * . (55) 

For this problem, the curvilinear coordinates are the polar coor­
dinates in the undeformed configuration, i.e., 

C = c,el = Cie1 

= f z X (-I2 dl2) - A X F 

Ai - BP, A2 - pee, (56) 

(39) 

where z is the position vector defined by (26). The explicit results for 
the components Ci are 

Ci = ^ Y i f i l3 (1 + m) (fe2 + m) (Xl - X2) sin 2/5 

- R23 (1 - m) ik2 - m) [(Xi - X2) cos 2/? - (Xi + X2)]|, (40) 

C2 = - -^— Iflia (1 + m) ik2 + m) [(Xx + X2) + (X! - X2) 
k'- — 1 

X cos 2/3] + R2S (1 - m) (ft2 - m) (Xi - X2) sin 20), (41) 

2TT 
C3 = - - • [(1 + m) (ft2 + m) (fln(Xi - X2) sin 20 

ft2-l' 

- -Ri2[(Xi + X2) + (Xi - X2) cos 201) - (1 - m) ik2 - m) 

|fl2i[(Xi - X2) cos 20 - (Xi + X2)] + fl22(Xi - X2) sin 20)] (42) 

The components ci may be calculated by using (24). 
Traction vectors along the coordinate curves may be calculated by 

using (16). They are 

h = - 0 / a2 = - - a\\t2zi>2ei, 

where ep and e# are unit vectors. We further introduce a set of body-
polar coordinates with unit vectors tp and tg defined by 

(p = cos <t>ep + sin 0 eo, (57) 

(s = —sin <j> ep + cos <j>eo. (58) 

It follows from the explicit expressions (50)-(52) that 

ai = if'i cos 4>-f2 sin <t>) ep 

p 
- ifi sin <ji + f2 cos <£)€j e3, (59) 

47rp 

a2 = ifi sin <j>+ f2 cos <j>)ep + ifi cos <j> - f2 sin <t>)cg, (60) 

where primes denote differentiation with respect to p. 
At the inclusion boundary p = 1, we have 

2ft2X cos </> - ik2 + 1) 2ft2X . F , , 
ai = &=i e"-p3Tsl"*^-^e3 w 
a2 - eg (62) 

and 

I2 = 2pa22
u ax = 2pa22 '2 2(iie;. 

Along the inclusion boundary p = 1, the traction is 

t2 = 2(1 - 2m cos 20 + m2)-1/2ai|p=i 

(43) 

(44) 

(45) 

[2fe2X cos 0 - ik2 + l ) ] 2 + 4fe4X2 sin2 0 / F \ 2 

(ft2 - l ) 2 \47rj 

ai2 ' 
2k2X . 

~ 2 _ sin 0, a22 = 1, 

[2fe2X cos d> - ik2 + l ) ] 2 [FY 
+
 4TT; 

(64) 

(65) 

where the condition A22 = a22 for p = 1 has been used in the deriva­
tion. The tangential and normal tractions along the inclusion are 
just 

ik2-l)2 

A thin membrane wrinkles when one of the principal stresses becomes 

T = t2Xa2-2
1 /2a2 = 2a22

Ia12, (46) 6 c.f. (38). 
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zero. For m e m b r a n e ma te r i a l s def ined by (10), wrinkl ing occurs 

when 

a = Af Ai = 0. (66) 

I t follows from (65) t h a t for p l ane - to -p lane deformat ion , F = 0, t h e 

condi t ion 

' < COS X 
fe2+l 

2k2\ 
(67)6 

m u s t be satisfied to avoid wrinkl ing. If F is no t zero, t h e n a is a lways 

posi t ive. Condi t ion (67) s imply indica tes t h e m a x i m u m ro ta t ion of 

t h e inclusion before t h e m e m b r a n e begins t o w r a p a r o u n d t h e inclu­

sion. T h i s follows from t h e fact t h a t t h e t r ac t ion vector along t h e in­

clusion is I2 = 2ai which becomes t a n g e n t to the inclusion b o u n d a r y 

when <p satisfies t h e equa l i ty of (67). 

L i n e I n c l u s i o n . In view of t h e a r r a n g e m e n t t h a t t h e Eule r angle 

7 is a ro ta t ion a b o u t t h e ei body-axis , we m u s t choose t h e l ine inclu­

sion to coincide wi th t h e t2-axis a n d hence m = — 1. W e shall res t r ic t 

ourselves t o t h e case <j> = \p = /? = 0. T h e n 

z i 

Z2: 

^K^n^K1)' 
; A 2 1 l n p + 

In ft ' 

(ft2 + 1)X2 

ft2-l 

( f t 2+l)X 2 

1 cos 7 

ft2-l 

2ft2 

k2-l' 

P 

os 7 
1 

P. 

(68) 

(69) 

ft2' 
(70) A li X , \ 2 sin 7/ 

z 8 = A a l1~inT l n p)-^Tr . 
T h e force act ing on the inclusion is jus t (38), while t h e couple is given 

by t h e express ion 

87rX2(ft2 + 1) 

ft2-l 
- s in 7 e i (71) 

W e now examine t h e p rope r ty of the solut ion for Z\ = 0 and 0 < Zi 

- 2 « 1. Se t t ing 8 = TT/2 a n d (p - 1) = (Z2 - 2 ) 1 / 2 in t h e var ious ex­

press ions , we ob ta in 

A n 

A n 
Un k) Un 

4(Z2 - 2) 

A -L_ 
k 

2 + l \ 2 

2 — X2 - 2 cos 7 
ft2-l 

a A3 . k2 + i . Y 
— ( - 2 — sin 71 
ft k 2 - l r 

•4\UZ2-2), Ai2 = 0 

(72) 

(73) 

(74) 

I t follows t h a t ahead of t h e spl inter t ip Z\ = 0 and Z2 = 2, the principal 

s t r e t ch ra t ios are 

A i = (a22/A 2 2 ) 1 / 2 = Xi, (75) 

6c.f. [17]. 

A 2 = ( a i i M n ) 1 ' 2 = aK 2 / 2 (Z 2 - 2)i/2 , (76) 

where A 2 h a s t h e familiar s ingular i ty . 
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On Stiffness and Strength of an 
Aligned Short-Fiber Reinforced 
Composite Containing Fiber-End 
Cracks Under Uniaxial Applied 
Stress1 

One of the experimental findings on short-fiber reinforced composite materials is that the 
fiber-ends act as a crack initiator. The effect of the fiber-end crack on the overall stiffness 
and the strength of the composite are investigated here. A particular emphasis is placed 
upon the weakening longitudinal Young's modulus by the fiber-end crack which is as­
sumed to be penny-shaped. The energy release rate of the penny-shaped crack at the 
fiber-end under a uniaxial applied stress is also calculated for a fracture criterion. It is 
assumed in our theoretical model that short-fibers are all aligned in the loading direction 
and the penny-shaped crack at the fiber-end extends in the direction perpendicular to 
the fiber axis. Our analytical technique is a combination of Eshelby's equivalent inclusion 
method and Mori-Tanaka's back stress analysis so that our results are valid even for large 
volume fraction of fibers. 

Introduction 
The stress-strain curve of a short-fiber reinforced composite con­

sists of two stages; (i) linear stage and {ii) nonlinear stage. A 
typical stress-strain curve of this nature is shown in Fig. 1 [1], where 
variation of the tangent modulus and the corresponding acoustic 
emission are also given. In these figures the nonlinear stage can further 
be divided into two stages, hence we have three stages 1, 2, and 3. 
Assisted by the acoustic emission result one can conclude that the 
linear stage (stage 1) is due to elastic deformation of the composite 
with perfect interfacial bonding, whereas during the nonlinear stage 
(stages 2 and 3) the stiffness of the composite is reduced until the 
composite fails in a brittle manner due to the debonding at fiber-ends 
and the propagation of the fiber-end cracks. During stage 3 the mi-
crocracks are expected to be abundant in the matrix so that some of 
the microcracks cut through adjacent fibers. Observation of a frac­
tured composite has revealed [1] that the fiber-end crack grows ra-

1 This research was supported by NSF under Grant No. CME-7918249. 
Contributed by the Applied Mechanics Division for publication in the 

JOURNAL OF APPLIED MECHANICS. 
Discussion on this paper should be addressed to the Editorial Department, 

ASME, United Engineering Center, 345 East 47th Street, New York, N.Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, June, 
1980; final revision, September, 1980. 

dially and propagates into the matrix followed by a final failure. 
Based on the foregoing experimental findings, a number of prob­

lems and corresponding theoretical models have been proposed [4]. 
In this paper we focus on the strength and stiffness at the early part 
of stage 2 just after the fiber-end crack is initiated. We will compute 
the energy-release rate of the fiber-end crack and the longitudinal 
Young's modulus of the composite under uniaxial applied stress. The 
fiber-end crack can be simulated by a penny-shaped crack based on 
the experimental findings [1]. . 

The energy-release rate of a penny-shaped crack in a pure matrix 
has been computed by a number of researchers [5-8]. However, the 
problem of a penny-shaped crack at a fiber-end has not been solved 
mainly due to the complexity of its geometry (see Fig. 2), except for 
the case of a penny-shaped crack located in the matrix and surrounded 
by fibers which are not in contact with the penny-shaped crack [9], 
and for the 2-D crack meeting a continuous fiber at a right angle [10]. 
There are three methods for evaluating the energy-release rate of 
crack: (i) stress-intensity factor approach; (ii) (/-integral ap­
proach, and (Hi) total potential energy approach by use of the 
equivalent inclusion method. The first two approaches require a de­
tailed information of stress and strain field, whereas in the third ap­
proach a computation of the total potential energy of the composite 
containing cracks is only the work to be done. For the computation 
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Fig. 1 A typical stress-strain curve with acoustic emission for a short-
fiber-reinforced composite [1] 

of a penny-shaped crack at a fiber-end, the total potential energy 
approach may require the least effort in the computation if one can 
find a simple method to compute the total potential energy of the 
composite containing fiber-end cracks. The equivalent inclusion 
method of Eshelby [2] is such a simple method by which we can 
compute energy-release rate in terms of the equivalent eigenstrains 
defined in the fiber and crack. This method also provides the overall 
stiffness of the composite weakened by fiber-end cracks. 

A prediction of the overall stiffness of a composite has been well 
studied in the last two decades. However, a perfect bonding at the 
matrix-fiber interface was always assumed in the aforementioned 
model. If a volume fraction of fiber is small and fiber-end cracks are 
of small size, the interaction between fibers can be neglected. If the 
volume fraction is not small, the Eshelby's equivalent inclusion 
method can be modified such that the interaction is counted by an 
average back stress. The back stress can be again evaluated in terms 
of the eigenstrains as Mori and Tanaka [3] did. 

The overall stiffness of a composite weakened by fiber-end cracks 
can be obtained by use of the modified Eshelby's equivalent 
method. 

A Theoretical Model 
A theoretical model considered in this paper is shown in Fig. 2 where 

the axis of uniaxial loading and fiber is along the ^-direction. It is 
assumed in our model that the fiber is an ellipsoid elongated in the 
*3-axis (the major axis I and the minor axis d) and the penny-shaped 
crack is also an ellipsoid but elongated in the x\ and 22-directions (the 
major axis c and the minor t). The stiffness tensors of the matrix and 

Fig. 2 A theoretical model 

the fiber which are linear isotropic, are denoted by Cfjki and Cyki, 
respectively. For later convenience the domain of the fiber and crack 
are denoted by fl/ and Qc, respectively. 

As an analytical tool we use "Eshelby's equivalent inclusion 
method" [2] by which an inhomogeneity is replaced by an inclusion 
with C%ki and unknown eigenstrain components. The eigenstrains 
in Qf and Qc are denoted by ejy and e'j, respectively. Once e]j and e]] 
are solved, we can compute the energy-release rate of a penny-shaped 
crack, G, and the longitudinal Young's modulus of a composite 
weakened by penny-shaped cracks at fiber-ends, EL-

Energy-Release Rate of a Penny-Shaped Crack at the 
Fiber-End. The energy-release rate of a penny-shaped crack can 
be defined as 

G (1) 

where P is the total potential energy; elastic energy plus the potential 
energy due to applied stress a0. Following Eshelby, the total potential 
energy P is given by 

P = Po + Eh (2) 

where Po is the total potential energy without any inhomogeneity and 
Eim is called "the interaction energy" between the applied stress and 
the inhomogeneity. For our problem, Ei„t consists of two parts; -Ei„t 
due to tij, (E(nt), and that due to e'j, CEf„t). However, e^ has no con­
tribution to dP/dc since e]j is independent of c. Thus G is reduced 
to 

G = 
i>E? 

where £fnt is expressed by [2] 

•Efnt = 

dc 

•le°&Ve 

(3) 

where Vc is the volume of a penny-shaped crack. We note in passing 
that there is an alternative way of defining the energy release rate of 
a penny-shaped crack [8,11]. That is, G is given by c | dP/dc | instead 
of equation (1); hence the dimension of G becomes "force." The en­
ergy-release rate G so defined is rather convenient if one would like 
to try to relate G to the energy conservation laws explored by Knowles 
and Steinberg [12]. 
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The Longitudinal Young's Modulus of a Composite Weakened 
by Penny-Shaped Cracks at Fiber-Ends. There are basically two 
methods to compute the overall stiffness of a composite: (i) to com­
pute the average stress and strain, and (ii) to compute the elastic 
energy. We take the latter approach to utilize the Eshelby's equivalent 
inclusion method. Under the assumption that the applied stress <r° 
in the *3-direction (along the fiber axis) is kept constant, the equiv­
alence of the elastic energy yields 

y = V-El 
2EL 2E0 

EL (5) 

where Eo is Young's modulus of the matrix, Efnt is given by equation 
(4) and fifnt is defined by 

EL = - i «°& v, (6) 

and where V and Vf are the volume of a composite and fibers, re­
spectively. 

In computing G and EL, we have only to solve for ejy and £;J. The 
method of solving for £iy- and £;y as well as the computation of G and 
EL will be discussed in the following section. 

Solution Procedure 
Two problems are solved successively in this section. The first 

problem is to find eigenstrain £;, and the disturbed stress o{j in Qf for 
an infinite elastic body containing fibers and subjected to the uni­
axial applied stress cr°. In the first problem the fiber-end crack is not 
considered for obtaining t]j, but the interaction between fibers is taken 
into account by the back stress analysis [3]. 

In the second problem the disturbed stress tj\j in Qc is obtained in 
terms of £;y which is eigenstrain in Qc and still unknown. On the other 
hand, in the first problem the disturbed stress just outside the fiber-
end, a[j is expressed in terms of cr{,- which is a function of t]j, Clju, Cijki, 
and the geometry of the fiber [13-15]. Then, the total stress a\j in Qc, 
vanish: 

<r\j = <r% + ac
tj (e'd) + Ptj (t'kl, C°klmn, Cklmn, l/d) = 0 (7) 

Thus we can solve for eXl from equation (7). The use of equation (7) 
implies that the interaction between fiber and a fiber-end crack is 
taken into account to some extent. 

Computation of ê - and <rfjj. Based on the Eshelby's equivalent 
inclusion method and Mori and Tanaka's method on back stress 
analysis, we assume that the averaged disturbed stress in the matrix, 
(O^OM is given by 

The equivalent inclusion method yields in Q.f 

°ij + Oij = Cijki ((hi + hi + «M _ (kl) 

= Cijki (eli + hi + tkl) 

where 

C&w = X° M M + M°(*»fy+*«**/ ) 

Cijki = X5y hi + p(&ik Sji + &u &kj) 

tkl = Shlmn tmn 

(8) 

(9) 

-ch „ ,0 
ijkl ekl (10) 

From equations (9), (10)3>4 we have in fi/ 

°i/ = C°jkl (hi + Shlmn (*mn ~ £*kt) (H) 

Sklmn in equation (10)3 is called "the Eshelby's tensor" and is a 
function of C ^ ; and the geometry of the fiber, l/d. Explicit expres­
sions for Skimn are given in Appendix. In equation (10)1'2 &ij is the 
Kronecker's delta, and X° (X) and /it0 (fi) are the Lame constants of 
the matrix (fiber). The geometry of fiber and the direction of applied 
stress (see Fig. 2 excluding a crack) yield two nonvanishing compo­
nents of eij, £n (or £22) and £33. An integration of the disturbed stress 
over the entire domain of a composite (V) yields 

(l-f)(<rij)M + f(<Jij)l = 0 (12) 

where / is a volume fraction of fiber, the symbol (Uy) indicates the 
volume average of atj, and the subscripts M and / are for the matrix 
and the inclusion (fiber in our problem), respectively. A substitution 
of equations (8) and (11) into (12) yields 

C°ijhl hi + fC°jkl (Sklmn £*mn ~ t'kl) = 0 (13) 

By setting ij = 11 and 33 in equation (9), we obtain 

Cu eu + Ciz €33 = -2£>ie u - e§3 

C21 £11 + C22 £33 = "~2en - £>2£33 

where 

(14) 

(15) 

Cu 
1 

2(1 - v0) 

1 

+ 2 

-1 + 6e0 

in - M(A 
2(1 - c0) \X - Xo) 

X° + n°\ 

(a2 - 1) 

1 + 2v0 + 

+ 3(1 - 2v0)g 

1 - 2v0 • (a2 - 1) 

X - X ° 

1 ~ 2v0' 

1 -

3a2 

vo lg + 2(1 
1 [tz. 
- *o) U -

l(«2 - 1) 

1 

2(1 - vo) 

2X° 

- - ( i - 2c0: 

-1 + 6i/0 -

2a2 

(a2 - 1) 

(X - X0) 

( a 2 - l ) 
+ 3(1 - 2vQ)g 

(X - A°) (1 - c0) lX - XW 

3 

- ( 1 - 2c0) 
1 

( a 2 - l ) 

•2vQ + 
2(a2 - 1) 

l - 2 c 0 \ , /XP+2/t» 

1-v 

1 m 
(1 - c0) \X - X°j 

3a2 

•2v0 + 
(a2 - 1) 

•2v0 + 

1 + 

( 3 a 2 - 1 ) 

(a2 - 1) 

X-X° 

and where g is given in the Appendix, and 

• ^- + f 

(16) 

(17) 

(18) 

Noting that £n = — vaaJEa, £33 = aa/E0, we solve for £n and £33 in 
equations (14) and (15) to obtain 

where 

. B i . B2_ ,<r0 Uh-voBi) 

A A E0 A 

. _ S 3 . B 4 _ , (TQ (Bj - CQJB3) 
633 _ "T f l 1 + "T f33 + r; ; 

A A E0 A 

A - C11C22 — C21C12 

Bi = 2(C!2 - D1C22) 

B2 = D2C12 — C22 

B3 = 2(Z?1C21 - C u ) 

Bi = C21 - D2C11 

(19) 

(20) 

(21) 

Next we solve for unknown ?y by equation (13). After some algebraic 
computation, we obtain 
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£ 1 1 = / 

?33 = / 

SE0 

S2g-Q 

SE0 

(22) 

(23) 

where 

S i 
2VQ (HuB-i + H12B4) 

(1 - 2v0) • A 

„ \H21(B2 - J/QBI) + H 2 2 ( B 4 - POB3)} 

2a-»o) + (H21B2 + H22B4)) 

l(l-2i/0) ' A 

„ {Hn(B2 - coSi) + H12(Bt - <-oB3)| 

S 2 = 
4 " ° , + / ( ^ 2 i B i + H22B3)l 

(1 - 2v0) ' A 

„ | H „ ( B 2 - VOBT) + tf12(B4 - p0Bs)} 

2 + (H11B1 + H 1 2 S 3 )1 

1 ( 1 - 2 * „ ) A J 
„ l « 2 i ( S 2 - voBi) + H22W4 - voB3)} 

2 | AHnBi+HuBJ 

1(1 - 2x„) 

2(1 - yp) 

(1 - 2v0) 

+ / 

4v0 

(H21B2 + H22B4) 

+ / 
(H21B1 + H22Bs) 

( l - 2 i / 0 ) A 

2v0 , /(H11B2 + Wi2B4) 

(1 - 2n>) - +
 : (24) 

and where 

H i i - 2 

# 1 2 ~~ 

^ 2 1 

H22 

2c0 

(1 - 2v0) 

2vQ 

( S i m + S1122 + S3311 — 1) + S u n + Sn22 — 1 

(1 

(1 

- 2 « 0 ) 

4i<o 

- 2 K 0 ) 

2v0 

(2S1133 + S3333 — 1) + 2S1133 

( S u n + S u 2 2 + S3311 — 1) + 4S3311 

(2Sn33 + S3333 — 1) + 2(S 3 3 a 3 — 1) (25) 
(1 - 2i>0) 

T h u s t h e eigenstrain in 12/, e*j can be computed explicitly from 
equat ions (19), (20), (22), and (23) as 

«n ! 

£33 ~ 

(B2-P0B1) , / ( B i S i + B 2 S 2 ) | <j° 

Eo 
, T<> 

AS 

(B4 - »oB8) /(B3S1 + B4S2)' 

(26) 

(27) 
A AS 

It should be noted that for a small / the terms carying / can be ne­
glected and we recover the results for c n and 633 by the Eshelby's 
method (without the back stress analysis). 

From equations (11), (22), (23), (26), and (27), we can compute <r{; 
in ilf as 

( 1 - / ) (S1 + v0)S2)a
0 

<K. = -

" • 3 3 = ' 

(1 + *0)(1 -2?o) S 

(1 - /) |2*0Si + (1 - «0)S2)<r° 

(28) 

(29) 
(1 + i /0)d - 2e0) S 

Computat ion of 633. In order to compute t*J by use of equat ion 
(7), we obtain first a]j and <?{,. Here we have considered only the in­
teraction between a fiber and its end crack. Following the equivalent 
inclusion method, we have in Uc: 

<fCij - C%hi (Sklmn t"n ~ £**) (30) 

where Sijki in equation (30) is the Eshelby's tensor for a penny-shaped 
crack and its nonvanishing components are given by 

iU-8v0)lt\ 
Su 

Su 

32(1 

- 8fo) lt\ 

- »b) U 

(1 - 2»0)ir It 

@ 4(1 - v0) 

(1 - &v0)w It 

32(1 - v0) \C 

(1 - 2v0) 

' 8(1 

"o 
(1 ~ v0) 

fo. 

1 -

- I 1 ) 
.) W 

1 - -
TT(1 - 2v0) \c). 

(1 + 4i/0)7T lt\ 

Sv0 U 
(31) 

where e and t are t he major and minor axes of an ellipsoidal penny-
shaped crack (see Fig. 2), and c » t is assumed. 

Nex t we obtain t he stress jus t outside t he fiber end, <?{; expressed 
in t e rms of a{j, C^i, and ej,-. T h e relation between the stress j u m p 
across the interface of an inclusion and eigenstrain e*;- in the inclusion 
can be wri t ten as [2 ,13-15] ; 

a{j - a{j = C°jM \-Clqmnt*mnMkPnqni + e'kl) 

where 

Mhp = — &kP • 
rikfip 

(32) 

(33) 
2(1 - i>o)J 

and where nt is the i t h componen t of an un i t vector outer normal to 
the inclusion, and is given by, a t the fiber-end 

n = (0, 0 ,1) . 

Wi th equation, (34), equat ion (32) yields 

' "Oi 

ff33: <Hl3 

(34) 

(35) 

(36) 

A substi tut ion of a\j and a{j (equations (26)-(30), (35), and (36)) into 
equat ion (7) yields 

t*M = 4 ( 1 - ^ ( l + * • ) ( — ) £ 
\TTtl E0 

where 

F = - -
( 1 - / ) |2*oSi + (1 - P0)S2) 

(37) 

(38) 
(1 + KO)(1 - 2v0) S 

Computation of Energy-Release Rate G. The interaction 
energy between the uniaxial applied stress <r° and eigenstrain in Qc, 
(ij is given by equat ion (4). T h u s £fnt can be expressed as 

Ec
irit=--<J°ellVc 

8 ogc3 ( 1 _ „§) 

3 Eo 
a + F) (39) 

where Vc = 47rc2t/3 is used. From equat ions (3) and (39) the energy-
release ra te of a penny-shaped crack a t fiber-end, G is obta ined as 

Eo 
(40) 

Computat ion of Longi tudinal Young's Modulus Ej,. By as­
suming tha t the major axis of the penny-shaped crack c is equal to the 
minor axis of the fiber d (this is reasonable a t t he early pa r t of stage 
2), we can solve for EL t h rough equat ions (4)-(6), and (37) 

EL= 1 

Eo l + i?/ 

where 

(41) 
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v = 
(B4 - VQB3) (B3S1 + B4S2) , 8(1 - yg) (1 + F) 

• + f 
AS 

(42) 

Results and Discussion 
We take v0 = 0.35 and v = 0.3 throughout our computation. The 

major parameters are hence l/d, E/Eo, and /. 
Energy-Release Rate G. When a penny-shaped crack is em­

bedded in a pure matrix; E/E0 - 1, v = v0, a simple computation 
yields 

F = 0 

In this case equations (39) and (40) are reduced by 

8<T§C3(1 - vl) 
EL 

G 0 : 

3E0 

E0 

(43) 

(44) 

(45) 

where G for the case of pure matrix surrounding a penny-shaped crack 
is set as Go. 

Equation (44) has been obtained by Sack [16] and Eshelby [2].z 

Irwin [5] derived crack-extension force / for a penny-shaped crack: 

/ = 
4o-jjc(l - vl) 

KEQ 

(46) 

In order to obtain 3-dimensional energy-release rate for a penny-
shaped crack, we multiply / by 27rc to recover equation (45). 

In the case of a penny-shaped crack at a fiber-end, the energy-re­
lease rate G is computed and the results are plotted in Pig. 3 where 
the solid and dashed curves are for small/ (= 0.05) and large / (= 0.20), 
respectively. Also two cases of l/d; 10 and 100, are focused on in order 
to study the effect of l/d on G. It follows from Fig. 3 that the energy-
release rate G increases as the stiffness of the fiber increases compared 
with that of the matrix, but its values will reach the asymptotic ones 
at large E/E0. The larger the aspect ratio of the fiber, the larger is the 
value of G. This is more enhanced for smaller /. As for the range of the 
parameters of a typical commercial short fiber composite, l/d = 50 
~ 100, E/E0 = 000, / = 0.2 ~ 0.3. Then the corresponding energy-
release rate G « 5GQ. 

It should be noted that the present results for G are valid for the 
early part of stage 2 deformation where the magnitude of a penny-
shaped crack at the fiber-end is considered to be small, i.e., the radius 
of the crack c being approximately equal to that of the fiber d. When 
a penny-shaped crack is extended in the matrix to a large extent such 
that the order of c becomes that of the fiber length /, the following two 
cases are identified as important problems to be solved: 

(i) A penny-shaped crack extends in the matrix, but does not 
touch the neighboring fibers. 

(ii) A penny-shaped crack is arrested by the neighboring fi­
bers. 

Even though the geometry of the first case is similar to the present 
model (Fig. 2), we cannot use the present method to obtain the en­
ergy-release rate of the crack because the present method neglects 
the interaction between cracks and also that between a penny-shaped 
crack and the neighboring fibers.3 The second case is reduced to a 
problem of a crack meeting the fiber-matrix interface at a right angle. 
Both cases are now under investigation by one of the present au­
thors. 

Longitudinal Young's Modulus EL. The values of EL nor­
malized by the matrix Young's modulus EQ are computed by equations 
(41) as a function of/ for the following three cases: 

2 There is a misprint in the expression of E'nt on Page 394 of reference [2]. 
3 We thank Prof. A. S. Kobayashi for his valuable comments on the validity 

of the present model. 

Fig. 3 The energy-release rate of a penny-shaped crack at a fiber-end, 6 
normalized by that In a pure matrix (without fibers), G0 versus £ / f „ 

E L / E . 

10 

0.9 

CASE-I J/d = IO, E/E.=IO 

Fig. 4 The longitudinal Young's modulus of a composite, EL normalized by 
the matrix Young's odulus Ea versus f for Case 1: l/d = 10, E/£0 = 10 

Case 1: l/d = 10, E/E0 = 10 
Case 2: l/d = 10, E/E0 = 100 
Case 3: l/d = 100, E/E0 = 100 

The results are plotted by the solid curves in Figs. 4-6 for Cases 1, 2, 
and 3, respectively. In order to check the validity of our results, two 
extreme cases are investigated; (i) to compute EL when the penny-
shaped crack at the fiber-end, and (ii) to compute EL when the ex­
istence of the fiber is neglected, i.e., the composite contains only 
penny-shaped cracks. Obviously the first and second cases yield a kind 
of the upper and lower bound on EL, the longitudinal Young's mod­
ulus of the composite containing fibers and fiber-end cracks. Fur­
thermore two methods are used to compute EL for the first case: (a) 
law of mixture and (b) the modified Eshelby's method (the present 
method). For our convenience, four methods to compute EL are cat­
egorized as 

Method Fmjx: To compute EL of the composite with fibers only 
by law of mixture 

EL E 
^ = - / + W (47) 

Method F: To compute EL of the composite with fibers only 
by the present method 

EL _ 1 

Eo ~ 1 + VFf 

B4 - ypfia , , (B3S1 + B4S2) 

»' —4— + / AS (48) 
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30 

I 

0 9 

CASE-2 i/d=IO, E/E„=IOO 

Fig. 5 The longitudinal Young's modulus of a composite, BL normalized by 
the matrix Young's Modulus E0 versus f for Case 2: l/d = 10, E/E0 = 100 

EL/E, 
CASE-3 1/&* IOO, E/E„"I00 

Fig. 6 The longitudinal Young's modulus for a composite, EL normalized by 
the matrix Young's modulus E0 versus I for Case 3: l/d = 100, E/E0 = 
100 

Method FC: To compute EL of the composite with fibers and 
fiber-end cracks by the present method (equations (41) and (42)) 

Method C: To compute EL of the composite with penny-
shaped cracks only by 

EL 

EQ 

1 

1 + mzj*>f 

(49). 

The results by equations (47)-(49) are plotted by the dashed (Fmix), 
dash-circle (F), and dash-dot curves (C) in Figs. 4-6. It should be 
noted that the validity of Method FC (the present results) is corre­
lated to that of Method F since both of them are based on the present 
method. 

It can be seen from Figs. 4-6 that the present results {FC) remain 
always between the curves F and C for various values of lid and E/EQ. 
Thus the validity of the present results is justified. 

Next the degree of the reduction in EL of the composite due to 
fiber-end cracks is studied. To this end EL obtained by Method F is 
assumed to be the correct longitudinal Young's modulus before 
fiber-end cracks are initiated. Then we compute the ratio (EL)FC to 
(EL)F where the subscripts FC and F denote, respectively, the com­
posite with fibers and fiber-end cracks, and that with fibers only. The 
results of (EL)FC/(EL)F are plotted for a fixed lid = 50 (in Fig. 7) and 
E/EQ = 50 (in Fig. 8) with / being a parameter. It follows from Figs. 
7 and 8 that the larger / (or E/EQ) is, or the smaller l/d is, more re-

(EL)FC/ 

1.0 

0.5 

i /d=50 

EL)F 

f = 0.05 

f = 0.30 

50 100 E/Eo 

Fig. 7 EL weakened by fiber-end cracks, (EL)FC normalized by EL of a 
composite without fiber-end cracks, (EL ) F versus EIE0 for l/d — 50 

(EOFC 

1.0 

'(EOF 

0.5 

E / E . " 5 0 

f =0.05 

f = 0.30 

50 100 Hi, 

Fig. 8 EL weakened by fiber-end cracks, (EL)FC normalized by EL of a 
composite without fiber-end cracks, (EL ) F versus E/E0 for EIE0 = 50 

duction in the longitudinal stiffness of the composite due to fiber-end 
cracks is expected. 
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APPENDIX 
T h e Eshe lby ' s t ensor Syki for an el l ipsoidal fiber wi th major axis 

/ and minor axis d are expressed by 

S i m 

S3333 

S1122 

S i 133 

3 a2 1 

8(1 - v) (a2 - 1) 4(1 - „„) 
1 f, 

2(1 - co) l 

1 
2 2 U All \ 

4(1 - j/0) 

! ( 3 a 2 - 1) 

' (a2 - 1) 

" 2 (1 
2(a2 - 1) V i 

1-

1 -2v 

- 2u0) -

1 «* . 1 

2(1 - v0) (a2 - 1) 4(1 - v0) 

9 

4 ( a 2 - l ) 

3«2 

(a2 - 1) 

3 

4(cv2 - 1)^ 

f 3 a 2 

(a2 - 1) 

_ ( 1 _ 

g 

2J<O) 

S3311 — S3322 -
2(1 - vQ) 

1 - 2K 0 + -
1 

( a 2 - 1)J 
1 

1 - 2i/0 + 
2(arz - 1) 2(1 - 1*0) 

where v0 is Po isson ' s ra t io of a mat r ix , a is aspec t ra t io of a fiber 
( = / / d ) , and g is given by 

e„.2 _ i \a/2 
\a(a2 - 1) 1 / 2 - co sh" 1 a] 
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On the Stability of a Composite 
Beam With Initial Stress to Moving 
Loads 

When an axial compressive force is present, the wavelength of a 
propagating free wave in a beam rapidly decreases [1]. The conven­
tional Bernoulli-Euler beam equations are often not adequate for 
determining dynamic behavior of a composite beam with initial stress 
due to a moving load. However, for the stability of the composite 
beam, when it is expressed in a nondimensional form, it is shown here 
that both the systems (Bernoulli-Euler beam and Timoshenko beam) 
behave identically. The investigation is based on the equations derived 
by Sun [2] for a composite beam wherein each constituent layer of the 
composite beam is regarded as a Timoshenko beam. The beam con­
sists of five stiff layers and four soft layers. 

Analytical expressions of the critical velocity as a function of initial 
axial stress and foundation modulus parameters are derived for the 
composite beam. Critical velocities are also obtained on the basis of 
Bernoulli-Euler beam equations and the results compared. 

A n a l y s i s B a s e d on M i c r o s t r u c t u r e T h e o r y 
Sun [2] has proposed a microstructure theory, for a laminated beam 

under initial stress, consisting of a large number of alternating layers 
of two different elastic materials. The equations of motion are ex­
pressed as 

d2w 

'ox2' 

d2^ 

dx dx £ 

dw d2\p , , , d24> 
b2 — +h—--be\p-b-j-— + i 

ox ox* ox* 
< = b, 

o2w 

' d t 2 

dV L o2<l> 

(1) 

ot2 

o2i/ 

b ^ 2 ( 2 ) 

d20 ow d2i/< o24> - Y - ,. 

All quantities entering these equations are defined in [2]. 
If the beam is supported on a Winkler-type foundation (with 

stiffness k and damping constant /3o) and is subjected to a load i*\> 
moving with a constant velocity v, the quantity p in equation (1) be-

p(x, t) = FQ 8(x — vt) — kw — j8o 
ow 

dt 
(4) 

Stipulating a steady-state solution with r = x — vt, 

n = <ri°Ai + <r2°A2; W = w/n; R = r/n 

and assuming that dependent variables W, 0, and \p and their first 
derivatives approach zero at infinity, the solutions of (l)-(3) may be 
constructed with the use of Fourier transform technique. 

Introducing the following nondimensional quantities 

Fo 

Lrl Cr2 (Oi — ra)f 

krt
2 

'(bi-n)^ 2 £ ( 6 i - n ) G2 P2 

d i 
, £ = • 

h 

Vi-

V3 = 

di + d2 di + d 

(6i - n) 

Vo: 
bi 

(bi-n) 

bz 

bi 

,V2: 

(bi - n)n2' 
V4: 

(6i - n)n2' 

bu 

(6i - n) 66 

(6i - nW 

b-j bn 
, < * 4 : 

(5) 

(6) 

(7) 

(8) 

(9) 
69i>o2' ° feioyo2' * bi3v0

2 

and following theprocedure similar to reference [3], the transformed 
solutions for W, \p, and <f> can be expressed as 

— F*(s4p4 + s2
P2+l) 

W = 

f = 

A0 

F*is(s2pB + l) 

Ao 

_ F*is(s2p6+1) 

(10) 

(ID 

(12) 

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY 
OP MECHANICAL ENGINEERS, and presented at the 1981 Joint ASME/ASCE 
Applied Mechanics, Fluids Engineering, and Bioengineering Conference, 
University of Colorado, Boulder, Colo., June 22-27,1981. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
October, 1979; final revision, October, 1980. Paper No. 81-APM-25. 

where 

Ao = (s2Pi - 2/36is + a)(s4pi + s2p2 + 1) - s2(s2p3 + 1) (13) 

is a sixth-order polynomials, in s, with real and imaginary coeffi­
cients. 

D e t e r m i n a t i o n of R e s o n a n t S p e e d s 
The characteristic equation, Ao, equation (13) can be replaced with 
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real coefficients by making a simple substitution, q •• 
is, after rearrangement, 

is. The result 

•2/30p4<jB-(P3--PiP2~ 

- (pi + ap2 -

ap 4 )q 4 + 2(30p2<73 

- l)q2 - 2/36q + a] (14) 

The true critical velocities for the composite beam occur for the 
cases when the characteristic equation (13) possesses double roots, 
s = ±a, ±a , ±ib. This is a limiting form of Case 3 mentioned in ref­
erence [3, Table 1] which is in general of the type; ±«i , ±02, and 

For this particular case the inversion integrals are of the form 

s: dx 
and 

r~ dx 

J—{s + ay 
(15) 

(s - a ) 2 

where s and a are both real. 
It is well known that an integral of the type (15) does not exist even 

in the sense of a Cauchy principal value. It was discussed in [3] that 
such nonexistence of a solution to a physical problem, implies a res­
onance, in the sense that the displacement becomes unbounded. The 
value of the load velocity parameter 6, which yields an integral of the 
type (15) defines the critical load velocities. 

The characteristic equation Ao for /? = 0 can be written as 

s6PiP4 - s 4 (p 3 - P1P2 - Pi) + s2(pi + ap2 - 1) + a = 0 (16) 

Imposing the condition of double roots and eliminating b, one can find 
using equation (16), a condition in terms of 6, which is 

3a4 + 2e2a2 + e3 = 0 

where a 2 is obtained as 

a 2 = ( e 3 e 2 - 9 e 4 ) / ( 6 e 3 - 2 e 2 2 ) 

and e2, es, e4 are defined as 

e2 = (P1P2 + a p 4 - P3)/PiP4 

e3 = (Pi + «P2 - l)/piP4 

and 

e4 = a/piP4 

(17) 

(18) 

(19) 

(20) 

(21) 

Pi, Pi • • • Pi are functions of only the load velocity parameter 6. 
They are defined in reference [3]. Real values of 6 for which equation 
(17) is satisfied, are the resonant speeds. 

Compar i son of Cr i t i ca l Ve loc i t i e s 
A periodically layered composite beam of two elastic materials, Fig. 

1, can also be considered as a homogeneous beam without micro-
structure with its effective moduli so determined that it predicts the 
gross or net behavior of the composite beam. A very widely used ap­
proach in evaluating the gross elastic property of a composite material 
is the rule of mixtures, through which the effective Young's modulus 
and the effective shear modulus are obtained as [5] 

E = r]Ei + (1 - r))E2; G = r)Gx + (1 - n)G2 (22) 

Taking the effective mass density and the effective initial stress to 
be 

P = VPi + (1 _ n)Pi\ "° = f^i0 + (1 - i?)<T2° (23) 

we can then regard the composite beam as an equivalent homogeneous 
beam. Based on the analysis of an Bernoulli-Euler differential 
equation of a beam which is given as 

d2w d2w 
EIZ <r°A—-+m—- + kw = p5(x,t) 

dx2 dx2 dt* 
(24) 

(CT° is a tensile axial stress and m is the mass per unit length), Kerr [4] 
has given an expression for the critical velocity of the beam subjected 
to a unfiorm tensile stress <r° as 

4kEI <r°A fikEl 
V m2 

1/2 
(25) 

E i . G i . V i V i \ Stiff Lay«r 

E7. Gz.V2.<^2 \ Soft Layer 
Hi 

t 

i 
1 Slid 

1 

! s i i t i 

K — 1 — ^ 

1 

Fig. 1 Layout of composite beam 

Dividing both sides of the equation (25) by v0 and replacing m by pA, 
we get 

U c r / u o = Oci H kEI (T° 1/2 
(26) 

Utilizing the properties of the equivalent homogeneous beam char­
acterized by equations (22)-(23) and the relations, 

6l 
A 

1 d* 
i A 

l-i) Ari2 M2 

« ; 1 m \ d 
(27) 

We can express the equation (26) in terms of nondimensional con­
stants; some are defined in equations (5)-(9). Defining some addi­
tional ones as 

« ! = — - = and 52 = 
pvo1 K pzAu0-

We thus have for Ni = N% = N 

262 + Nai/K 
1/2 

(28) 

It is clear from equation (28) that the effect of compressive initial axial 
stress is to decrease the critical velocity of the Bernoulli-Euler beam; 
a phenomenon which is also observed with equation (17). It is there­
fore of interest to compare the critical velocities and its dependence 
on a and N derived in the previous section with that predicted by Kerr 
[4] using the Bernoulli-Euler beam equations. It may be noticed that 
in the case of the Bernoulli-Euler beam formulation, the expression 
for iVcr can be obtained easily from (28) by setting 0cr —• 0, i.e., 

Also when Ni = N2 = 0, equation (28) reduces to 

"cr|w«o : 

1/2 

(29) 

(30) 

Using equations (29) and (30), equation (28) can be rewritten in the 
following form: 

02cr | N 

cr|N=0 -^*cr 
= 1 (3D 

Since N is negative, a positive fraction for N/NCI denotes the fraction 
of compressive stress value. 

It can be noticed that the relationship between 8CI/9CT\N-O a n c ' -WiVcr 

is independent of a. A question can be raised whether a similar rela­
tionship exist for the composite beam formulation. It does not seem 
apparent looking at the expression (17) that such a relationship would 
exist. However, it has been verified numerically that the plots between 
#cr/Ccr|Ar=o a n d N/Ncr for the Sun's derivation are identical with that 
of Bernoulli-Euler beam formulation. It has also been observed with 
considerable interest that such a relationship is independent of a, the 
foundation modulus parameter. A graphical representation of equa­
tion (31) is shown in Fig. 2 for a composite beam consisting of five stiff 
layers and four soft layers (sketched in Fig. 1). 

T = 100, X = 2, r, = 0.8, £ = 4.8, vi = 0.2, v2 = 0.35, K = 0.822 
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Euler-Bernoulli Beam 
or 

Sun Composite Beam Formulations 

Fig. 2 Relationship between the ratios of critical velocity versus Initial axial 
force 

These parameters are the same as originally used in references [2, 
3] for plotting the dispersion curves for the flexural waves. 

Results and Discussion 
It has been observed from Pig. 2 that the ratios of the critical ve­

locities 6CI/0a | N=0 when plotted against N/NCI are independent of the 
magnitude of the foundation modulus parameters, a on which beam 
is supported. It is interesting to note that the relationship is valid for 
composite beam theory, wherein each lamina is considered as Ti-
moshenko beam, as well as the equivalent modulus theory based on 
Bernoulli-Euler beam equations. Pig. 3 shows the effect of critical 
velocity on the magnitude of the initial axial force N, when they are 
plotted in unsealed terms. Three curves are plotted for three repre­
sentative values of ct(a = 0.1, 0.5 and 1.0). It is observed from this 
figure that the behaviors of 8cr versus N are dependent on the values 
of a. Similar type of curves though not shown here (see reference [6]) 
has been found based on the Bernoulli-Euler beam theory which also 
depends on a. The ratio of N/NCI when plotted against dCT/dCI\N„0 (as 
shown in Fig. 2) has however, the effect of coalescing all the different 
curves (shown in Fig. 3) into a single one. 

Concluding Remarks 
The expression of the true critical velocity of a composite beam is 

obtained in terms of elastic modulus (a) and initial stress (N) pa­
rameters. In deriving such expression as shown here (as opposed to 
reference [4] for the Bernoulli-Euler beam) it is not essential to find 
analytical solutions, i.e., the inverse Fourier transforms of the response 
quantities. The results of this investigation show Some interesting 
features like the one shown in Fig. 2, which indicates that not only the 
independency of the scaled variables exists with respect to a (foun-

" 0.2 M 0.6 0.8 1.0 12 

Fig. 3 Dependence of critical velocity 8cr on the foundation modulus 

dation modulus parameter) but also with respect to the basic math­
ematical systems (Bernoulli-Euler or composite beams) from which 
it is derived. The relationship between the unsealed variables however, 
has different (see Fig. 3) behaviors. 

References 
1 Herrmann, G., and Armerakas, A. E., "Vibration and Stability of Plates 

Under Initial Stress," Journal of Engineering Mechanics Division, ASCE, Vol. 
86,1960, pp. 65. 

2 Sun, C. T., "On the Equations for a Composite Beam Under Initial 
Stress," International Journal of Solids and Structures, Vol. 8, No. 3,1972, 
pp.385-399. 

3 Prasad, B., and Herrmann, G., "Response of a Laminated Beam to a 
Moving Load," AIAA Journal, Vol. 15, No. 10, Oct. 1977, pp. 1424-1431. 

4 Kerr, A. D., "The Continuously Supported Rail Subjected to an Axial 
Force and Moving Load," International Journal of Mechanical Sciences, Vol. 
14,1972, pp. 71-78. 

5 Voigt, W., Lehrbuch des Kristallphysik, Teubner, 1928, pp. 962. 
6 Prasad, B., and Garg, V. K., "Stability of a Timoshenko Beam Under 

Initial Stress to a Moving Load," Proceedings of the 16th Midwestern Con­
ference, September 19-21,1979. 

370 / VOL. 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C. W. Bert 
Parkinson Professor of Engineering. 

Mem. ASME 

J. N. Reddy1 

Associate Professor. 
Mem. ASME 

W. C. Chao2 

Graduate Research Assistant. 

V. S. Reddy3 

Graduate Research Assistant. 

School of Aerospace, Mechanical, 
and Nuclear Engineering, 

The University of Oklahoma, 
Norman, Okla. 73019 

Vibration of Thick Rectangular 
Plates of Bimodulus Composite 
Material 
A finite-element analysis is carried out for small-amplitude free vibration of laminated, 
anisotropic, rectangular plates having arbitrary boundary conditions, finite thickness 
shear moduli, rotatory inertia, and bimodulus action (different elastic properties depend­
ing upon whether the fiber-direction strain is tensile or compressive). The element has 
five degrees of freedom, three displacements and two slope functions, per node. An exact 
closed-form solution is also presented for the special case of freely supported single-layer 
orthotropic and two-layer, cross-ply plates. This solution provides a benchmark to evalu­
ate the validity of the finite-element analysis. Both solutions are compared with numeri­
cal results existing in the literature for special cases (all for ordinary, not bimodulus, ma­
terials), and good agreement is obtained. 

Introduction 
Structural uses have been increasing for laminates consisting of 

multiple layers of fiber-reinforced composite materials. Consequently, 
there is an increasing need for realistic mathematical modeling of the 
material behavior for incorporation in static and dynamic structural 
analyses. Certain fiber-reinforced materials have been found exper­
imentally to exhibit quite different elastic behavior depending upon 
whether the fiber-direction strain (e/) is tensile or compressive [1-3]. 
Examples of such materials are tire cord-rubber, reinforced solid 
propellants, and some biological tissues. Although the stress-strain 
behavior of such materials is actually curvilinear, it is often approx­
imated as being bilinear, with different slopes (elastic properties) 
depending upon the sign of e/. Thus they are called bimodulus com­
posite materials. 

The limited number of previous bimodulus-material plate analyses 
were reviewed in [4-6], and all were limited to static analyses. The 
present work is believed to be the first vibrational analysis of such 
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plates. The present work is not limited to just thin plates of isotropic 
bimodulus material; rather it is applicable to moderately thick plates 
laminated of orthotropic bimodulus material. Two formulations are 
presented and solved: one is a finite-element formulation with five 
degrees of freedom per node, and the other is an exact closed-form 
solution. 

Classical Formulation and Closed-Form Solution 
Mindlin's linear dynamic theory [7] of moderately thick plates was 

first extended to plates laminated of ordinary (not bimodulus) 
monoclinic elastic material by Yang, Norris, and Stavsky [8]. Later, 
Wang and Chou [9] showed that a slightly different version of the 
Yang, Norris, and Stavsky theory, presented by Whitney and Pagano 
[10], is more accurate than the original version [8]. Here, this class of 
theory is extended to bimodulus-material laminates. 

Numerous mathematical models have been introduced to describe 
the mechanical behavior of bimodulus materials; five of them were 
discussed in [11]. The model used here is the fiber-governed model 
introduced in [12], where this model was shown to agree well with 
experimental results reported in [2]. Thus we take the generalized 
Hooke's law for the in-plane action in each layer (I) to be of the fol­
lowing bimodular form: 

Qllkl Qwhl Ql6kl 

Ql2kl Qi2kl QlM 

Qwki Qieki Qe6ki Jxy 

(1) 

Here, the origin of a Cartesian coordinate system is taken to be in the 
midplane (xy-plane) of the plate with the z-axis being normal to this 
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plane and directed positive downward. The stresses (ox, ay, rxy) and 
engineering strains (ex, ey, yxy) are denoted in the usual fashion, and 
the Q's are the plane-stress-reduced stiffnesses (symmetric array). 
The first two subscripts of the Q's are the contracted forms used in 
anisotropic elasticity [13] and composite-material mechanics [14]. 
Here, the third subscript (k) refers to the sign of the fiber-direction 
strain (k = 1 for tension and k = 2 for compression), and I refers to 
the layer number (/ = 1, 2 n, where n is the total number of 
layers). The thickness shear behavior is assumed to be unaffected by 
bimodular action; thus these stresses are governed by the same 
stress-strain relations used in [10]. 

The force and moment resultants, each per unit length, are ex­
pressed in terms of stresses in the usual fashion [10]. The displacement 
components, u, u, and w in the x,y, and 2-directions, respectively, are 
expressed in terms of midplane displacements u°, v°, w, and slope 
functions \px and \j/y as in [10]. Then, the constitutive equations for 
an unsymmetric cross-ply laminate are 

/Nx 

Ny 
Nx: 

Mx 

My 
M, *y/ 

and 

'An 

A12 

0 
£ n 
S l 2 
0 

An 
A22 
0 
£12 

£22 
0 

0 
0 
A66 
0 
0 
#66 

An 
£ l 2 
0 
Dn 
D12 

0 

£12 

£22 
0 
D12 

D22 
0 

0 
0 
£66 
0 
0 
£>66. 

»% + ""y 
ft? 
ty,y 
^y,x + fx 

S44 

.0 

0 ' 

S55. 

(W,y + \py 

\W,X + \px 

(2) 

(3) 

Here, differentiation is denoted by a comma, i.e., ( ) , x = d( )/dx, and 
the extensional, flexural-extensional coupling, and flexural stiffnesses 
of the laminate are defined by 

X h/2 
(Qij)(\,z,z*)dz, i,j = 1,2,6 

•hl2 
(4) 

„ rh'2 

Su = Kf 1 Cudz, i = 4,5 
J-h/2 

(5) 

Also, the thickness shear stiffnesses of the laminate are defined by 

• fe/2 
I 

-h/2 

where the K? are the thickness shear correction coefficients, which 
can be determined by various approaches, cf. [15]. In addition to 
performing the integrations in a piecewise manner from layer to layer, 
one also has to take into consideration the possibility of different 
elastic properties (tension or compression) within a layer. This pro­
cedure is explained in detail for a two-layer cross-ply laminate in the 
Appendix. 

The equations of motion in terms of the force and moment resul­
tants as given in [10] are used. Then substituting the plate constitutive 
equations (2) and (3) into the equations of motion, we obtain them 
to be as given by equations (15) in [10]. 

The boundary conditions on all edges are freely supported (simply 
supported without in-plane normal restraint). Along the edges at 
x = 0 and x = a, 

w = \py = Mx = v° - Nx = 0 

Along the edges at y = 0 and y = b, (6) 

W = \pX = My = U0 = Ny = 0 

The governing equations and the boundary conditions (6) are ex­
actly satisfied in closed form by the following set of functions: 

u° = U cos ax sin fiy e'wt 

v° = V sin ax cos (Sy e""( 

w = W sin ax sin fiy eiat (7) 

h\[/y = Y sin ax cos @y e '" ( 

h\[/x = X cos ax sin fiy elwt 

Here, to is the natural frequency associated with the mode having axial 
and transverse wave numbers m and n, and 

a 52 mir/a, /? = 7/71-/6 (8) 

where a and 6 are plate dimensions in the x and y -directions, re­
spectively. 

Substituting solutions (7) into the governing equations [10], we 
obtain 

[Cki] 

(u\ 
v \ 
w\ =• 
Y \ 

\x) 

'0' 
0 
0 
0 

.0, 

k,l = l, 2, 3, 4, 5 (9) 

where CM is a 5 X 5 symmetric matrix containing the following ele­
ments: 

Cn = - A n a 2 - A66|82 + Po>2; C12 = - (A12 + A66)«ft CX3 = 0 

Cu = - [(£12 + Bw)lh]afc C16 = - (Bu/h)a2 

- (B66/hW + (RlhW 

C22 = ~ A66a
2 - A22&1 + Pa>2; C23 = 0 

C24 = - (Bes/hW ~ ifi22/hW + (RlhW; C25 = C14 

C33 = - (S5 5a2 + S44/32 - P"2); C34 = - (S«/h)P 

C35 = - (S55/h)a; Cu = - (D66//i2)«2 - (D22WW ~ (S44A2) 

+ {Ilh?-W 

C4 6=-[(I>12 + D66)//l>iS 

C55 s - (Dn/h
2)a2 - {Dm/h*W ~ O W ^ 2 ) + (I/h*W (10) 

Here, P, R, and / are the respective normal, coupling, and rotatory 
inertias as defined in [10]. The frequency o> is determined by setting 
| C f c | | = 0 . 

To determine the z -position of the fiber-direction neutral surface, 
one sets 

€/ = ej + zKf = 0 

Znf = - € / / « / • 

(11) 

Thus znx = hU/X and zny = —hV/Y. An iterative procedure is used 
to obtain the final displacement ratios and corresponding fre­
quency. 

F i n i t e - E l e m e n t F o r m u l a t i o n 
An exact closed-form solution to the governing equations [10] can 

be obtained only under special conditions of geometry, edge condi­
tions, loadings, and lamination. Here, we present a simple finite-
element formulation which does not have any limitations (except for 
those implied in the formulation of the governing equations) [16]. 

Suppose that the region IB is subdivided into a finite number N of 
subregions: finite elements, Me(e = 1,2,..., N). Over each element, 
the generalized displacements (u°, v°, w, ipx, fy) are interpolated 
according to 

" ° = E ui<i>}, u° = E vi<j>]. E UW 

ik = E iM?, h = E hit! (12) 

where 4>" (a = 1, 2, 3) is the interpolation function corresponding to 
the ith node in the element. Note that the in-plane displacements, 
the transverse displacement, and the slope functions are approxi­
mated by different sets of interpolation functions. Although this 
generality is included in the formulation (to indicate the fact that such 
independent approximations are possible), we dispense with it in the 
interest of simplicity when the element is actually programmed and 
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Table 1 Fundamental natural frequencies (m = n = 1) of rectangular an­
tisymmetric cross-ply plates at different aspect ratios and thicknesses 
(En/022 = 40, G12/E22 = G13/E22 = 623/E22 = 0.5, i>12 = 0.25, Kj = Kf 
= 5/6)* 

Aspect Oimensionless frequency w(b/ir) (P/O22) 

rat io 
a/b 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

C.F. denote 

solution. 

Thin-plate 
theory [18] 

2.24 

0.865 

0.65 

0.606 

0.59 

0.580 

the closed-

b/h = 

C.F. 

2.400 

0.858 

0.656 

0.604 

0.590 

0.578 

form soluti 

50 

F.E. 

2.421 

0.877 

0.668 

0.617 

0.599 

0.591 

on and F.E. 

b/h = 
C.F. 

1.942 

0.794 

0.612 

0.565 

0.548 

0.541 

denotes the 

10 

F.E. 

1.946 

0.799 

0.615 

0.569 

0.552 

0.544 

finite-element 

take (&,• = 0,? = </>j(r = s = p). Here r, s, and p denote the number of 
degrees of freedom for each variable. That is, the total number of 
degrees of freedom per element is 2r + s + 2p. 

Substituting equations (12) into the Galerkin integrals associated 
with the governing equations [10], which must also hold in each ele­
ment E , , 

f [L]\SU\dxdy = 0 (13) 

and using integration by parts once (to distribute the differentiation 
equally between the terms in each expression), we obtain 

(14) 

where the \u], \v], etc., denote the columns of the nodal values of u, 
v, respectively, and the elements Kff (a, /? = 1, 2 , . . . , 5) of the sym­
metric stiffness matrix are given by 

[Kn][Kl2][K13][Kl*][K™] 
[K2*]{K™][K™][K™] 

[K33][K34][X36] 
Symmetric [K44][K45] 

[K&&] 

M 
IM 
<M 
IKI 

.\\4>y\ 

f 1 

e 

0 
0 
0 
0 
0 

Klf 
Kff 
Klf 
K\f 
Klf 
Klf 
Kff 

= AuGfj + AmG?j 
= A12Gff + AmGf 
= 0 
= BuHfj + B66HVj 
= B12Hf/ + B6eH1? 
= A22G>j + AmGlj 
= 0 

Kff 
Kff 
Kff 
Kff 
Kff 
Kff 
Kff 

= B66ff* + B22H$ 
= Ss^Sfj + SuSfj 
= SssRff 
= S4,̂ R]'j, 

- D n T & + DaBT& + SB6T& 
- £>1271/ + D66T]y 
= D66TfJ + D22T?J-rS44T?;-

Kff = Beetf?/ + B12H^ 

where 

G1? = f tu <!>},, dxdy 
•JjRe 

(15) 

(j , i = l , 2 , . . . , r ) 

H\]*° f 4>h4>3j„dxdy (i = l ,2 r; ; = 1, 2 t) 
*/IRe 

M\]= f ti^dxdy 
J B , 

S\]= f 4>h4>l,dxdy 

Rlf= f <t>f,(4>hdxdy 

Tf/ = P tfj^dxdy 

(i = 1, 2 , . . . , r; .7 = 1,2 s) 

( i , ; = l , 2 , . . . , s ) 

(i = l , 2 , . . . , s ; > = 1,2 t) 

(ij = 1,2, . . . , s ) 

(£,ij = 0 ,* ,y) (16) 

Table 2 Fundamental natural frequencies of square antisymmetric cross-ply 
plates at different thicknesses (Eu/B22 = 40, Gi2/fc722 = G13/£22 = 1, 
G23/E22 = 0.5, V12 = 0.25, K| = Kl = 5/6) 

b/h 

10 

50 

Dimensionless frequency ub 2 (P/E 2 2h 3P 

Fort ier & Rossettos T191 C.F. F.E. 

10.80 11.11 11.15 

11.65 11.82 12.06 

Table 3 Material properties for two tire cord-rubber, unidirectional, bimodulus 
composite materials" 

Property 
Aramid-Rubber Polyester-Rubber 

k - 1 k = 2 k = 1 k = 2 

Longitudinal Young's modulus, GPa 

Transverse Young's modulus, GPa 

3.58 0.0120 0.617 0.0369 

0.00909 0.0120 0.00800 0.0106 

Major Poisson's ratio, dimensionless" 0.416 0.205 0.475 0.185 

Longitudinal-transverse shear modulus, GPa" 0.00370 0.00370 0.00262 0.00267 

Transverse-thickness shear modulus, GPa 0.00290 0.00499 0.00233 0.00475 

Specific gravity, dimensionless 0.970 1.00 

Fiber-direction tension is denoted by k = 1, and fiber-direction compression 

by k = 2. 

The minor Poisson's ratio is assumed to be given by the reciprocal relation. 

° The longitudinal-thickness shear modulus is assumed to be equal to this one. 

and G'f = Gfj, etc. In the special case in which <j>\ = <j>f = </>?, all of the 
matrices in equations (16) coincide. 

In the present study, elements of the serendipity family are em­
ployed with the same interpolation for all of the variables. The re­
sulting stiffness matrices are 20 by 20 for this four-node element and 
40 by 40 for the eight-node element. Reduced integration [17] must 
be used to evaluate the matrix coefficients in equations (15). That is, 
if the four-node rectangular element is used, the 1 X 1 Gauss rule must 
be used in place of the standard 2 X 2 Gauss rule to numerically 
evaluate the coefficients K:\. 

Substituting solution (14) into equations (11), we get 

-uyth -vyvy (17) 

N u m e r i c a l R e s u l t s 
Computations using the closed-form and finite-element solutions 

were carried out on an IBM 370 computer. Because there is no pre­
vious analysis for vibration of bimodulus plates, the present results 
could be compared only with those for rectangular plates laminated 
of ordinary materials. Comparisons of the results of the present 
analysis are displayed in Tables 1 and 2 along with the fundamen­
tal-frequency results of Jones [18] for thin plates and Fortier and 
Rossettos [19] for thick and thin plates. Upon comparison of the 
various results, we find good agreement. 

As examples of some actual bimodulus materials, two composites 
used in automobile tires, aramid cord-rubber, and polyester cord-
rubber, are selected. The material properties, listed in Table 3, are 
based on the experiments of Patel, et al. [2], and are the same data 
used in [6] with the addition of the values of specific gravity, which 
were estimated on the basis of the volume fractions. The numerical 
results for single-layer 0° orthotropic and two-layer cross-ply plates 
are presented in Tables 4 and 5-6, respectively, where the agreement 
is good. 

There may be a question regarding the effect of bimodulus action 
on plate stiffness in different portions of each cycle of vibration. To 
explain this effect, we show a single-layer, bimodulus-material plate 
at the two extremes of its deflection in Fig. 1. The initial half cycle is 
depicted in Fig. 1(a). During this time interval, the top surface is in 
compression and the bottom in tension, thus causing the neutral 
surface for tx to be positive (znx > 0), i.e., below the plate midplane 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 373 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Table 4 Dlmenslonless fiber-direction neutral-surface locations and fun­
damental frequencies for single-layer 0° orthotopic plates having b/h = 10 
by two methods (closed form and finite element) 

Aspect 
ra t i o 
a/b 

0.5 

0.7 

1.0 

1.4 

2.0 

0.5 

0.7 

1.0 

1.4 

2.0 

Z s 
X 

C.F. 

0.4484 

0.4467 

0.4433 

0.4373 

0.4262 

0.3089 

0.3072 

0.3056 

0.3011 

0.2945 

V h 

F.E. 

Aramid-ri 

0.4484 

0.4468 

0.4435 

0.4370 

0.4302 

Polyester-

0.3083 

0.3071 

0.3049 

0.3013 

0.2950 

ibber: 

•rubber: 

Ub2(p/E22h 

C.F. 

19.065 

11.324 

6.877 

4.766 

3.688 

25.134 

15.058 

8.668 

5.421 

3.777 

^ 
F.E. 

19.255 

11.515 

7.062 

4.968 

3.856 

23.136 

14.421 

8.648 

5.533 

3.918 

(a) First half cycle (b) Second half cycle 

Fig. 1 Bimodulus action during the two half cycles of motion of a single-layer 
blmodulus plate; shaded material is in longitudinal tension 

(a) First portion of cycle (b) Second portion of cycle 

Fig. 2 Bimodulus action during the two portions of motion of a two-layer plate 
in the fundamental mode of vibration; bottom layer is in x-direction (0°), top 
layer Is In y (90°); shaded portions are in tension in the respective fiber di­
rections 

Table 5 Dlmenslonless neutral-surface locations In the first and second 
portions of a cycle for two-layer, cross-ply plates having b/h = 10 by 
closed-form and finite-element methods* 

Table 6 Dlmenslonless fundamental frequencies In the first partial cycle, 
second partial cycle, and complete cycle of motion for two-layer, cross-ply 
plates having b/h = 10 by closed-form and finite-element methods* 

Aspec 

a/b 

0.5 

0.7 

1.0 

1.4 

2.0 

0.5 

0.7 

1.0 

1.4 

2.0 

C.F. 

0.4457 

0.4434 

0.4394 

0.4335 

0.4228 

0.3687 

0.3664 

0.3632 

0.3589 

0.3514 

* Here z j ' ' = 

F.E. 

0.4458 

0.4436 

0.4394 

0.4337 

0.4237 

0.3691 

0.3663 

0.3633 

0.3596 

0.3513 

2nx/h for 

4" 
C.F. F.E. 

Aramid-rubber 

-0.0648 

-0.0490 

-0.0347 

-0.0250 

-0.0174 

-0.0660 

-0.0491 

-0.0344 

-0.0249 

-0.0175 

42) 

C.F. F.E. 

-0.0171 

-0.0240 

-0.0347 

-0.0494 

-0.0705 

Polyester-rubber: 

-0.1335 

-0.1119 

-0.0960 

-0.0870 

-0.0817 

the f i r s t 

-0.1295 

-0.1113 

-0.0960 

-0.0870 

-0.0817 

portion of 

-0.0830 

-0.0868 

-0.0959 

-0.1115 

-0.1389 

a cycle, 

-0.0170 

-0.0238 

-0.0346 

-0.0497 

-0.0700 

-0.0825 

-0.0868 

-0.0959 

-0.112 

-0.139 

etc. 

z(2) 
SL 

C.F. F.E. 

0.4247 

0.4338 

0.4394 

0.4423 

0.4437 

0.3569 

0.3603 

0.3631 

0.3648 

0.3660 

0.4257 

0.4344 

0.4394 

0.4426 

0.4442 

0.357 

0.360 

0.363 

0.365 

0.366 

a certain distance. The latter half cycle is shown in Fig. 1(6). During 

Aspect 
rat io 
a/b 

0.5 

0.7 

1.0 

1.4 

2.0 

0.5 

0.7 

1.0 

1.4 

2.0 

^ ( P / E f ^ ) 1 * 

C.F. 

19.38 

11.60 

7.038 

4.838 

3.712 

19.12 

11.43 

7.0B4 

5.164 

4.310 

Here uj and u2 

second portions of a 

quency for an entire 

F.E. 

20.23 

12.17 

7.386 

5.045 

3.909 

19.81 

11.92 

7.406 

5.407 

4.518 

denote th< 

^zbHP/Ec
2; 

C.F. 

Aramid-rubber: 

13.88 

9.353 

7.038 

6.037 

5.551 

Polyester-rubbe 

15.95 

10.04 

7.085 

5.928 

5.435 

*>)* 
F.E. 

14.55 

9.807 

7.364 

6.356 

5.821 

\r: 

16.61 

10.45 

7.394 

6.193 

5.688 

J frequencies corresponding 

cycle, respectively, and 

cycle. 

i* denotes 

"b2(P/E^. 

C.F. 

16.18 

10.35 

7.038 

5.371 

4.449 

17.39 

10.69 

7.085 

5.520 

4.807 

to the f i r s t 

the effective 

-h3)1* 

F.E. 

16.93 

10.86 

7.375 

5.625 

4.677 

18.07 

11.14 

7.400 

5.773 

5.036 

and 

fre-

this portion of the cycle, the top surface is now in tension and the 
bottom in compression, thus causing znx to be negative, i.e., to fall 
above the plate midplane. However, the absolute value of znx is 
identical to its value in the first half cycle. Thus it can be concluded 
that the frequency associated with the second half cycle is identical 
to that of the first half cycle and either modal shape, Fig. 1(a) or 1(6), 
will give the same computational result for the natural frequencies. 

Now consider a two-layer laminate with the bottom layer (layer 
I = 1) oriented at 0 deg and the top layer (I = 2) at 90 deg; see Fig. 2. 
Initially, as shown in Fig. 2(a), the neutral surface for ex falls below 
the interface, within the 0-deg layer, while the neutral surface for ey 

falls above the interface, completely within the 90-deg layer. In the 
latter portion of the cycle, Fig. 2(6), the ex neutral surface falls outside 
of the 0-deg layer, and the ey neutral surface falls outside of the 90-deg 
layer. Thus compressive properties are used for the entire 0-deg layer, 
and tensile ones for the 90-deg layer. 

From the foregoing considerations for a two-layer cross-ply lami­
nate, it is clear that the plate stiffnesses acting in the two portions of 
a cycle are different and thus the associated frequencies are also dif­
ferent, except in the case of a square plate. We denote the frequencies 

associated with the two portions of a vibration cycle by a>i and o>2', then 
the corresponding time intervals over which the two portions take 
place are 7r/coi and 7r/w2, respectively. Thus the total period for a 
complete cycle is iriwj1 + cojx). The average frequency (a>) over the 
entire cycle is 27r divided by the period: 

co-1 = (l/2)(u)I1 + wj1) (18) 

Thus the computational procedure used for a cross-ply plate is to 
calculate coi and C02 associated with modal shapes shown in Figs. 2(a) 
and 2(6), respectively, and then to apply equation (18). 

The question arises as to the possibility of a discontinuity in energy 
at the junction of the two portions of a cycle. At this instant in the 
cycle, the displacement is zero and the velocity is maximum (because 
each individual portion is simple harmonic). Since the mass is un­
changed, equating kinetic energies of the two portions implies 
equating maximum velocities. Thus 

uiWi = U2W2 or o)2/oii = W1/W2 (19) 
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where Wi and W% are the amplitudes of motion in portions 1 and 

2. 
Conservation of potential energy requires 

lkxW\ = lk2Wl or Wi/W2 = (k2/k1)
m (20) 

where ki and hi are the generalized stiffnesses corresponding to Figs. 
2(a) and 2(6), respectively. However, the frequency ratio is 

w2/<oi = (fe2/fei)1/2 (21) 

Thus, by combining equations (20) and (21), we see that equation (19) 
is satisfied and thus energy is conserved in going from one portion of 
the cycle to the other. 

There are very drastic changes in neutral-surface locations (for 
example, znx for aramid-rubber goes from OAh to -0.03h) from one 
cycle portion to the other. Thus a question may arise regarding a 
transient action. However, it should be remembered that the neutral 
surfaces are just boundaries between the tensile and compressive 
regions (analogous to the elastic-plastic boundary in elastoplastic 
problems) and thus have no mass. 

Concluding Remarks 
A finite element has been developed to analyze the small-deflection 

free vibration of laminated, anisotropic, rectangular thick plates of 
bimodulus material. The results obtained agree well with those of an 
exact, closed-form solution derived for such a plate freely supported 
on all four edges. Thus it is concluded that the element has been 
validated and may be used for computations involving more compli­
cated boundary conditions. 
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APPENDIX 

Derivation of the Plate Stiffnesses for a Two-Layer 
Cross-Ply Laminate of Bimodulus Material 

In problems involving laminates comprised of bimodulus-material 
layers, it is necessary to evaluate the integral forms appearing in the 
definitions of the plate stiffnesses, equations (4). The derivation 
presented here is for a two-layer cross-ply laminate. 

Each layer has the same thickness, h/2, and the same orthotropic 
elastic properties with respect to the fiber direction. Because each 
layer is oriented at either 0° or 90° to the x -axis, there are no sitff-
nesses with subscripts 16 and 26. The bottom layer, with fibers ori­
ented parallel to the x -axis, is denoted as layer 1, i.e., I = 1 in Qijki, and 
occupies the thickness space from z = 0 to z = h/2, where z is mea­
sured positive downward from the midplane. The top layer, with fibers 
oriented at 90°, is denoted as layer 2, i.e., / = 2, and occupies the 
thickness space from z = —h/2 to z = 0. 

Because there are two different neutral surfaces (associated with 
strains in the respective x and y-directions) and two different layers, 
there are four distinct cases depending upon the combination of signs 
of the dimensionless neutral surfaces (Zx = znx/h and Zy = zny/h). 
These cases are designated as follows: 

Case 1: 0.5 > Zx > 0, -0 .5 < Zy < 0 
Case 2: -0 .5 < Zx < 0, 0.5 > Zy > 0 
Case 3: 0.5 > Zx > 0, 0.5 > Zy > 0 
Case 4: -0 .5 < Zx < 0, -0 .5 < Zy < 0 

In Case 1, the upper portion (from z = -h/2 to z = zny) of the top 
layer (I = 2) is in compression (k = 2 in Qijhi) in its fiber direction 
(3'-axis), and the lower portion (z = zny to 0) of the top layer is in 
tension (k = 1). Also, the inner portion of the bottom layer (/ = 1), 
from z = 0 to z = znx, is in compression (k = 2) in its fiber direction 
(x-axis), and the outer portion (from znx to h/2) of layer 1 is in tension 
(k = 1). Thus the general integral expression for A,j, in equation (4), 
can be taken as the sum of the integrals for each of these regions: 

Case 1. (0.5 > Zx > 0, -0 .5 <Zy< 0): 

X h/2 
Qijki dz 

•h/2 

X zny r*0 nznx 

Qij22 dz + I Qijl2 dz + I Qy2i dz 
•h/2 Jzny Jo 

J --h/2 
Qijii dz (22) 

Because the planar reduced stiffnesses Qijki are each, respectively, 
constant in the appropriate regions, equation (22) can be integrated 
to the following: 

Aij = (Qij22 + Qiju)(h/2) + (Qijii - Qiju)znx 

+ (Qij22 - Qijl2)zny (23) 

or 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 375 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



Aij = ( l / 2 ) ( Q y 2 2 + Qm) + (Qm - Qm)Zx 

+ (Qij22 ~ Qijl2)Zy (24) 

S imi lar ly 

X h/2 
zQijkldz 

•h/2 

X Zny fO />Znx 

zQij22 dz+ \ zQiji2 dz + J zQij21 dz 

J-././2 
zQm dz (25) 

Znx 

= (-Qij22 + Qiju)(h2/8) + (Qm - Qm)(z2
x/2) 

+ (Qij22-Qijl2)(z2nytt) (26) 

or 

Bij/h = (i/8K-Qij22 + Qm) + (Qm - Qiju)(Z2
x/2) 

+ (Qm - Qm)(Z2
yl2) (27) 

Also 

X h/2 
^ Q i m d z 

X z„y fO S*Znx 

z2Qij22dz+ I z2Qiji2dz+ I z2Qij2idz 
-h/2 Jzny JO 

J * h/2 
z2Qijudz (28) 

Znx 
'Znx 

, 3 = (Qij22 + QijuKhV24) + (Qij2i - Qiju)(znx/Z) 

+ (Qij22-Qijl2)(Zny
3m (29) 

Dij/h = ( l / 24 ) (Qy 2 2 + QiJU) + (Qm - Qiju)(Zs
x/3) 

+ (Qij22 ~ Qiji2)(Zlm (30) 

Similar ly 

Case 2. ( - 0 . 5 < Zx < 0 ,0 .5 > Zy> 0 ) ; 

Aijlh = (Qiju + Qij22)/2 + (Qij22 ~ Qm)Zx + (Qm - Qiju)Zy 

Bij/h2 = (QiJn - Qij22)/S + (Qij22 ~ Qijl2)(Z2/2) 

+ (Qm - Qm)(Z2/2) 
Dij/h* = (Qm + Qij22)/24 + (Qij22 - Qm)(Zl/Z) 

+ (Qij2i - Qiju)(Zy/3) (31) 

Case 3. (0.5 > Zx > 0 ,0 .5 >Zy> 0 ) : 

Aij/h = (Qiju + Qi;22)/2 + (Qij21 - Qijll)Zx 

Bij/h2 = (Qm - Qij22)/S + (Qij2i - Qiju)(Z2
xl2) 

Dij/h3 = (Qiju + Qij22)m + (Qij2i - QijuKZl/3) (32) 

Cose 4. ( - 0 . 5 < Zx < 0, - 0 . 5 <Zy< 0 ) : 

Ay/ft = (Qijll + Qy 2 2 ) / 2 + (Qin22 ~ Qijl2)Zy 

Bijh2 = (Qiju ~ Qij22)/8 + (Qij22 - Qm)(Z2
y/2) 

Dij/h* = (Qiju + Qij22)m + (Qij22 - QmMlm (33) 

In t h e presence of excessively high in-plane loads, such as those due 

t o h e a t i n g to a h igh average t e m p e r a t u r e [20] or d u e t o large deflec­

t ions , t h e n e u t r a l surfaces can go ou t s ide of t h e th ickness of the 

l a m i n a t e and , t h u s , m a k e i t ac t as if i t were homogeneous . However , 

th i s does n o t occur for smal l -def lect ion free v ib ra t ions and t h u s t h e 

equa t ions for t he se cases are no t p r e s e n t e d here . 

S i n g l e 0 ° L a y e r . ( | Zx \ < 0 .5 ) 

H e r e , all four cases collapse t o only one, wi th t he se resul ts : 

Aij/h = (Qiju + Qij2i)/2 + (Qij2i - Qiju)Zx 

Bij/h2 = (Qiju - Qij2i)/S + (Qm - Qiju)Z2/2 

Dij/h* = (Qiju + Qij2i)m + (Qij2i - Qiju)Zy3 (34) 
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Nonlinear Theory for Flexural 
Motions of Thin Elastic Plate 
Part 1: Higher-Order Theory 
This paper develops a comprehensive higher-order theory for flexural motions of a thin 
elastic plate, in which the effect of finite thickness of the plate and that of small but finite 
deformation are taken into account. Based on the theory of nonlinear elasticity for a ho­
mogeneous and isotropic solid, the nonlinear equations for the flexural motions coupled 
with the extensional motions are systematically derived by the moment asymptotic ex­
pansion method. Denoting by e the ratio of the thickness of the plate to a characteristic 
wavelength of flexural motions, an order of characteristic deflection is assumed to be e2 

and that of a characteristic strain c3. The displacement and stress components are sought 
consistently up to the next higher-order terms than those in the classical theory. 

Introduction 
The classical theory for flexural motions of an elastic plate [1-3] 

can give an adequate description for a sufficiently thin plate whose 
deflection is much smaller than the thickness of the plate. But as a 
characteristic wavelength of flexural motions diminishes and the plate 
can no longer be regarded sufficiently thin, the effect of finite thick­
ness comes to play an important role and then the classical theory 
becomes inadequate. Also a similar limitation of the theory occurs in 
a case of flexural bending of a plate with small cutouts whose linear 
dimension is not large enough compared with the thickness. In these 
cases, a refined theory is then required to include the effect of finite 
thickness of the plate. The investigations toward this refinement were 
first made by Reissner [4] and Mindlin [5] under the name of the ef­
fects of shear deformation and of rotatory inertia and since then, they 
have been made by many authors [6-15]. In this paper, such a theory 
including the effect of finite thickness is called a higher-order theory 
for the thin plate theory as a lowest-order one. 

On the other hand, the effect of finite deformation plays an im­
portant role in such a geometrical configuration as a thin plate whose 
linear dimension is much smaller than the others. Under the as­
sumption that the plate is thin and flexural deflection is as large as 
the thickness, von Karman [1-3,16] derived the nonlinear equations 
which couple the deflection with the in-plane displacements. Al­
though, in von Karman's theory, the effect of finite thickness of the 
plate is neglected, it often happens in actual situations (such as vi-
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bration or impact) that the effect becomes as important as the effect 
of finite deformation. But most of the higher-order theories just 
quoted have been concerned with the linear theory and little attention 
has been paid to the nonlinear theory. The purpose of this paper is 
to develop a comprehensive higher-order theory for flexural motions 
of a thin elastic plate, taking account of the effect of finite thickness 
and that of small but finite deformation. 

To do so, we start from the theory of nonlinear elasticity [3,17-19], 
assuming that a plate is of a homogeneous and isotropic elastic solid. 
In developing the higher-order theory, it should be noted that there 
exist two important parameters. One is e which specifies the order of 
the thickness of the plate, i.e., e = 0(H/L), H and L being, respec­
tively, the thickness of the plate and a characteristic wavelength of 
flexural motions. The other is 8 which specifies the order of deflection 
of the plate, i.e., 8 = 0 (W/L), W being a characteristic deflection. In 
the classical linear theory, both e and 8 are assumed to be sufficiently 
small, while in von Karman's theory, W/H is assumed to be of order 
of unity so that 8 ~ e. In addition to e and 8, another practical pa­
rameter is y which specifies an order of a characteristic strain. As is 
well known, the characteristic strain in flexural motions takes place 
in the in-plane bending strain and y is roughly estimated as y = 
0(U/L), U being a characteristic in-plane displacement. According 
to Kirchhoff s hypothesis [1-3], U can be estimated as U ~ WH/L and 
therefore y ~ U/L ~ WH/L2 ~ W/L • H/L ~ 8e. Thus the charac­
teristic strain in von Karman's theory is found to be of order of e2. The 
present paper is concerned with the flexural motions in which e and 
8 are small but finite. For definiteness, 8 is chosen as a typical case to 
be e2, i.e., y ~ e3. 

In deriving approximate equations, there are two useful methods 
available in addition to the variational methods on which the work 
of Reissner [4,6] and Librescu [13] is based. The variational method 
is simple to use when deriving only the lowest-order approximation, 
but it has a disadvantage in that it lacks systematic consistency in 
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developing the higher-order theory compared with the two methods 
described as follows. One of these methods is the direct asymptotic 
expansion method used by Friedrichs and Dressier [7], Reissner [9], 
Gol'denveizer [10], and Widera [12]. By this method, the displace­
ments and stresses are sought in the form of expansion by the small 
parameter e. After introducing the expansion into the equations of 
motion and equating like powers of e, sequences of the system of 
equations are solved by a step-by-step integration. Although Fri­
edrichs and Dressier and Gol'denveizer indicated the procedure, ex­
plicit results are not given. Reissner carried the expansion to higher 
order, but he obtained the result that the higher-order deflection is 
also governed by the classical plate equation, though the displace­
ments and stresses are consistently sought up to the higher-order 
terms in the f2-expansion. This result is due to the fact that neither 
inertia nor applied stresses at both faces of the plate are taken into 
account. Widera also developed the higher-order theory for the dy­
namic problem, but it still remains essentially within classical theory 
because he proceeded to only the second-order problem. For the 
consistent derivation of the linear higher-order theory, it is necessary 
to proceed to the third-order problem and the e2-expansion is rele­
vant. 

The other method is the moment asymptotic expansion method 
by Tiffen [8], Novotny [11], and Lo, et al. [15]. This method assumes 
that the displacements can be expanded into a power series of the 
transverse coordinate of the plate around the middle surface. After 
taking the moments of the equations of motion with respect to the 
transverse coordinate, and substituting the expansion into the aver­
aged quantities over the thickness such as total in-plane forces, 
bending or twisting moments, etc., the coefficients of the series are 
successively determined in terms of the displacements of the middle 
surface up to any order desired. Because Tiffen treated all quantities 
in the averaged form only, he obtained very complicated results. The 
method by Lo, et al., lacks systematic consistency since the expansion 
is truncated without any positive reason being given. Novotny, who 
developed a nonlinear theory for thin shells, first expanded the dis­
placements and stresses in terms of a small parameter and later ex­
panded them in the transverse coordinate. This method is located 
between the direct and the moment methods, but it is too complicated. 
The two asymptotic methods should be equivalent in principle. Since 
the direct method gives successive closed systems of equations to 
determine higher-order terms, it is not deemed suitable for the present 
purpose which is to derive the compact higher-order equations and 
the moment method is employed in this paper. 

By use of this method, higher-order equations for the behavior of 
the middle surface are derived systematically up to terms next higher 
in order to the classical theory. In the course of developing it, the 
displacements and stresses are consistently sought in terms of the 
displacements of the middle surface up to at least O (5e3). If the non­
linear terms are ignored and the linear higher-order theory is con­
cerned, it is found that the e2-expansioh is legitimate. Furthermore 
if plane harmonic waves are considered in the linear higher-order 
theory thus derived, it can readily be verified that the dispersion 
relation of this theory corresponds to the exact Rayleigh-Lamb fre­
quency equation [20, 21] up to the second-order terms. On the other 
hand, it is found that the effect of small but finite deformation arises 
in the form of the total curvature of the plate just as in von Karman's 
theory. It should be noted that the effect of material nonlinearity 
becomes the secondary effect compared with that of geometrical 
nonlinearity. Even if the fact that the third-order elastic constants 
are usually greater than the Lame constants (e.g., 10-102 times) is 
taken into consideration, the effect still remains weak in the present 
problem. Thus it is concluded that the effect of material nonlinearity 
plays a less important role in such flexural motions of long wave­
lengths (e « 1). This should be compared with the case of the high 
frequency wave propagation (e 5; 1) [19]. 

Finally, it should be remarked that the present higher-order theory 
does not presuppose the existence of an edge. Therefore as it usually 
happens, the present theory alone cannot always constitute a full plate 
problem. In such a case, a sort of boundary-layer theory must be de­

veloped near the edge. This point will be discussed in Part 2 of this 
paper. 

Basic Equations 
Let us consider the basic equations which govern a behavior of an 

elastic solid [3,17-19]. Here we assume that the plate is of a homo­
geneous and isotropic elastic solid and that dynamic deformations 
take place adiabatically. The basic equations then consist of the 
equations of motion and the constitutive equations. We employ the 
Lagrangian formulation in a rectangular coordinate system X; (i = 
1, 2, 3) and the usual Cartesian tensor notation. The in-plane coor­
dinates of the plate are designated by X\ and X2, while the transverse 
coordinate normal to the middle surface of the plate is designated by 
Xa. The equations of motion can be simply expressed as 

Ui,u = LikyXk, (£ = 1,2,3) (1) 

where u; and L;y represent the displacement vector and the Lagran­
gian stress tensor, respectively; the comma "," implies the partial 
differentiation with respect to the subscript(s) indicated after the 
comma, t being time; the repeated index k implies the summation over 
1,2,3. The Lagrangian stress tensor is related to the Kirchhoff s stress 
tensor Ky through 

Lij = (Sik + Ui,xk)Kkj, (£,; = 1, 2, 3) (2) 

where Sij is the Kronecker delta symbol. Note here that Kij is a sym­
metric tensor, but L;y is asymmetric generally. All quantities are 
normalized by the characteristic wavelength and the velocity of shear 
waves (/i/po)1/2, M and po being, respectively, the usual Lame constant 
(the modulus of rigidity) and the density in the reference state. 

The equations of motion are supplemented by the following con­
stitutive equations in the form of the power series with respect to the 
Lagrangian strain tensor Eif. 

Ki/= \I8ij + 2Eij + [IP - (2m - n)IT]Sij + (2m - n)IEij 

+ nEikEkj + ..., (£,; = 1,2, 3) (3) 

with the Lagrangian strain tensor given by 

2Eij = ui,Xj + UjtXi + Uk,xMk,Xj, (£, j = 1, 2, 3) (4) 

where A[=2<r/(1 — 2a)] is another Lame constant normalized by p, 
a being Poisson's ratio and I, m, and n are the third-order elastic 
constants (Murnaghan constants) normalized by ix. Here I and II are, 
respectively, the first and the second invariants of Ey defined by 7 = 
EU, and II = (EuEjj - EijErfft. 

It is assumed that both faces of the plate are free from a tangential 
traction, but subject to normal stresses q+ and q- on the upper and 
lower surfaces, respectively. The boundary conditions can then be 
expressed as 

i i 3 = £23 = 0 and L33 = <?±, at Xa = ±eh/2 (5) 

where eh is the normalized thickness of the plate, and the parameter 
e is introduced to specify the order of thickness of the plate, h being 
of 0(1). 

We remark here that, in the subsequent sections, the coordinates 
Xi, X2, and Xa are replaced by x, y, and z and the subscripts 1,2, and 
3 of the vector or the tensor are also replaced by x, y, and z, respec­
tively. 

Derivation of Approximate Equations 
Let us now derive by the moment asymptotic expansion method 

approximate equations describing the nonlinear flexural motions. 
Since a thin plate (e « 1) is considered, the displacement components 
in equations (l)-(5) are sought in the following power series in the 
transverse coordinate z around a uniform state: 

Ux = S(Uo + U\Z + U2Z2 + U3Z3 + . . . ) , 

uy = 6(VQ + viz + u2z2 + oaz3 + . . . ) , 

uz = 8(wQ + " ' IZ + W2Z2 + W3Z3 + W4Z* + . . . ) , (6) 

where | z | £ eh/2 and the small parameter 8 implies the order of 
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nonlinearity; u;, vi, and IA>; (i = 0 ,1 ,2 , . . . ) depend on x,y, and t and 
their order of magnitude is assumed, for the moment, to be of 0(1). 
Also it is assumed that the differentiation of u;, u;, and wi (i = 0 ,1 , 
2 , . . . ) with respect to x and y does not change the original order of 
them, e.g., wa,x ~ u>o,y ~ u ) o ~ 0(1), etc. 

Multiplying each of the x, y, and z components of the equations 
of motion (1) by z" (n = 0,1, 2,. . . ) , respectively, and integrating with 
respect to z over the thickness (i.e., taking the moments of equations 
(1)), the following systems of equations are successively obtained: 

Ui:h = Nx"x\x + Nx»\y- niVjj-", (7) 

Uy% = Ny"x\x + N%\y - n iV ' r 1 ' , (8) 

L t A = - ^ I + i V < ; ! y - » A r < r 1 ) + Q('l), (n = 0 ,1 ,2 , . . . ) (9) 

with 

U\n)= j U;2nd2, 
J-«/ i /2 

X e/l/2 
Lijz»dz, (N<~» = 0) ( i , ; = jc.y, z) (10,11) 

•ch/2 

and 

Q<"» = «"(/i/2)"[q+ + ( - l ) " + 1 q _ ] , (n = 0 ,1 ,2 , . . . ) (12) 

where the boundary conditions (5) have been used in carrying out the 
integration. Equations (7)-(9) will be referred to as the nth-order 
moment equations hereafter. To derive approximate equations, the 
order of the applied stressed q± must be specified. Since the applied 
stresses are usually smaller than the in-plane stresses (of 0(5e)), we 
assume in the following analysis that q ± are of 0(5e3) and therefore 
Q(">moW(8<n+3). 

Lowest-Order Approximation. We first seek the lowest-order 
approximation which is equivalent to the classical linear theory. In­
troducing (6) into (11) and neglecting all higher-order terms, the 
lowest-order expressions for N\f (i,j = x,y,z) become 

Nfi = 8eh[(\ + 2)u0,x + A(uo,y + wL)], 
JV™ = 8eh(u0,y + u 0 , J , 
JV<°> = J V » ) = &(h(lll + WOjc)> 

Nf) = 8eh{(\ + 2)wi + \(uo,x + uo,y)}, (13) 

where the explicit forms of Nl°>, Ny% Ny°J, and W<°' are omitted be­
cause they can readily be recovered from Nx°y\ Nx°xt AT™, and N^x\ 
respectively, by the symmetric transposition between x and y and 
between u and v. Similarly the lowest-order expressions for N\f (i, 
j = x,y,z) become 

Nx
lJ = 8eHh3/12)[(\ + 2)uhx + X ( o v + 2w2)}, 

N™ = 8e\h3/\2)(u1,y + vljX), 

Nm = NW = 5f3(/i3/12)(2u2 + w1:X), 

iV<i» = 8e 3(/i3/12)[2(X + 2)w2 + X(uM + Ul |3,)], (14) 

and the lowest-order expressions for N\f (i,j = x,y,z) become 

iV<» = 8e3(h3/12)[(\ + 2)u0,x + X(u0,y + u>i)], 

Ni» = 8e3(hyi2)(u0,y + o0,x), 

N<3 = AT'? = 8«3(/»Vl2)(m + w0,x), 

N™ = 5e3(/j3/12)[(X + 2)wl + X(u0,x + u0,y)]. (15) 

Here, and hereafter, the symmetric forms are also omitted for the 
same reason as for N\f. 

From the first-order moment equations, it is found that 

u\ = -too,! + 0(e2), vi = -wo,y + 0(e2), 

W! = -X/(X + 2)(u0,x + u0>y) + 0(e2) = -or/(l - <T)D0 + 0(e2), (16) 

where Do = uo,* + va,y Note here that these relations for u\ and u± 
are nothing but Kirchhoff's hypothesis used in the classical linear 
theory of the thin plate. 

Next, from the second-order moment equations and the relations 
(16), it is also found that 

u2 = <r/[2(l - <7)]D0,x, v2 = <r/[2(l - <j)]D0,y, 

w2 = a/[2(l - <T)]AU>O - (1 - 2<r)/[8(l - cr)]u>0,«, (17) 

where equations (7) and (8) with n = 0 have been employed in deriving 
«2 and vz\ A denotes the two-dimensional Laplacian defined by A = 
d2/dx2 + d2/dy2. We note here that the second term in w2 is, as will 
be found later, inaccurate because wottt is of 0(e2). By virtue of the 
relations (16) and (17), Nx® in equation (7) with n = 1 can be ex­
pressed in terms of WQ as 

Nx°] = 8e3(h3/12)\-2/(l - <r)Aw0,x + (2 - 3(r)/[2(l - <r)]u>0,«*!. 
(18) 

Noting that N{® = AT™ and N$= Af<°' within this lowest-order ap­
proximation, equation (9) with n = 0 yields 

5eto0 ,M + 6e3(/i3/12)u;2,« = 5 6 3 ( / T 3 / 1 2 ) | - 2 / ( 1 - <x)AAw0 

+ (2 - 3<7)/[2(l - <r)]Aw0,«J + Q<°>. (19) 

Since Q(0) is assumed to be of 0(Se3), it can readily be seen that u>o,tt 
is of 0( t 2 ) and hence equation (19) becomes 

WQ,U + c%2/[6(l - <r)]AAu>0 = e2q, (20) 

where q = Qi0>/(Se3h) = (q+ — q-)/(8i2h). This equation is well known 
as Lagrange's equation for the flexural motions [1-3, 20]. 

On the other hand, upon substitutions of UJX into Nf^ and Ny°y, 
Poisson's equations for the extensional motions [1-3, 20] can imme­
diately be derived from equations (7) and (8) with n = 0: 

«O,M = 2/(1 - (T)(U0IX + crv0,y),x + (uo,y + uo,x),y (21) 

«o,« = ("o,y + v0,x),x + 2/(1 - <r)(u0,y + <ru0,x),y (22) 

Thus Lagrange's equation and Poisson's equations have been obtained 
as the lowest-order approximation of the present analysis. 

Higher-Order Approximation. We now proceed to derive the 
higher-order approximate equations by reviving the neglected terms 
in equations (20)-(22). Since only the lowest-order terms have been 
considered so far, the relation 8 ~ e2 has not yet been positively em­
ployed. Furthermore, the order of uo and uo has been temporarily 
assumed to be of 0(1), But in order to take account of the effect of 
small but finite deformation, it becomes necessary to specify their 
order of magnitude. 

The effect of nonlinearity comes from two origins, one due to the 
finite geometrical deformation and the other due to the deviation from 
Hooke's law. The former nonlinearity causes first, through the Lag-
rangian strain tensor, extensional stresses whose order is estimated 
as 0(52). On the other hand, the order of the latter material nonlin­
earity causes, through the constitutive equations, extensional stresses 
which are estimated as of 0(l82e2, m82(2, n82t2) from the present 
strain level y = 0{8t). But since the Murnaghan constants l,m, and 
n (normalized by ix) are usually much greater than unity (e.g., 10-102), 
the order of material nonlinearity cannot readily be estimated as 
0(82t2), but depends on the relative order of I, m, n, and e. For the 
plausible value of e (10 - 1-10~2 say), it is appropriate that the Mur­
naghan constants should be estimated as 0(e_ 1) . Under this as­
sumption, the effect of geometrical nonlinearity is still dominant over 
the material one. Since the extensional motions concerned with here 
are assumed to be caused by finite flexural motions only, UQ and DO 
are primarily induced by the effect of geometrical nonlinearity of 
0(82). Thus UQ and UQ must be taken to be of 0(5) because the ex­
tensional strains and stresses are of 0(Suo, 8vo). By this fact, it is found 
from relations (16) and (17) that uii, u% and v2 are also of 0(8). In the 
following analysis, uo and vo are replaced by 8uo and 8vo to specify 
their order explicitly and a similar replacement is made for u>i, u2, and 

U2-

Making use of the lowest-order approximation and the assumption 
8~e2,Nlf (i,j = x,y, z) and Nff (i,j = x,y) can be evaluated up to 
terms next higher in order to the lowest-order approximation as 

JV<°> = 82(h[(\ + 2)u0,x + X(i;o,y + wi)] 

+ 82eh{(\ + l)(w0,x)
2 + X(«;0o,)

2] + 0(62c3, 8h), (23) 
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JV<°> = bhh(u0,y + o0,x) + Shhw0,xw0,y + 0(S2t3, 53e), 

JV<« = AT™ + 53e/ij[(X + 2)u0,x + X(u0,y + m)]wo^ 

+ (X + l)l(W0,x)2 + (W0,y)2]"'0,I 

+ ("0,y + Uo.x^Oj.) + 0(63£3), 

N<? = 52ehi(X + 2)UJI + X(u0,x + uo,y) 

+ (X + D ^ o . x ) 2 + (">o,y)2l! + OWV, S3€), 

W g = 6f3(ft3/12)[(X + 2)ui,x + X(uil3, + 2w2)) 

+ 5eB(h5/80)[(X + 2)u3,x 

+ X(u3,y + 4HM)] + 0(8e\ 63
f
3), 

N$ = 6e3(ft3/12)(ui,y + vhx) + 5e6(h5/80)(u3,>. + »3,x) 

Let us now first derive the higher-order approximate equation for 
the flexural motions. Following the same procedure as in deriving 
equation (20), we have from equation (9) with n = 0, 

8ehw0,tt + Se3(h3/I2)w2,tt = 5f3(/i3/12)[(X + 2)AD1 + 2XAw2 

- Dut] + «f 6(/i6/80)[(X + 2)AD3 + 4XAw4 - D3M] 

+ ohh(Rx,x + Ry,y) + Q<°> + .0{be\ Ss€3), (24) 

where the definition of Z); (i = 1,3) is given by D; = uiiX + u.-j, and Rx 

and Ry are defined as 

flx = |(X + 2)u0,x + X(U0,y + I«l) + (X + l)[(u)0 ,x)2 + (W0,y)2]\W0,x 

+ (U0>y + U0^)W0iy, 

Ry = (U0,y + V0,X)W0,x + j(X + 2)v0,y + X(u0,x + "»l) 

+ (X + l)[(u;o,x)2 + (w0j)
2]}woj. (25) 

On the other hand, the equations for the extensional motions are 
derived from equations (7) and (8) with n = 0. From equation (7), we 
have 

82ehu0lU = 52(h\[(\ + 2)u0,x + X(u0,y + «n)],, + (u0,y + vo,x),y\ 

+ 82eh\[(\ + l)(u)0 ,J2 + X(»o,y)2],x + (w0,xw0,y),y) 

+ 0(S2€3,63e), (26) 

and the symmetric equation for DO from equation (8) with n = 0. To 
complete equations (24) and (26), us, 1)3, and 104 must be evaluated 
within the lowest order, while u\, u\, w\, and w2 must be evaluated 
up to the second-order terms. Following the same procedure as before, 
we have from the first and the third-order moment equations, 

w3 = (2 - <r)/[6(l - <r)]Aw0,x and v3 = (2 - cr)/[6(l - (r)]Aw0,y. 

(27) 

By virtue of these relations and the first-order moment equations, 
ui , u\, and u>i can be expressed up to the second-order terms as 

u\ = -w0tX - f%2 /[4(l - <j)]Aw0,x, 

"1 = ~w0,y ~ e2/i2/[4(l - <r)]Aw0,y, 

wi = -<r/(l - a)D0 - [(w0,x)
2 + (wo,y)2]/[2(l - a)]. (28) 

In order to obtain w2 up to the second order and W4 to the lowest order, 
the fourth-order moment equations are necessary. From equation (9) 
with n = 2 and that with n = 4, they can be expressed as 

w2 = <r/[2(l - <r)]Aw0 + (1 - 2<r)/[4(l - <j)]w0,tt 

+ c2h2/[16(l - <x)2]AAu>0, 

u>4 = - ( 1 + ff)/[24(l - a)]AAw0. (29) 

Thus we have determined the coefficients of 2 " in the expansion (6) 
as far as equations (24) and (26) are concerned. The displacement and 
Kirchhoff's stress components are then evaluated from those ex­
pressions up to O (5e3) at least and their explicit representation is given 
in the Appendix. If the terms with S2 in those expressions are ne­
glected (which corresponds to the linear higher-order theory), it is 
found that the displacement and stress components are expanded by 

the e2-power, since z is considered to be of 0(e) and the e2-expansion 
is relevant to derive the linear higher-order theory. Furthermore, if 
the static problem with no applied stresses on the faces of the plate 
is considered, the present results agree with Reissner's results [9]1 

after expanding wo = u>o0) + e2u>S,2) + . . . . 
Upon substitution of the expressions just obtained into equations 

(24) and (26), we have for the flexural motions, 

w,u + e2a2AAw - e2P2Aw,tt + e4^AAAw 

= t2q + b2(Rx,x + Ry,y) + 0(e6), (30) 

with 

fix = i'[2(u,x + ovty) + (wiX)2 + (wiy)
2\wiX + (uty + u,x)w,y, 

Ry = (UJ + V,z)u>,x + l>[2(viy + <TU,x) + (lU,x)2 + (u>,y)2]w,y< 

(31) 

where a2 = h2l[6(l - <r)], 0? = h2(2 - <r)/[24(l - a)], fit = h*(S -
3<7)/[240(l — a)2] and v = 1/(1 - a). Here, and hereafter, the subscript 
(0) of uo, vo, and wo is omitted. 

On the other hand, we have for the extensional motions, 

u,tt = 2v(uiX + <ro,y),x + (uty + vtX)ty + v{(w ,x)
2 + <r(w,y)

2],x 

+ (W,XW,y),y + 0(€2), (32) 

V,tt = (U,y + U,x),X + 2»'(U0, + OUIX)J + ( » , , » , ) , ! + v[(W,y)2 

+ a(w,x)
2\j + 0(e2), (33) 

Equation (30) together with equations (32) and (33) are the required 
higher-order equations for the flexural motions in which the effect 
of finite thickness and that of small but finite deformation are taken 
into account. 

If the nonlinear terms are completely ignored, equations (30)-(33) 
decouple and reduce to the linear higher-order equation for flexural 

motions and Poisson's equations for extensional motions. Equation 
(30) in this linearized version is given by 

wltt + e2a2AAw - t20lAwitt + e4^AAAw = e2q + 0(e6). (34) 

Since the present theory is valid only for e « 1, equation (34), which 
apparently is a sixth-order differential equation, can also be rewritten 
by using the lowest-order approximation (20) as 

witt + e2a2AAw - e2P2AwiU = t2q - e4P'2Aq + 0(e6), (35) 

where /?2 = /3? + Pl/a2 = /i2(17 - 7<r)/[60(l - a)] and $'2 = 0i/a2 = 
h2(8 - 3<r)/[40(l - <r)]. This suggests that equation (34) should be 
essentially regarded as the fourth-order equation. As will be discussed 
in Part 2, the order of this differenttial equation has a very important 
bearing on an appropriate number of boundary conditions to be im­
posed on it. We note here that in the static case with no applied 
stresses q± on the both faces of the plate, equations (34) and (35) 
degenerate to the classical plate equation, which is consistent with 
Reissner's result [9]. 

Next, if we assume no applied stresses and look for plane harmonic 
wave solutions of equation (34) which vary like exp [i(kx — cot)], the 
direction of wave propagation being chosen as the x-axis and k and 
co being the wave number and the frequency, we have the dispersion 
relation for flexural waves 

9 _ €2<*2fe4 - e4j3!fe6 e2h2 <;%4(17 - 7<r) 

1 + e 2 ^ 2 S 6 ( l - < r ) 360(1-o-) 2 + " " 

(36) 

This expression is exactly equivalent to that obtained by the ^-ex­
pansion of the frequency ai in Rayleigh-Lamb frequency equation for 
the flexural waves up to the second-order term [20, 21],2 

1 Reissner's results contain errors in his expressions (18a, 6, c), which are 
corrected by vz —• — vt. 

2 This expression can also be obtained equivalently by expanding w in powers 
of k around a = k = 0 after setting c = 1. 
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t a n (ea / i /2 ) / t an (ebh/2) = - [4 /e 2 afe / (6 2 - k2)2 (37) 

where a 2 = (1 - 2<r)/[2(l - o-)](i)2 - k 2 and b2 = aj2 - &2. T h u s it is 

verified t h a t t h e p r e s e n t h igher -order theory is cons is ten t wi th t h e 

exact th ree-d imens iona l l inear elastic theory u p to t e rms nex t higher 

in order to those of the classical theory. I t should be noted t h a t relation 

(36) is valid only for k « 6"1 and t h e dispers ion relat ion of equa t ion 

(34) a n d t h a t of e q u a t i o n (35) are equ iva len t wi th in th i s range of k. 

However, we remark t h a t the latter dispersion relation co2 = e2a2fe4/(l 

+ €2j32k2), r a t h e r t h a n t h e former, exhibi ts a qual i ta t ive ly good 

agreement with t h e exact Rayleigh-Lamb frequency equat ion beyond 

the range of validity for k. Namely, it exhibits a saturat ion of the phase 

velocity as k ~* <*>. 

Since t h e t ime var ia t ion of t h e flexural mo t ions is smal l , i.e., witt 

~ 0 ( e 2 ) , t h e ine r t i a t e r m s of t h e extens ional mo t ions caused by t h e 

flexural mo t ions are also supposed to be small . Physical ly , it is in­

t e r p r e t e d in such a way t h a t the velocity of t h e extens ional waves 

C [ = ( 2 J < ) 1 / 2 ] is so fast c o m p a r e d wi th t h a t of t h e flexural waves (of 

0 (c 2 ) ) t h a t t h e s t a t i c equ i l ib r ium for t h e extens ional mot ions is 

quickly a t ta ined . If a new t ime variable t' focusing on the slow flexural 

mot ions is in t roduced as t' = tt, t he inertia t e rms d2u/dt2 and d2v/dt2 

becomes e2d2u/c>t'2 a n d e2d2v/dt'2, respectively. T h u s , as far as t h e 

t e r m s of 0 ( 1 ) are concerned in equa t ions (32) a n d (33), t h e y are re­

duced to t h e two-d imens iona l s ta t ic p rob lem in which t h e s t ress 

funct ion / can be i n t roduced t h rough the following defini t ions: 

2l>(ll,X + <TU,y) + V \{W,X)2 + <T(W,y)2} = f,yy, 

2v(v,y + au,x) + v[{w,y)2 + a(w,x)
2] = f,x. 

(38) 

By vir tue of the stress function / , equat ions (30)-(33) can be rewri t ten 

as 

Wft' + a2AAw - e2(32Awjt 

+ (S/e)2(f,y 

c2P'2Aq 

\xx + t,xxw,yy ~~ 2/,XyW,xy ), (39) 

and 

AAf = 2(l + a)l(w,xy)
2 (40) 

where t h e lowes t -order app rox ima t ion (20) h a s been used. I t can 

readily be seen t h a t the finite deflection causes in-plane displacements 

in t h e form of t h e to ta l curva ture of t h e plate jus t as in von K a r m a n ' s 

theory . 

In concluding th i s pape r , we again r emark a b o u t t h e effect of ma ­

te r ia l non l inear i ty . As was a l ready men t ioned , t h e effect first causes 

in Kxx, Kxy, and Kyy extensional stresses of 0 ( /5 2 e 2 , m52s2 , nd2e2) and 

flexural s t resses of 0(l83e, m53e, n83e). In t h e p r e s e n t analysis , how­

ever, t h e ex tens iona l s t resses due to t h e effect of geometr ica l non-

l inear i ty are t a k e n u p t o 0 ( 5 2 ) , while t h e flexural s t resses are t a k e n 

u p to 0(S(3) (Append ix ) . T h u s it is found t h a t t h e effect of ma te r i a l 

non l inea r i ty is h igher o rder if I, m, and n r ema in less t h a n t~2. If, on 

t h e o ther hand , it h a p p e n s t h a t I, m, and n a e~2, account would have 

to be t a k e n of t h e effect of mate r i a l non l inear i ty as well as t h a t of 

geometr ical one. Al though this process is s traightforward, t h e results 

a re too compl ica ted to be r ep roduced here . 

Finally, we note t h a t the present analysis is concerned with the case 

in which 5 ~ e2, b u t can be ex t ended to the case wi th e3 < 8 < e. In 

e q u a t i o n (24), it can be seen t h a t n e x t h igher -order t e rms d u e to t h e 

effect of finite t h i ckness are of 0 (5c 7 ) , while n e x t higher order non­

l inear t e r m s are of (53e3). There fore in order t h a t the h igher -order 

e q u a t i o n (30) is still valid even if t h e condi t ion 5 ~ e2 is re laxed, it is 

necessary t h a t e3 < 5 < t. B u t it should be no t ed t h a t t h e effect of 

ma te r i a l non l inear i ty of 0(l8h3, m53e3 , n53€3) in NXX\NX^, and J V $ 

become i m p o r t a n t nea r t h e upper l imit of 5(5 £ e), if I, m, a n d n a re 

g rea te r t h a n ( t /5) 2 . 
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APPENDIX 

Explicit Representation of Displacement and 
KirchhofPs Stress Components 

ux = - 5 

u, = 8-

e2h2
 A 

w x -t Aw 

w + 

4(1 - <r) 

a 

z Aw , 2 3 

6 ( l - o - ) '* 
+ 52u, 

e% 2
 A A e 2( l - la) 

Aw H ; — AAw + ; — W,ff 
2(1 - a) 16(1 - o-)2 

l + o-
AAwz4 

Kx 

24(1 - o-) 

+.(w,x)
2+(w,y)

2]z 

2 

.52, 
1 

2(1 - 0-) 

4(1 - a) 

[2a(u,x + o,y) 

c2h2 

1(1 - 0") 

+ (jAw,yy] • 

(w,xx + awtyy) + 4/~ " <o [(2 - 0)Awj 
4(1 - o-)2 

( l - o - ) 
W,t'f (41) 
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3(1 - a) 

+ (wiX)2 + G(w,y)% 

52 / r2h2\ 
[2AAw - (2 - ff)Aw,yy]za + - [2(1*,, + <rv,y) Kxz = 8 \z2 - — 

(1 - o) \ 4 j 

K, 

Kr 

•5\e' W,ft + AAiu 
4(1 - a) 

e2h2
 A 

+ &2(uty + VtX + W,xW,y) 

2 AAuiz3 + t3 — 
3(1 - a) 2 . 

z -AwyXyz
3 

3(1 -a) 

1 . , 62ft2(2 - a) A A 
Aw * + — AAm, 

(1 - a) 

2(1 - <r) «>,('('* -f-f) 
8(1 - cr)2 

«%4\ A AUK 

6(1 - <r) 
(41) 

(Cont.) 

where z~0(t) and pft = 2Q<1>/(6e4h) = (tJ+ + q-)/(8e3); the subscript 
(0) of uo, uo, and iuo is dropped and the explicit forms of uy, Kyy, and 

(41) Kyz are omitted because they are easily reproduced from ux, Kxx, and 
(Cont.) Kxz. 

CONFERENCE LISTING 
Worldwide Mechanics Meetings 

(Continued from Page 338) 

DATE : 
TITLE: 
SPONS: 

DATE 1 
TITLE! 
SPONS: 

DATE : 
TITLE! 
SPONS! 

OATE 1 
TITLE! 
SPONS! 

OATE : 
TITLE! 
SPONS: 

OATE : 
TITLE! 
SPONS: 

OATE : 
TITLE: 
SPONS: 

OATE : 
TITLE! 
SPONS: 

DATE : 
TITLE: 
SPONS: 

OATE : 
TITLE! 
SPONS: 

OATE : 
TITLE: 
SPONS: 

OCTOBER 26-30. 1981 LOCATION: ST. LOUIS, HO. 
MINI- AND NHICROCONPUTERS IN EXPERIMENTAL STUDIES 
ASCE CONTACT: PROF. C. 0. SUTTON 
CIVIL ENS. SCHOOL, PURDUE UNIV.. WEST LAFAYETTE. IN 47907 

OCOTBER 26-30. 1981 LOCATION: ST. LOUIS. HO. 
ASCE ANN.CONVENTION,COH.ON RESEARCH FOR ASCE'S STRUCTURAL OIV. 
ASCE CONTACT! PROF. WILLIAM L. GAMBLE 
2209 CIVIL ENG. SLOG, UNIV. OF ILLINOIS. URBAN*. IL. 61801 

OCTOBER 27-24. 1981 LOCATION: NEW. ORLEANS, LA 
52NS SHOCK ANO VIBRATION SVHPOSIUH 
OEFENSE NUCLEAR AGENCY CONTACT: 
SHOCK t VIBRATION CENTER, COOE 5804, NRL, WASHINGTON, OC 20375 

OCTOBER 26-30, 1981 LOCATION: ST. LOUIS, HO. 
RELIABILITY METHODS IN STRUCTURAL FATIGUE 
ASCE CONTACT: HR. W. G. BVERS 
ATCHISON, TOPEKA, t SANTA FE, 900, POLK ST., AHARILLO, TX. 79717 

NOVEMBER 15-20, 1981 LOCATION: WASHINGTON, 0. C. 
ASME/QN COMPUTERS IN FLOW PREDICTIONS S FLUID DYNAMIC MEASUREMENT 
ASME/AIAA CONTACT: ASHE 
WASHINGTON, 0. C. 

NOVEMBER 15-20, 1981 LOCATION: WASHINGTON, 0. C. 
ASME SINTER ANNUAL MEETING 
ASHE CONTACT: OR. S. C. 01 AON 
M.S. 398, NASA LANGLEV RESEARCH CENTER. HAMPTON. VA 23665 

MARCH 9-10, 1982 LOCATION! WILLIAMSBURG, VA 
LONG TERH BEHAVIOR OF COMPOSITES 
ASIH CONTACT! DR. T. KEVIN O'BRIEN 
M.S. 1B8E.NASA LANGLEV RESEARCH CENTER, HAMPTON, VA 23665 

APRIL 8-9, 1982 LOCATION: HUNTSVILLE. ALA. 
SECTAM XI 
SECTAH CONTACT: OR. T. J. CHUNG 
MECH. ENG. DEPT., U. OF ALA., HUNTSVILLE, ALA. 35S99 

MAY 3-6, 1982 LOCATION! HOUSTON, TX 
OFFSHORE TECHNOLOGY CONFERENCE 
ASME CONTACT! AM. SOC. OF MECH. ENGR. 
UNITED ENGR. CENTER, 365 E. 471H ST., NEW YORK, NY 10017 

MAY 10-12, 1982 LOCATION: NEW ORLEANS, LA 
23R0 SDH CONFERENCE - 1982 
AIAA, ASHE. ASCE. AHS CONTACT! OR. RUSSELL J. RECK 
M.O. ASTRO. CO. 5301 BOLSA AVE.. HUNTINGTON BEACH, CA 92667 

HAY 23-30. 1982 LOCATION! HONOLULU. HAWAII 
1982 JOINT CONFERENCE ON EXPERIHENTAL MECHANICS 
SESA CONTACT: SESA 
14 FAIRFIELD DRIVE. BROOKFIELD, CT 06805 

DATE : JUNE 21-25, 1982 LOCATION! ITHACA, N.Y. 
TITLE: 9TH U.S. CONGRESS OF APPLIED MECHANICS 
SPONS! NATINAL ACAOEHV OF SCIENCES CONTACT! PROF. V. H. PAO 

OEPT. OF THEOR. AND APPL. MECH..CORNELL UNIV..ITHICA.NV 14853 

OATE : JULV 13-14, 1982 LOCATION: LONDON 
TITLE! JOINTING IN FIBRE REINFORCED PLASTICS 
SPONS! IMP. COL. OF SCIENCE £ TECH. CONTACT! F. L. MATTHEWS 

AERONAUTICS OEPT., IMPERIAL COLLEGE. LONDON SW7 2BV 

DATE 1 AUGUST 23-27, 1982 LOCATION! HAIFA, ISRAEL 
TITLE! SEVENTH INTL. CONFERENCE ON EXPERIHENTAL STRESS ANALYSIS 
SPONS! TECHNION 1 SESA CONTACT! PROF. A. A. BETSER 

DEPT. OF AERO. ENG.. TECHNION, ISRAEL INST. OF TECH., HAIFA, ISRA 

OATE ! OCTOBER 4-7, 1982 LOCATION! WASHINGTON. D.C. 
TITLE! SVHPOSIUH ON ADVANCES ANO TRENDS IN STRUCTURAL AND SOLIO MECHANIC 
SPONS! GEORGE WASHINGTON UNIV. C NAS CONTACT: PROF. AHMED K. NOOR 

HAIL STOP 246, NASA LANGLEY RESEARCH CENTER, HAMPTON, VA 23465 

DATE ! 
TITLES 
SPONS: 

DATE s 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE: 
SPONS: 

DATE : 
TITLE! 
SPONS! 

DATE : 
TITLE: 
SPONS: 

OCTOBER 9-13, 19B2 LOCATION: PHILADELPHIA, PA 
ENGINEERING IN HEOICINE AND BIOLOGY 
ASHE CONTACT: AH. SOC. OF HECH. ENGR. 
UNITED ENGR. CENTER, 345 E. 47TH ST.. NEW YORK. NV 10017 

OCTOBER 27-29. 1982 LOCATION! ROLLA. MISSOURI 
19TH ANNUAL MEETING 
SOCIETY OF ENGINEERING SCIENC CONTACT! PROF. RAHISH C. BATRA 
DEPT. OF ENG. MECH.. UNIV. OF MISSOURI. ROLLA. HO. 65401 

LOCATION: LOS ANGELES ITENTATIVE) NOVEMBER 14-19. 1982 
ASHE WINTER ANNUAL MEETING 
ASME CONTACT! AM. SCC. OF MECH. ENGR. 
UNITED ENGR. CENTER. 345 E. 47TH ST.. NEW YORK. NY 10017 

HAY 2-5, 1983 LOCATION: HOUSTON, TX 
OFFSHORE TECHNOLOGY CONFERENCE 
ASHE CONTACT! AH. SOC. OF HECH. ENGR. 
UNITED ENGR. CENTER, 345 E. 47TH ST., NEW YORK, NY 10017 

AUGUST 15-19, 1983 LOCATION: STOCKHOLM, SWEDEN 
FOURTH INTERNATIONAL CONFERENCE ON MECHANICAL BEHAVIOUR OF HATER! 
ROYAL INSTITUTE OF TECHNOLOGY CONTACT: CONFERENCE SECRETARIAT -
RIT, MATERIALS RESEARCH CENTER, S-100 44 STOCKHOLM, SWEDEN 

NOVEMBER 13-18, 1983 LOCATION: BOSTON, MA 
WINTER ANNUAL MEETING 
ASHE CONTACT: AH. SOC. OF HECH. ENGR. 
UNITED ENGR. CENTER. 345 E. 47TH ST.. NEW YORK, NY 10017 

382 / VOL. 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



N. Sugimoto 

Research Associate, 
Department of Mechanical Engineering, 

Faculty of Engineering Science, 
Osaka University, 

Toyonaka, Osaka 560, Japan 

Nonlinear Theory for Flexural 
Motions of Thin Elastic Plate 
Part 2: Boundary-Layer Theory Near the Edge 
This paper deals with, as a continuation of Part 1 of this series, the boundary-layer theory 
for flexural motions of a thin elastic plate. In the framework of the higher-order theory 
developed in Part 1, three independent boundary conditions at the edge of the plate are 
too many to be imposed on the essentially fourth order differential equations. To over­
come this difficulty, a boundary layer appearing in a narrow region adjacent to the edge 
is introduced. Using the matched asymptotic expansion method, uniformly valid solu­
tions for a full plate problem are sought. The boundary-layer problem consists of the tor­
sion problem and the plane problem. Three types of the edge conditions are treated, the 
built-in edge, the free edge, and the hinged edge. Depending on the type of edge condition, 
the nature of the boundary layer is characterized. After solving the boundary-layer prob­
lem, "reduced" boundary conditions relevant to the higher-order theory are established. 

Introduction 
In Part 1, [1] of this paper, a higher-order theory for flexural mo­

tions of a thin elastic plate was developed including both the effects 
of finite thickness of the plate and of small but finite deformation. 
To apply the theory to actual problems, it is then required to specify 
boundary conditions along an edge of the plate. The analysis in Part 
1, however, does not presuppose the presence of an edge explicitly. 
It only assumes that 

1 A characteristic wavelength of flexural motions L is greater than 
a thickness of the plate H (i.e., 0(HIL) = t « 1). 

2 A characteristic deflection of the plate W is smaller than the 
thickness (i.e., 0(W/H) = 0(W/L-L/H) = o/c « l ) . 

3 5 is of order of e2. 

If boundary conditions would be imposed, it usually happens that the 
constraint along the edge invalidates the previous three assump­
tions. 

To elucidate this situation, let us first start from the linear 
higher-order theory for flexural motions. Since in the linear theory, 
flexural motions and extensional motions can be treated separately, 
together with the boundary conditions inclusive, we take up only 
flexural motions here. From the standpoint of three-dimensional 
elasticity theory, three independent boundary conditions must be 
satisfied along the edge of the plate. For example, suppose a semi-
infinite plate whose edge condition is the built-in type (the edge is 
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located a t y = 0, say). Then it is reasonable, since the plate is thin, to 
impose three boundary conditions averaged over the thickness; that 
is, no averaged deflection, uz = &\w + e2ah2/[24(i — a)]Aw + . . . ) = 
0, and no averaged rotations to* and Hoy about the x and y-axes, a>x(y) 

-l)o\w,yix) + f2(2 + a)hV[24(l - <x)]Aw,yM + . ..) = (rot ii/2). "x(y) • ( -

= 0, (—1) being only for coy and the averaged quantity (. . .) being 
defined as (...) = S'-/h/2 (• • .)dzl(th) (see the Appendix of Part 1). In 
the classical linear theory (c —>- 0), the conditions uz = 0 and coy = 0 
degenerate into one condition w = 0, and only two independent con­
ditions can be imposed. This is consistent with the fourth-order dif­
ferential equation of the classical thin plate theory. In the present 
higher-order theory, however, they no longer degenerate into two 
conditions. Since the higher-order equation for flexural motions 
(equation (34) in Part 1) is apparently of sixth order, it seems possible 
to impose the foregoing three conditions. But for the fulfillment of 
the conditions, there arises a solution which varies rapidly, i.e., dw/dx 
~ dw/dy ~ 0(e_ 1) and invalidates Assumption 1, since the highest 
derivative in the higher-order equation contains the coefficient with 
the smaller parameter e4 than other terms. Thus the higher-order 
theory becomes invalid. But this does not imply that when an edge 
is present, the higher-order theory is invalid everywhere in the plate, 
because the validity of the initial three assumptions is still physically 
expected in a region away from the edge. It rather implies that the 
higher-order equation should not be regarded as the sixth order, but 
as the fourth order and that three boundary conditions are too many. 
Thus there" arises a discrepancy between the conditions to be satisfied 
actually at the edge and those relevant to the higher-order theory. For 
the present weakly nonlinear problem, since the flexural and ex­
tensional motions are coupled, they are no longer treated separately. 
The boundary conditions should thus be imposed on the total mo­
tions. For the coupled higher-order equations, on the other hand, it 
is considered legitimate that two boundary conditions should be im­
posed on each equation. To bridge the gap between the actual 
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boundary conditions and the "reduced" boundary conditions relevant 
to the higher-order theory, it is necessary to introduce the idea of a 
boundary layer appearing in a narrow region adjacent to the edge. 

The idea of the boundary layer was first introduced by Friedrichs 
and Dressier [2] to explain the relevant stress boundary conditions 
for the classical plate equation. As is well known, three independent 
boundary conditions (bending moment, twisting moments, and shear 
force) are too many to be imposed. They showed by the asymptotic 
expansion method that the two conditions for the twisting moment 
and shear force should be replaced by one modified condition, al­
though this result has already been pointed out by Kirchhoff and later 
Kelvin and Tait based on the Saint-Venant's principle [3, 4]. In a 
similar manner, Gol'denveizer [5] also developed the boundary-layer 
theory to confirm the classical boundary conditions for various edge 
conditions. Recently Reissner [6] considered the boundary-layer effect 
in his original manner. It is to be noted, however, that the aforemen­
tioned analyses referred to are restricted to linear theory. The purpose 
of this paper is to extend the analysis to the weakly nonlinear case, 
and to investigate systematically the boundary-layer effect on the 
higher-order theory. After solving the boundary-layer problem, the 
reduced boundary conditions for the higher-order theory are estab­
lished. 

Since the boundary layer is supposed to develop in a narrow region 
along the edge, the full plate theory is divided into two parts. One part 
is for the boundary layer in which the effect of the constraint at the 
edge is dominant, while the other is for the interior region in which 
the effect of edge conditions is tempered through the boundary layer. 
In the interior region, the higher-order theory described in Part 1 is 
taken to be valid. To develop the boundary-layer theory, a matched 
asymptotic expansion method [7-9] is used. To achieve a proper de­
scription of the narrow layer, new stretched coordinate are introduced. 
The equations in the new coordinates consist of the torsion problem 
and the plane problem. Solutions are sought so that they may match 
with the interior solutions at the limit between the boundary layer 
and the interior region. Three types of edge conditions are treated in 
the following: the built-in edge, the free edge, and the hinged edge. 
It is found that the type of boundary layer is different depending 
on the edge conditions. For thejjuilt-in edge, there first appears 
the plain strain boundary layer, while for the free edge, the torsion 
boundary layer first. For the hinged edge, however, it is found that 
no boundary layer arises. After seeking boundary-layer solutions, the 
reduced boundary conditions for the interior equations (the higher-
order equations in Part 1) are established. It is then revealed from 
these conditions that, if the boundary layer arises, its effect gives rise 
to 0(e)-corrections in the interior solutions. Although the effect of 
finite thickness is of 0(e2) in the interior equations, the effect affects 
the interior solutions primarily through the boundary layer. This 
should be compared with the case in which no boundary layer arises. 
Finally, we remark that the stress distribution in the boundary layer 
can easily be obtained, but explicit results are not given here and left 
for a subsequent paper. 

Basic Equations 
Since the complete set of basic equations has already been given 

in Part 1 [1], we only briefly make reference to them. The same 
notation is also used so that each quantity having already appeared 
there is referred to without a comment. The same rectangular coor­
dinate system is also used with the in-plane coordinates designated 
by x and y and the transverse coordinate by z. 

Let a semi-infinite plate occupy the region, y a 0 and -eh/2 £z £ 
eh/2, and let the boundary be located aty = 0 and -<= < x < •*>. The 
boundary layer is assumed to develop in a narrow region adjacent to 
the edge, 0 s y < yi, and -eh/2 £z£ eh/2. Here, yb is the width of 
the boundary layer in the y -direction whose order is comparable with 
the thickness of the plate. It is therefore appropriate to introduce, 
instead of y and z, new stretched coordinates 77 and f defined by 

r\=yle and f = z/«, (1) 

where y and z are already normalized by the characteristic wavelength 
of the flexural motions. 

By means of the new coordinates r\ and f, the equations of motion 
can be rewritten as 

euiM = eLiX:X + Ljy,, + L;2]j- (i = x, y, z) (2) 

where, as in Part 1, the comma implies the partial differentiation with 
respect to the subscript(s) indicated after the coma. 

In Part 1, the displacement components have been treated as the 
basic dependent variables. In the following, however, it is advanta­
geous to work, with the stress tensor, especially Kirchhoff s stress 
tensor. Thus the equations of motion can be expressed as 

"•iy.ri + Kiz,? — tuijt — eKixx 

- (eui,xKxx + Ui%1,Kyx + UJ,JKZX),I 

- 6 _ 1 [{eUi,xKxy + Ui^Kyy + U;,fK2y),„ 

+ (euiiXKxz + ut^Kyz + u;,fK22),f], (i = x, y, z) (3) 

When the analysis is carried out with Kirchhoff s stress tensor, the 
compatibility conditions are required to determine the displacements 
uniquely. The six necessary and sufficient compatibility conditions 
are derived in the Appendix A: 

&Kxy + e*Kxy,xx + €9,x„ = e2Pxy, 

AKxx + e2Kxx,xx + e2e,xx = e2Pxx, 

&KZX + e*Kzx,xx + eQ,xi= e*Pzx, 

AKyy + e2KyyiXX + 9, „ = 6 2Pyy, 

lXyz + e*KyZ,xx + QM= e*PyZ, 

AKZZ + e2K22,xx + 9, f f = e2Pzz, (4) 

where A = d2/drj2 + dVd? and 9 = (Kxx + Kyy + Kzz)/(l + <r). Once 
Kirchhoff s stress tensor is known and therefore the Lagrangian strain 
tensor is known from the constitutive equations, the displacement 
components are derived from the following relations: 

2Ux,x = 2EXX — Uk,xUk,xi 

uXiV + euy,x = 2eExy - Uk,xuk,n, 

2Uy<n = 2eEyy ~ £-1Ufc,,UA,„ 

"x,f + euz$x = 2eExz - Uk,xUk,{, 

2iiZjf = 2tE22 - e_1Ufc,fUfc,f, 

Uy.f + uZi„ = 2eEyz - €-1u*,,itA,f. (5) 

where the repeated index k implies summation over x, y, and z. 

Boundary-Layer Theory 
By the matched asymptotic expansion method [7-9], the bound­

ary-layer solutions are sought in the following form: 

ut = 6(fii0) + eup> + e2«P» + ^ u f + . . J , 

Eij = 8(eE\? + e2£jf + eaE\f> + . . . ) , 

Ku = 8(eK\y + e2Klf + t3K® + ...), 

Lij = 8(eLW + e*Llf> + e3L\f + . . .), 

(i,j = x,y,z) (6) 

where 8 has already been assumed to be c2 and the tilde implies a 
quantity pertaining to the boundary layer and each quantity is as­
sumed to depend on x, r], f, and t. It should be remarked that £;y, Kij, 
and Lij (i, j = x,y, z) begin with terms of 0(8e) because the charac­
teristic strain and stress concerned with here have been assumed to 
be of 0(8e). According to the matched asymptotic expansion method, 
the infinity r] = °° in the boundary layer corresponds to y = 0 in the 
interior solutions. The boundary-layer solutions therefore should be 
obtained so that they may be matched at -q = °° with the interior so­
lutions at y = 0. To do so, the displacement components in the interior 
solutions are expanded in the following form: 

384 / VOL. 48, JUNE 1981 Transactions of the ASSV3E 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



U = U^ + {U^+(2U^ + . . . , In addition, the displacement components are governed by 

U = „<0) + € U (1) + 6 2 0 ( 2 ) + _ 

w = to<°> + ew^ + e
2wi21 + ..., (7) 

where u(*>, v(k\ and w<-k) (& = 0 ,1 , 2 , . . .) depend on x, y, and t. 
The interior solutions at the matching region (ij = <°, y = 0) can be 

obtained by substituting (7) into the interior solutions (see the Ap­
pendix in Part 1) and expanding them around y = 0. After setting y 
= erj and z = ef in the expansions thus obtained, the interior solutions 
with which the boundary-layer solutions should be matched at T) = 
oo are given by 

u;„ = S(u<°> + «!<» + e 2 ^ + . . . ) , 

K;;„ = 5(eJ?1}L + f2K\Ji+ esK\jl + . . . ) , ( i , ; = x, y, z) (8) 

where a&> and i?,(£> (ft = 0 ,1 , 2 , . . . ) are evaluated at y = 0. At the 
actual edge r; = 0, on the other hand, three types of the boundary 
conditions are treated in the following analysis: the built-in edge, the 
free edge, and the hinged edge. For the built-in edge, the boundary 
conditions are given in terms of displacement components as 

ux = uy = uz = 0 at ?j = 0, (9) 

and for the free edge, they are given in terms of stress components 
as 

Lxy = Lyy = Lzy = 0 at r\ = 0. (10) 

For the hinged edge, it is difficult, especially in the nonlinear case, to 
specify the boundary conditions in the form of the displacement 
and/or the stress components. This is discussed later. In addition to 
the conditions at r) = 0 and T) = °°, the conditions at the upper and 
lower faces of the plate are required. They are nothing but those for 
the interior solutions. For the boundary-layer solutions as well, it is 
thus assumed that 

LXz = Lyz = 0 at f = ± / i / 2 , ( l la,6) 

but LZz is employed in the following expansion form: 

Lzz = 5(3[q±(x) + tq±,y(x)T\ + e2q±,yy(x)r)2/2 + .. .]y=0. ( l ie) 

Case of Built-in Edge. Although the case of built-in edge is treated 
first, the imposition of the boundary condtions at i) = 0 is suspended 
for a while so that the following analysis may be valid not only for the 
built-in edge but also for the other edge conditions. Substituting (6) 
into the basic equations and collecting terms with the same power of 
e, we have successive systems of equations. In this process, it is as­
sumed that the time derivative d/di is also of 0(t) just as in the in­
terior solutions. 

Zeroth-Order Problem. Since we are concerned with the case in 
which all stress and strain components at this order vanish, all basic 
equations except (5) are satisfied identically. The equations for the 
displacement components are then given by 

,7 (0) _ - (0) _ - (0) _ - (0) _ - (0) + ,~ (0) _ - (0) _ n ( i n*. 
ux,x "1,1, ux,( uy,n "y,f T U Z i , — Uz>f - U. (LA) 

Imposing the matching conditions at i) = °°, i.e., ufl = ufl = 0 and 
Uz°l = u/0), we have 

fi(o) = a(p) = 0 a n d az0) = wV\ (13) 

where it should be noted that ww) is evaluated a ty = 0 and therefore 
it depends on x and t only. 

First-Order Problem. 

#SS., + £iV.r = *#. , + * # r = Ryl* + * ii'.r = °- U4o,6,c) 
This system of equations is supplemented by the following compati­
bility conditions: 

MiV=-MiV = M<i' =0, 

M<» + eJJJ = &/?<» + e?# = AK»» + §<# = o, . (is) 

where G" ' = (K™ + K™ + KgVd + a). 

2flgi = [KS - c(Ky» + J?<»)]/(1 + <x), 

aiH = 4!i = ai1} = a[]\ + affi = a $ + aJH = o. (16) 

These equations should be solved in the semi-infinite strip region, i.e., 
0 £ r\ < 0° and — h/2 s f £ h/2 under the relevant boundary conditions 
specified along the boundary of the region. It can readily be seen that 
equations (14)-(16) can be split into two separate problems. Equation 
(14a) constitutes a torsion problem for the strip region, while (14b, 
c) constitute a plane strain problem. As will be seen later, however, 
it is not an exact plane strain problem. 

In order to solve these equations, it is convenient to introduce the 
following stress functions i/<(1) and ipW so that the stresses derived from 
them may vanish at r] = <*>: 

*»> = *<». - v% tfi1,' = -*Z iUV = H>% (iv) 

where the matching conditions at rj = •*> are given by 

K ™ „ = - W f f , Ky% = Ki\l = 0, (18) 

Wy
m being defined by Wy

0) = 2(tu™ + ow{a
x\)/(l - a). It can readily 

be seen that (17) can of course satisfy equation (14). Furthermore, it 
follows from the compatibility conditions that the stress functions 
must satisfy the following equations: 

Afr» = c(x,t), AA£>»> = 0, (19), (20) 

where c is an arbitrary function of x and t, but must be taken zero in 
light of the boundary conditions at 7) - ». Solving 9 ( 1 ) from equation 
(15) yields 

§(i) = -A£<i> + amv + 0U)f + 7 d ) ) (21) 

where a{1\ ^(1), and Y ( 1 ) are arbitrary functions of x and t only, which 
should be determined from the matching condition for Kx

l
xK Since 

Kx% is given by Kx% = - Wx
0) f, Wx

0) being defined as IVf = 2(wfx 

+ ow®y)l(\ - a), it is found that a<» = 7*1' = 0 and /3<» = -2Aio<°»/(l 
— a), where A is defined as A = d2/dx2 + d2/i>y2\y=o. This A should 
not be confused with A = d2/d?;2 + d2/df2. Thus K™ can be obtained 
as 

Kx» = -Wx°^-aA^\ (22) 

As the problems are formulated in terms of the stress functions, the 
boundary conditions must also be expressed in terms of the stress 
functions. For i/<<1', the boundary conditions are expressed as 

j / — » , #1), £(i>-* o, f = ± / i / 2 , # , 1 ) = 0, (23o,6) 

and for ^ ( 1 ) , they are given by 

ij-"»,*SJ I#&*SU-0 ( f=±/./2, ^> = ̂  = 0, (24a,6) 

where the conditions at TJ = 0 are left open for a while for the reason 
mentioned before. Although the conditions (23a) and (24a) imply that 
as r) -» oo? î X1) and £>(1) approach, respectively, ipm -* Co and <p(1) -> Cx?/ 
+ C2J" + C3, where Co, ci, C2, and C3being,arbitrary functions of x and 
t, they can be set equal to zero without loss of generality. Therefore 
(23b) and (246) at f = ±h/2 are replaced by V^> = 0 and £><x> = >̂JJ' 
= 0, respectively. 

It should be remarked here that the two stress functions thus in­
troduced represent the boundary-layer solutions. It should also be 
noted, even though it seems trivial, that even if the two stress func­
tions are set equal to zero identically, the stresses (17) can satisfy 
equations (14)-(15). Therefore, if the stresses and/or the displace­
ments can satisfy the boundary conditions at r\ = 0 without any in­
troduction $<(1) and £>(1), the interior solutions invade the boundary 
layer. This case should then be interpreted as no boundary layer ap­
pearing. 

The displacement components are obtained from equations (16). 
By making use of the matching conditions, 
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a& = -wf{, ay
ll = -wf{, u"2 = u;d> + UJ,(°>7,, (25) 

they are sought as ui1 ' = uJL' (i = x, y, 2). We remark here that £>d) 
itself does not affect ua>. Therefore ux

l) is free from the boundary-
layer solutions. Such a plane problem may be called a plane strain 
problem, although it is not so in a strict sense because the displace­
ments derived from qjd) («<3> and u2

2)) depend on x parametrically. 
Second-Order Problem. 

# < » , + m.t = -*iV.x = W<°> f + <r A#J>, (26a) 

/?<•», + /?«». f = - t f <», = 2w%S + i% (26b) 

*£,+#&=-*&= "Mi- <2 6 c> 

The following analysis can be executed in quite an analogous manner 
to that demonstrated for the first-order problem. It is therefore only 
briefly described. 

To solve equations (26a), a stress function t̂ (2> is introduced in view 
of the matching conditions as 

Kg' = *<». + #]> + (l - a) f " Afr^dij - #?>, 

with 

/C<2>„ = -2«)<»f - 2w%riS+ uf + vf + wfwf, 

K<2)„ = Aw|?> (f2 - h2/4)/{l - a). (28) 

The function i/<<2> is specified from the compatibility conditions by 
A^ (2 ) = 0. Noting thatLJ£' = Kf} for this order, the boundary condi­
tions for ^ '2 ) are given by the same conditions as for \M1! (23a, 6). 

For equations (266, c), on the other hand, a stress function cjj(2) can 
also be introduced through the relations 

/?» = *<»„-2 CW\dv-i% 

K™ = ~ ^l Kf> = Ky% - ftj> + !p% (29) 

with 

K™„ = -IV<» f - IV™ r , f+ [2(i>«? + <ra|?) 

+ (u;, (° ))2+ff(io;? ))2]/(l-<j), 

K < 1 = 0, £<,?„ = Aw™ ( f 2 - h 2 / 4 ) / ( l - c r ) . (30) 

Here, and hereafter, the definitions Wy
k) = 2(u/,(# + <ru/£!)/(l - <r) 

(/e = 1, 2, . . .) are used and a similar definition Wx
k) = 2(ui|*] + 

o-u)JJy)/(l - cr) (k = 1, 2, . . .) will be used as follows. It is found from 
the compatibility conditions that f>(2) must also satisfy AA<^<2' = 0. 
Since Kj,2' = Lf} and K<2) = L*2), the boundary conditions for £><2> are 
given by the same conditions as for £>(1), (24a, b). The remaining stress 
component K$.2) is matched with Kfx„ and given by 

R% = -Wf'f-Wi°^f + 2 ("° V$dt, + [2(«<J> + «;«») 

+ (wf)2 + cr(u)™)2]/(l - <r) - (7A^<2». (31) 

The displacement components, on the other hand, are obtained, 
after being matched with the interior solutions as 

J* 

a™ = wW + w^-q + w™ jj2/2 + <j/[2(l - ,x)]Au/0>^ + u l ' , 
(32) 

where Uy2,' and u $ denote, respectively, the displacement components 
derived from £ (1 ). Since the displacements thus derived are always 
accompanied by an arbitrary rigid body motion, we determine them 
so as to be free from the rigid body motion. Thus these displacement 
components are taken to be damped out as TJ —• •*>. 

Third-Order Problem. 

Kfl, + R%t = -Kx%x - (agj.*<»),, - (a£H>fiV).f (33a) 

K?L + R$.t = -K?l* - (aJW>)., - (flJM>.r (336) 

Rfl, + RZ = af},t, - Rfl - (fl«»£g> + fli^'V),, 
- (fl«»ff<» + a<»ff &>),, (33c) 

where t' is defined as t ' = et. The stress functions ^ ( 3 ) and £<3) for this 
problem can be introduced as follows: 

*»>=#».+£» + (!_„) r Av«?d̂  - fIF, 

* £> = JC«>. + $% - 2 f " #« d„ + ft» 
• / i j 

*»> = *» . -2 r *$d„ - *«> 

+ (l-<r) f°d7, f " A $ . g U u - ^ . 

K<3
2> = K « l - ^ + ^ , (34) 

where the explicit forms of KffL (i, j = ĉ, y, z) are omitted, but their 
forms are easily reproduced from the Appendix of Part 1. The stress 
functions thus introduced must satisfy the following equations: 

A#<3> = - # 2 i , AA£<3> = -2A£™, (35), (36) 

together with the same boundary conditions as for \pw and ^ (1 ) , re­
spectively. It should be noted that on both surfaces of the plate, L\f 
= K\f (i = x, y, z) because R$ (i = x, y, z) vanish there. 

On the other hand, the third-order displacement components are 
calculated after matching with the interior solutions as 

uf = - \wf + w%r, + wfyy VV2 + / i2/[4(l - (r)]Au>!?)r 

+ (2 - <r)/[6(l - a)} 

X Awf f3 + f ° if dr,- C" uylx dV + a (» + ufr,, 

uf = - \wf + w™ri + 10% 7)2/2 + hV[4(l - <r)]Au/S'|f 

+ (2 - <r)/[6(l - a)] 

X Awf f3 + ("° dv C" fyl\dr, + o'D + vfr, + u% 

fi(3) = „,(» + wfv + uify7iV2 + wfyyV
3/6 + o"/[2(1 - <r)][Au;d) 

+ Awfritf* - 1/[2(1 - <r)][2<r(u«|) + y,<°») 

+ (w,(?)2 + (wf)*] + u™, (37) 

where u$ and uift) represent the displacements derived from ^<2). 
So far we have not imposed the boundary conditions at 7/ = 0. Thus, 

as stated earlier, the foregoing analysis can be applied to various edge 
conditions. 

Let us now consider the boundary conditions for the built-in edge. 
Although the boundary conditions are stipulated by (9), we assume 
that the conditions are assigned separately as u^ = 0 (i = x, y, z; 
k = 0 ,1 , 2 , . . . ) . Prom relations (13) and (25), it immediately follows 
that 

«,(« = „,«>> = „,(» = 0. (38) 

The first two conditions are nothing but the classical boundary con­
ditions. From the second-order displacement components (32), the 
boundary conditions leads to 

u«» + JJ ft? dv = y<0) - wS'f + fi$ 

= WU) + Au><°>f 2 + u<|> = 0. (39a,6,c) 
2 ( l - < r ) 

As can be seen from (39), the interior solutions and the boundary layer 
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solutions couple with each other through the boundary conditions at 
7) = 0. We are now in position to derive from the conditions, reduced 
boundary conditions at y — 0 for UJ(1), «J(2>, it(0>, and u<0). From con­
dition (39a), it is found after integrating over f (—h/2 s f s h/2) 
that 

/(0) : 
* / 0 o. (40) 

From the latter condition, ^ ( 1 ) is taken to be zero. Therefore Kx
1} and 

j t « vanish in the boundary layer since K $ „ = 0 from relations (38). 
Thus, for the built-in edge, as will be seen later, the plane strain 
boundary layer first appears. 

Next, in order to derive the conditions for u(0), wf, and u>(2), we 
must solve the boundary-layer equation (20) under the boundary 
conditions (24) and (396,c). For this purpose, it is convenient to 
convert the conditions (396,c) to those expressed in terms of the stress 
function £>(1). From the relations between the displacement and stress 
components (Appendix £ ) , they are rewritten as 

afU=(2 a) v%/2 + (1 - <T) $%/2 = 0 

u% = - c /U - a)Aw <°>f = a<p $ / 2 - (1 - a) # » / 2 . (41) 

Following the procedure developed in the Appendix B, £>(1) can be 
obtained [in this case, noting that wfx = 0,a = 2<r/(l — a)2wfy and 
fi = 0]. Thus, from the expressions (78), u(0>, wf, and u>(2) are deter­
mined as 

, ( 0 ) : l>(" + K i W ° > •• W& + K2h
2wfy 0, (42) 

with t h e coefficients K\ a n d K.2 given by 

24<r2 

Kl = 
(1 -

B' 
: - c2s; 

c ) 2 ln=i,3,6 (re-ir)2 

a 24<r(2 
K-2' 

• * ) 

40(1 -a) (1 - a)2 
;-ciA's (43) 

71=1,3,6 ("7T)2 

we must proceed to the 
third-order problem. Then the condition for wf is similarly deter-
In order to derive the condition for wf 

mined from uf1 = 0 at rj = 0 and given by 

„<2> + Kihw™ + K3h
2w% = 0, 

with 

K3: 
! + a 24<r(2 - a) B 

,n=l,3,5 ( m r ) 2 
c2Bs 

(44) 

(45) 
40(1 -a) (1 - a)2 

We remark here that the remaining condition Uz' = 0 is used to de­
termine tti(3), while the condition ux

s) = 0 is used to give the boundary 
condition for \[/i2) at JJ = 0. Thus conditions (38), (40), and (42)-(45) 
constitute the reduced boundary conditions for the interior equations 
at y = 0. These conditions can alternatively be written in a compact 
form in light of the expansion (7) as 

w,y + tK.\hw:yy + e2Ksh2wiyyy = w + e2K2h2wiyy = 0, 

and 
(46) 

Case of F ree Edge. For the free edge, three stress components 
(10) vanish along the edge and these conditions are assigned sepa­
rately as £<*> = L#> = £<*» = 0 (k = 1,2,3,...). By taking the moments 
of the conditions, they can also be expressed in terms of the averaged 
quantities as 

Qj*>= f W 2 L l * > d f = 0 , Mg>= f h / 2 f L } « d f = 0, 
%/—h/2 U—h/2 

(i = x , y , z , ; = jc,y;fe = l , 2 , 3 , . . . ) (47) 

where Qx
k) and Qy

h) denote the resultant in-plane forces on the edge, 
while Qf', Mx

k
y\ and M $ denote, respectively, the transverse shearing 

force, the twisting moment, and the bending moment. 

X
h/2 /»h/2 

•h/2 J -h/2 
= 0, the boundary conditions are given by 

My» = -h3/mi - a)] (wfy + <r wfx) = 0, (48a) 

X h/2 
$ ! f » d f = 0 , Q<» = 0, (486,c) 

-h/2 

where Q,fl) (i = x, y) are automatically satisfied. By the condition 
(48a), Ky1^ becomes zero and therefore all boundary conditions for 
V»(1) vanish. Thus £>(1) is taken to be zero throughout the boundary 
layer. Condition (486) should be interpreted as the condition which 
determines the boundary-layer solution $(1>. For L™ to be free, it is 
required that 

If = -2wfy f at 7j = 0. (49) 

After solving equation (19) subject to this condition together with (23), 
ipm can be obtained as 

#<» = 8wfyh
2 E (-1)" 

xy
 m%7r 3(2m+l)3 

X cos [7r(2m + l)f/h] exp [-ir(2m + l)r)/h]. (50) 

Thus it is found that, for the free edge, the torsion boundary layer 
appears first. 

Next from the boundary conditions for M f}, Mx
2}, and Qi2\ it fol­

lows that 

Mf} = -h»/[6(l - a)](w% + < w « ) + 2 C dr) f ^ # ? df = 0, 

(51a) 

(51b) $<2)df = o, 
•h/2 

Q<2> = -fcs/[6(i - ff)]Au,»> - r W 2 ^ < » d f = 0. (51c) 
J-h/2 

Eliminating ^(1> from (486) and (51c), we find that the well-known 
classical boundary condition is obtained 

wfyy + (2 - tr)wfxy = 0. (52) 

After substituting ^ ( 1 ) into Mf}, we have the higher-order boundary 
condition for u;(1): 

w™y + a w% - 192K(1 - a)hw% = 0, (53) 

where 

K= X k ( 2 m + 1)]~B. 

From the remaining boundary conditions, Q^2) = Qy
2) = 0, we have 

uf + uf + wfwf = 0, 
vf + auf + [(wf)2 + (j(wf)2]/2 = 0. (54) 

Another boundary condition for u;(1) can be similarly derived from 
Mf} and Qf> by eliminating $<<2> and is given by 

W]yyy + (2 ~ (r)U) (1) '0. (55) 

This condition together with (53) constitute the reduced boundary 
condition for wm. 

We now proceed to derive the conditions for u><2>. From the condi­
tion My

3} = 0, we have easily one of the conditions 

wfy + awfx - aw%12 + 1/[40(1 - a))h2[(A + o2)wfxyy 

+ (8 - •&<j)wfyyy\ - 1§2K(1 - a)hwfXy = 0. (56) 

The other boundary condition for HJ(2) could be obtained by pro­
ceeding to the fourth-order problem to eliminate $ (3 ) from Mf} = Q ̂ ' 
= 0. But we choose another way to achieve it. From the z -component 
of the equations of motion for the fourth order, we have 

/(*) + f (1),. = ,7 (1), , _ f (3) /c7 \ 

Integrating this and (33a) over the thickness, and noting that L^3) = 
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Kg' -wf (2wfy f + i ;p) - i w ^ W f f andLg) = K®, it follows after 

integrating with respect to ?; that 

Qi4) + M,% = h(w%y + h*Wx%y/l2 - q,y)VV2 

J
* TO . - » CO ^» ^ /2 __ 

du J dti ( # » „ d f 
il «/i! U-h/2 

J phli -
di) I c f A ^ i d f + constant, (58) 

>i J-W2 
where q = (q+ — q~)/h and the constant should be determined from 

the boundary conditions at t\ = 0. Since Qi4) = Mx
3} = 0 at r\ = 0, we 

have 

J
» OD y ^ CO ~ fl/2 _ 

d?; | d?7 I tixxxd£ 
o Jv J-h/t ' 

J»«° /^ fe/2 

djj J <rfA#»df=/iy°>«y/30. (59) 
0 J-h/2 

where the second integral for {Ji>(2> vanishes, noting that f-'h/z^ tp^f df 

= 0 at 7j = 0 from J'i42
/2 K<,2) f2df = 0 at i) = 0 and the relation (52). 

Since expression (58) must be valid at T] = °° where Q|4) and M® are 

already known from the interior solutions, another boundary condi­

tion for lu *2' can be obtained as 
w% + (2 - a)w% - w%y/2 + (hVlO) |(2 - <r)wg>„, 

+ O-W™ yyy + (8 ~ 3(r)/(l - (r) [u^yyy 

+ (2 - <r)u),™^y]/4| = 0. (60) 

Thus (48a), (52)-(56), and (60) constitute the reduced boundary 

conditions for the free edge. These conditions can alternatively be 

expressed in a compact form similar to expressions (46). 

Case of Hinged Edge. As already remarked, it is difficult, espe­

cially in the nonlinear case, to specify the boundary conditions for the 

hinged edge in terms of displacement and/or stress components. In 

the linear case, the boundary conditions may be given by Lyy = ux = 

uz = 0. In the nonlinear case, however, the finite flexural deformation 

causes extensional deformation, i.e., in-plane displacements and 

stresses. If the same conditions as in the linear case are applied, the 

hinged edge cannot support the in-plane forces, nor can slide along 

the edge. Thus these conditions are inappropriate and new definitions 

are required. It should however be remembered that, if the boundary 

conditions in the averaged form are imposed on the interior equations 

and the interior solutions can be obtained without any discrepancy, 

then there arises no need to introduce the boundary layer. To examine 

it, we now define the hinged edge in such a way that the bending 

moment, the averaged deflection, and the averaged rotation about 

y-axis vanish. Furthermore, it is assumed that the averaged transla­

tion in y-direction and the shearing force in x-direction vanish. Under 

these conditions, it immediately follows from the zeroth and first-

order problems that 

u;<°> = n g + awia
x\ = 0. (61) 

It is also found that these conditions can be satisfied even if bound­

ary-layer solutions are not introduced. 

Next, from the second-order problem, we find that 

»<» = w§ + aw% = w<V = u«» = uf + vf + w<® wf = 0. (62) 

For this order as well, there arises no need to introduce a boundary 

layer. Using these conditions in the third-order problem, we have 

wfy + aw% = 0. (63) 

Thus it is found that in the case of the hinged edge, there appears no 

boundary layer. However, it should be remarked that if the definition 

of the hinged edge is made in a different way, there might appear a 

boundary layer. 

Concluding Remarks 
For the plate with an edge, we have derived reduced boundary 

conditions for the higher-order equations in the interior region by 

taking account of the boundary-layer effect. In the case of the built-in 

edge and the free edge, it is found from conditions (46), for example, 

that the reduced boundary conditions are subjected to the O(e)-cor-

rections to the classical conditions. Therefore the effect of boundary 

layer gives rise to the O(e)-corrections in the interior solutions. But 

as can be seen from the higher-order equations, the effect of finite 

thickness gives only O(e2)-corrections to the classical theory. This 

implies that when the boundary layer appears, the effect of finite 

thickness affects the interior solutions primarily through the 

boundary layer. These results should be compared with the case in 

which no boundary layer arises. 

Finally it is remarked that since the main concern in this paper is 

to derive the reduced boundary conditions, we have not proceeded 

further to examine explicit stress distribution in the boundary layer. 

However, since the stress functions i/-'1' or <Jb(1) are already known, its 

explicit distribution can easily be calculated. It will be demonstrated 

in a subsequent paper. 
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APPENDIX A 

Compatibility Conditions for Fini te Lagrangian St ra in 
Tensor 

The compatibility conditions for the finite Lagrangian strain tensor 

are given in [10]: 

Eij,ki + Ekuj - Eu,kj ~ Ekj,u + Rikij = 0, (i, j, k,l = 1 , 2, 3) (64) 

with 

Rikij = (ors + 2E„)-i [(EirJ + Ejr,i - Eijir) (Eks,t + E,Sik - EkliS) 

- (Eir,i + Etr,i - Eu,r) (EksJ + Ejs,k - EkjiS)}, (65) 

where -Ey.w stands for d2Eij/dXkdXi, etc., and the suffix 1, 2, and 3 
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correspond, respectively, to x, y, and z in the main text. Out of 81 
conditions, there are six necessary and sufficient compatibility con­
ditions to determine the displacement components uniquely. These 
compatibility conditions can be rewritten in terms of Kirchhoff s 
stress tensor by use of the constitutive equations. Since it has already 
been remarked that the effect of material nonlinearity does not play 
a dominant role in such flexural motions, we employ here the gener­
alized Hooke's law neglecting the material nonlinearity. The six 
compatibility conditions are given in terms of Kirchhoff s stress tensor 
as 

Kij.u + Ku,ij/(1 + a) = Xij + Xj,i 

+ a/(l - a) (X,,, - RmUm)5ij - 2Rmj = Pih (66) 
where Xi = Ktjj = u^tt - (m,kKkj),j-

APPENDIX B 
Solut ion of B i h a r m o n i c E q u a t i o n 

We consider the biharmonic equation in the semi-infinite rectan­
gular strip region (0 £ j? < <=, -h/2 £{£ h/2) [11,12]: 

.̂iraiiii + 2<t>mtt + 0,iTST - °. 

with the boundary conditions given by 

(67) 

?) = 0, (1 - a) 0,,, - o-0,j-j- = (1 - <y)ai;, 

(1 - a) <j>mrt + (2 - a)<t>,vti = (1 - am, 

?/-• <», 0 — 0, f = ± / i / 2 , 0 = 0 i f =O, (68) 

where a and /3 are constants. The boundary conditions at r\ = 0 are 
derived from the relations between the displacement and stress 
components as 

2uv 

2u2|f = <r0,f!- - (1 - a)<t>m, uy>f + u2,„ = '.Df- (69) 

To solve the biharmonic equation, we employ a Laplace transform 
method defined by 

UP, JO s; <t>(v, £)e-Pidr). (70) 

In transforming equation (67), it is required to specify 0 and </>,, at ?? 
= 0. If they are known, <j>m and 4>,i,m at r\ = 0 are immediately obtained 
from the conditions (68). But 0 and 4>,v at i\ = 0 are the quantities to 
be obtained after the full solution is completed. We therefore assume 
the form of 0 and 0,, at rj = 0, and determine it consistently so that 
the solution may satisfy the boundary condition as rj —• °°. For se­
lection of the form assumed, it should be remarked that stress 
singularities usually arise at two corners (t) = 0 and f = ±h/2). 
Keeping this in mind, 0 and 0,, are assumed, respectively, to be 
composed of two parts, one being the regular part and the other the 
singular part producing the stress singularities at the corners. The 
regular parts are expanded into the Fourier series after extending 
them into the region (0 s i) < » , —Zh/2 s f s —h/2) as the even 
function with respect to f = — h/2. Furthermore, noting that 0 is an 

odd function with respect to f = 0, 0 and i 
lows: 

are assumed as fol-

0(0, f ) = £ an cos [nirtf/h + 1/2)] + as0<s> (f//z), 
n=l,3,5 

0 , , (O, f )= £ bn cos [nw(tfh + 1/2)] + 6,0W (f//j), (71) 
n=l,3,6 

with 

0<s>(r//i.) = d/2 - r /w+i - d/2 + f/fc)*+i + (x + uf/h, 
*«(f/ft) = (1/2 - f/fc)x - (1/2 + f/fc)* + Xf/fc, (72) 

where the summation is taken over the odd numbers and an, as, bn, 
and bs are the real constants to be determined so that the solution may 
satisfy the boundary condition as r\ ~* «°. Here 0 ( s ) and 0^' are the 
terms which produce the stress singularities at the corners, as and bs 

being the strength of the singularity, and the power of the stress sin­
gularity X (0 < Re X < 1) is determined from the following charac­
teristic equation for the corner singularity with one side built-in and 
the other free [13]:1 

sin2 (TTX/2) = 4(1 - <r)2/(3 - 4a) - X2/(3 - 4a). (73) 

It should be noted that 0 ( s ) and 0JJ1 are nonsingular themselves and 
therefore the preceding Fourier series in (71) could represent them. 
But unless the singular parts are included, the Fourier series for the 
stress components would not converge uniformly. 

After effecting the Laplace transform, we have 

p 4 / L sin (ph) — ph 

\ph2 . Iph) . 
— un \— sm(pf) 

'ph" ph IpH 
cos — 

2 I 2 

+ £ 
n=i,3filP2-(nir/h)2]2 

f cos(pf) } 
(2 - a) /mr\2 ' 

(1 - a) \ h 1 P\ 

p 2 + 
(1 ^("I'NH-M 

sin {ph) • 

— p cos 

ph 

ph' ph {ph} 
— sin 

sin (ph) — ph 

2 / 2 

fcos(pf) J+0 

['"Ml 

2 

<s) (p, 0 

'ph' 

sin(pf) 

cos 

ph . Iph' 
sin — 

2 \ 2 
sin (pf) - p cos 1^1 f cos (pf)} 

ph' 

- W |p. cos |—1 sin (pf) - sin | — | f cos (pf) 
12 \ 21 \2 

with 0 ( s ) (p, f) defined by 

'o 

-l/[2(l-<r)]G2(f,£,p)!0<*>(£/ft)d£ 

!]• (74) 

0 ( s ) (p, f) 
:«s Cm-

Jo 
a)/(l - ff)Gi(f, £ p) 

+ 65 f f | [ - f f / ( l - f f ) G i ( f , f c p ) 
Jo 

+ 1/[2(1 - «r)]G2(f, & p)) * « (£/h)/p d£. (75) 

where Gif t &p) = sin [p ( f - 0 ] and G2(f, £,p) = sin [p(f - 0 ] - p ( f 
— J) cos [p(f — £)]. The function 0(p, f) has simple poles at zeros of 
equation sin (ph) — ph = 0, ±pk and ±p£ (fe = 1,2, 3 , . . . ; pk 9* 0), 
where p j being the complex conjugate of Pk, but not a t p = 0 and p 
= ±nir/h (n = 1, 3 ,5 , . . . ) . Since 0 is assumed to be damped out as t\ 
-* •», it is necessary that the residues a t p -pu a n d p l (Rep* > 0; k 
= 1, 2, 3 , . . . ) must vanish. From these conditions, 

&n> ^st ®n> 

and bs 

are determined by 

=1,3,5 [<? (nit)2 

( 2 - < T ) 

' (1 - a) 
(nir)2qk 

qk2 + 
(1-a) 

(nit)' hbn\ + 

• W (Qk) as + 
1 

.2 cos2 (qk/2) 

2 cos2 (qk/2) •" 

4>$(qk)-4>is)(qk) 

ft (9*) 

/ i6s 

1 \ah' 

7k 
+m 

Qtl 
tan2 ( ? ) - * (ft = 1, 2, 3 , . . . ) (76) 

where gt = PA/I and 0|!> (qk) and 0|^(QA) (i = 1,2) are defined as <j>(Pk, 
h/2\ = o > 0 i s ) (qk) + bsh^ (qh) and 4>\f (Pk, h/2) = as0^(<7*) + 
bsh^>isl(qk). Solving o„, as, fen, and 6S from these equations, we have 
4>(v, f) by the inversion formula and complete the boundary layer 

1 This X should not be confused with the Lame constant used in the main 
text. 
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solution. In order to derive the reduced boundary conditions only, 
however, we do not solve the solution explicitly. Noting that uy, uz, 
and (p are assumed to be damped out exponentially as r] —>• » , the 
displacement components at.?/ = 0 are given by 

, „ ,., ff 1 — (J 

«y(0. 0 = - * . , + — 

„ 2 - < r l - o -
"z(0, i O = — — <!>,[ + —— Jo 

a 1 — <r 

~ *,» + —T~ l lm <t>,n, 
Z Z p--*-0 

2 -o -

\ - a 

f ( l - a ) ^ _ 
Uy = { 12<T 

I 80 
| ^ (ahB'n +$h2B"n) 

n=l,3,6 (re7f)2 

- c2(ahB's + Ph2B"s) 
12 J ' 

d-»)«fc»_ r » ( ^ A ; + / 5 ^ ; ) 

80 U=t3,6 (RTT)2 

- ci(aft2A; + /%3AS") (1 7 ) a f« . (78) 
4 

where the coefficients cj and ci are given by 

•1/2 , , . 1 / 2 
lim — 0 f f f . (77) c x = 1 frW(f)d£ C 2 = | 0 W ( f ) d f 
„-.n an «'0 ^ o ~odp 

(79) 

Expressing the solutions a„, as, 6„, and bs as a„(s> = a/i3A'„(s) + 
/3fc4A^(s) and 6„(s) = cth2B'nis) + ^h3B"nM, (77) can be written as 

Thus the displacement components at r\ = 0 [for example, (39fa,c)] 
should be determined so that they may be consistent with expressions 
(78) and then the reduced boundary conditions are derived. 
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Dynamic Stability of Truncated 
Conical Shells Under Pulsating 
Torsion 
The dynamic stability of clamped, truncated conical shells under periodic torsion is ana­
lyzed by the Galerkin method in conjunction with Hsu's results. The instability regions 
of practical importance are clarified for relatively low frequency ranges. Numerical re­
sults indicate that under the purely periodic torsion only the combination instability re­
gion exists but that with an increase in the static torsion the principal instability region 
becomes most significant. The relative openness of the instability regions is found to de­
pend sensitively on the circumferential phase difference of two vibration modes excited 
simultaneously at the resonance with the same circumferential wave number. 

Introduction 
It is of great technical importance to clarify the dynamic stability 

for the design cf lightweight structures under pulsating load. Hence, 
numerous references can be found in an excellent review article by 
Hsu [1] and a brilliant book by Evan-Iwanowski [2], 

Since a conical shell is one of the basic elements of lightweight 
structures, a variety of researches have been made on this subject. For 
example, the dynamic stability of conical shells under pulsating 
pressure has been studied by Alfutov and Razumeev [3], Kornecki [4], 
and Tani [5, 6]. The dynamic stability of truncated conical shells 
under periodic axial load has been treated by Tani [7,8]. As far as the 
author is aware, however, no results exist in the case of truncated 
conical shells under pulsating torsion. 

This paper is concerned with the dynamic stability of clamped, 
truncated conical shells subjected to both static and periodic torsions. 
The Donnell-type equations modified with the transverse inertia force 
are used. The problem is solved by first applying the Galerkin method 
and then using Hsu's general result for the stability of coupled Hill's 
equations [9]. Through detailed calculations, the instability regions 
of practical importance, associated with both principal and combi­
nation resonances, are determined for relatively low frequency 
ranges. 

The simultaneous action of the static torsion and the circumfer­
ential phase difference of two vibration modes excited simultaneously 
at the resonance are found to exert the significant effect on the relative 
openness of the instability regions. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OF APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
August, 1980. 

Basic Equations and Boundary Conditions 
Assume that a truncated conical shell with slant length I, thickness 

h, base circle radius r, and semi-vertex angle a is subjected to periodic 
torsion T = T0+Ti cos Qt applied along the edges, where To, T, Q, 
and t are static torsion, a amplitude of periodic torsion, a angular 
frequency, and time, respectively. The coordinate system is taken as 
shown in Fig. 1. When the problem is restricted to relatively low fre­
quency ranges where flexural vibrations of thin shells are dominant, 
effects of transverse shear deformation and in-plane as well as rotatory 
inertia forces can be neglected. Hence, in the unperturbed motion, 
the shell executes a simple torsional vibration with the stress resul­
tants as given by 

Ns0 = Neo = 0, Nsl 
T0 + T1 cos at 

2irs2 sin2 a 
(1) 

Next, consider the perturbed motion of the shell. With U, V, and 
W denoting the small incremental displacement components and F 
the stress function for the incremental stress resultants, the governing 
equations are given by the modified Donnell-type equations including 
the effect of transverse inertia force as 

. „ Eh cot a „ , 
•0 

cot a /1 
lxhW,tt + DV*W F„ - 2Ns00 - WA 

S \S l,s 

(2) 

(3) 

where 

„ d2 I d I d 2 

V2 = — + + — —-, 4> = 0 sin a 
ds2 s ds s2 b<j> 

In the foregoing, D = Eh3/12(l - v2) is the flexural rigidity of the shell, 
and E, v, and n are Young's modulus, Poisson's ratio, and the mass 
density of the shell, respectively, while subscripts following a comma 
stand for differentiation. The relations between the stress function 
and the stress resultants are 
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Fig. 1 Coordinates and nomenclature of the truncated conical shell 

N.^-FJ + I-FM, Ne = F,ss, Ns6 = - \ - F j (4) 
S S^ \S l,s 

while the displacement components are related to the stress resultants 

by 

Eh 
EhUs = Ns-vNe, — (U + VA - W cot a)=Ne- vNs 

s 

Eh 
•(U,t-V + sVs) = 2(l + v)N., (5) 

For the boundary conditions at s = Lo and L, the following case will 
be considered: 

U=V=W=Ws = 0 (6) 

Here, the following coordinate transformation and nondimensional 
notations are introduced for convenience. 

/ ; 

Eh2L cot a V M 

(nx,n<t„nx4,) 

hih W 
— , w = —, («, v) = (U, V)/h cot a 
D h 

-—^—(Ns,N6,Nse), 7 = ^ ° 
Eh-1 cot a L 

(To, Tt) 
Z = V l ^ 1 —, (g0, <?i) 

ph 

Tc r = 
2vksy

2D 

L 2 

In the foregoing, 7 and Z are a truncation ratio and a shape factor of 
the conical shell, respectively, and TCT is a buckling torsion load with 
a relevant parameter ks. Further, q0 and gi are the static and periodic 
load intersities normalized by TCI, respectively, while oi is an exciting 
frequency parameter. With these notations, the preceding equations 
can be rewritten as follows: 

d4 d2 d2 / d2 d 2 1 , , 
2 + 1 + 2 + 2 + \)f = wx -w, 

dx4 dx2 d02 dx2 d0 2 / ' 

(8) 

(7) 

L(wf) s w,„ + e-^V^w - 12Z2e-2x(f,x + f),x 

-2fes(qo + gi cos a)T)e_4*(u),x - w),$ = 0 (9) 

nx = e-*( / + /,* +/,**), "* = e"*(/ + /,*),x 

nx$ = -e~xf%x^ (10) 

u,x = ex(nx - vn^), u - w + vi<t, = ex(ntt> - vnx) 

u,« + u,x~v = 2(1 + v)e*nxt (11) 

u - v = w = wiX = 0 at x = log 7, 0 (12) 

where 

_ d4 d3 d2 d2 / d2 d d 2 \ 
V4 = 4 + 4 _ + — 2 — - - 4 — + 4 + — - \ 

dx4 dx3 dx2 d 0 2 \ dx2 dx d02j 
Under the boundary condition (12), equations (8) and (9) have, in 

general, only bounded solutions for w and /, and the unperturbed 
motion is stable. However, under specific combinations of go, <7i and 
a), the governing equations have a solution w increasing indefinitely 
with time r, leading to the dynamic instability of the shell. The 
problem consists of determining the boundaries dividing the stability 
and instability regions in the space of go, gi, and co, when the values 
for the shell geometry Z, 7 , and a, Poisson's ratio v and the wave 
number iV are prescribed. 

M e t h o d of S o l u t i o n 
Considering the boundary condition (12), we put w as 

w = £ (C m - i - Cm + i ) jam(r) cos NO + bm(r) sinNB] 
m 

Cm=cos(Pmx), /?m = mTr/log 7, (m = l ,2 ,3 , - - - ) (13) 

where am (T) and bm (T) are unknown time functions and N is the 
number of circumferential waves. Substituting equation (13) into 
equation (8), we can obtain the general solution / of equation (8) as 
follows: 

/ = j/1e(»+1^ + /2e-(»+i>* + /ae'"-1 '* + /4e-<i-l>*! cosN6 

+ (gie<*+1>* + g2e-^+11x + g3e-(<i+11x + g^e^"-1^) sin N8 

+ £ i £ m - l G m - i ( 0 m - i C m - i — Sm-l) 
m 

- Pm+iGm+i(Pm+iCm+i - Sm+1)](am cos N6 + bm sin N0) 
(14) 

where /1 to fi and g\ to g4 are arbitrary time functions, 1} is a wave 
number parameter and 

T) = iV/sin a, Sm = sin (/3mx) 

Gm = l/\l3m
2 + (7/ + l)2){ft„2 + (1, - l)2) 

Substituting equations (10), (13), and (14) into equation (11), and 
solving for u and v, we can determine the arbitrary time functions /i~4 
and gi~4 so as to satisfy the boundary condition (12). 

Thus we have obtained the expressions for w and / satisfying both 
the compatibility and boundary conditions exactly. To determine the 
unknown time functions am(r) and bm(T) contained in these ex­
pressions, the Galerkin method is applied to the remaining basic 
equation (9), which leads to the following sets of conditions: 
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J« 2s- p log 7 _ /COs iV(A 

J i d u . / X C n - x - C n + x ) . \e^dxd6 = 0, 
o J o \smNBI 

(n = 1, 2, 3 • • •) (15) 
Substituting equations (13) and (14) in these conditions (15) and in­
tegrating, we finally obtain two sets of the equations of motion in 
terms of am (T) and bm (T) as 

£ \Mnmam,„ + Rnmam + ks{q0 + qx cos WT)Pnmbm] = 0 

£ jM„m6m ,„ + fl„m6m - fes(q0 + 9i c o s <"f)Pnmam) = 0 

(16) (m,ra = 1 ,2 ,3 , . . . ) 

where 

Mnm = |1 ~ ( - D n + m T 2 K O „ , m - l - A,,m+l) 

Km = Z2\(An-i + A„+i)5m|rt — A„_i8m,„_2 — A„+i5m,n+2 

+ Hnm(v) + Hnm(-r,)) - jl - ( - l ) n + m 7 2 l (B n ,m- i - Bn,m+l) 

Pnm = {1 - ( - l )" + m 7 2 }(£; n , m - l - -En,m+l) (17) 

In the foregoing, <5„>m is the Kronecker delta, while An, Bn,m, Z)„,m, 
En,m, Hn,m are complicated functions of the truncation ratio 7, the 
shape factor Z, Poisson's ratio v, the wave number parameter T\ (or 
N), m, and n, For completeness, these actual expressions are given 
in the Appendix 1. 

Putting Z = 0 and i? = JV in equations (17), these equations agree 
precisely with those for the problem of annular plates [10]. 

Upon omitting the inertia terms as well as those with periodic 
coefficients, and putting a m ( r ) = amo, 6OT(r) s 6mo and go = 1 in 
equations (16), we have two sets of the homogeneous linear equations 
in amo and bmo as 

[omo\ 

\bmol 
± ksP„, 

,Om0l 
•• 0, (m, n = 1, 2, 3, • • •) (18) 

From these equations, the buckling coefficient kst the wave number 
Ns and the buckling mode can be determined for each specified 
conical shell, with the usual procedure for the buckling problem. 

Further, upon omitting the terms with periodic coefficients and 
putting am(r) = aml cos air and bm(r) = 6 m l cos OJT, equations (16) lead 
to 

2M„m) l " " \ ± k s q o P nm 1 . \{ 
\bmil \amil) 

= 0, 

(m,n = 1,2,3, •••) (19) 

Equating to zero the determinant of the coefficients of these equa­
tions, we can determine, for each wave number N, the nondimensional 
natural frequencies u>i (i = 1, 2, 3, • • •) and the corresponding eigen­
vectors <pij (i,j - 1,2,3, • • •), under the effect of the static torsion go-
The indices i (= 1, 2, 3, • • •) designate the axial mode of vibration, 
representing the number of half waves in the axial direction. 

Here, it should be noted that in addition of OJJ = 1, the other con­
dition is required to determine the eigenvectors <j>ij, because of the 
use of equation (13). Hence, the following condition is added: 

; 0 at x = log 7, 8 = 6Q (20) 

This condition represents that a nodal line of the vibration mode 
develops from a position (7, 0O) on the top edge of the truncated 
conical shell in the axial direction. Further, this condition makes it 
possible to designate the circumferential phase difference e of two 
vibration modes with the same circumferential wave number which 
excited simultaneously at the resonance. 

Now we will proceed to examine the stability of equations (16). 
Transforming the generalized coordinates am and bm to the normal 
coordinates d; by making use of the eigenvectors <j>ij, we obtain the 
following set of coupled Mathieu equations in the standard form: 

Fig. 2 Effect of static torsion on the natural frequencies in the case with 
7 = 0.5 and Z = 191 

di,TT + o>i2di + qi cos COT £ Qijdj - 0 

Qu = Qjt = As E E TpkiPkrtij 
k 1 

hi = <l>ij/ Y 

(i,j,k,l = 1, 2, 3, •••) 

E Z <t>ikMki<l>ii 
k 1 

(21) 

The stability of the foregoing equations has been studied by Hsu in 
detail [9]. According to his first approximation analysis, equations 
(21) have instability regions of combination resonance type when OJ 
is in the neighborhood of a>; + COJ, the boundaries of which are given 
by 

CO 
= 1 : f y 9 l . 

: cu; + coj, (22) 

In the foregoing, oiy and dij are a central frequency and a relative 
openness parameter of the instability region, respectively. Equations 
(21) have also principal instability regions at co s 2co;, the boundaries 
of which are given by putting i = j in equation (22). 

For the small exciting force q\, the foregoing instability regions will 
be of most practical importance. Hence, the consideration of the 
secondary instability will be omitted in the present analysis. 

N u m e r i c a l R e s u l t s a n d D i s c u s s i o n s 
On the basis of the preceding analyses, detailed calculations are 

carried out for the conical shells with the truncation ratio 7 = 0.5 and 
the shape factor Z = 191. Poisson's ratio v is assumed to be 0.3. 
Practically accurate solutions are obtained by taking 20 terms for each 
unknown parameter am and bm. Additional cases with Z = 57.2,644 
and 7 = 0.5 are also treated. 

Buckling Load and Natural Frequency. To check the computer 
program, the buckling load parameter k3, the corresponding wave 
number parameter JJS and the natural frequency of the first order coi 
are first determined for the conical shells treated in references [11, 
12]. A comparison of the present and previous results is shown in the 
Appendix 2 (Tables 2 and 3). It is found that the present results are 
in good agreement with the previous ones. 

Next, the buckling load parameter ks and the corresponding wave 
number Ns in the cases of three kinds as adopted here are determined 
with the results listed in Table 1. 

Moreover, with the effect of the static torsion q0 taken into con-
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Fig. 3 Waveforms of the natural mode of vibration in the case with y = 0.5, Z = 191, and W = 9: (a) <jo = 0, (b) q0 = 0.5 

Table 1 Buckling load and the corresponding wave 
number in each case: v = 0.3, y = 0.5 

L/h (p + p0)/2h 

200 500 
200 150 
600 400 

a Z ks Ns 

73.3° 57.2 256.7 8 
45.0 191 472.3 9 
41.6 644 1064 12 

sideration, the natural frequencies u>; (i = 1, 2, 3) in each case are 
determined for each wave number N by using the values of ks as given 
in Table 1. A typical result for the case with y = 0.5 and Z = 191 is 
shown in Fig. 2. It will be seen that for the same wave number N, 
natural frequencies decrease with the increase in the static torsion. 
This tendency is most pronounced for those of first order o>i, especially 

when the wave number is in the vicinity of buckling wave number JVS. 
This results agree with those obtained by Weingarten [13]. 

The effect of the static torsion on the natural modes of the first and 
second orders is also investigated. The typical results for the case with 
y = 0.5, Z = 191, N = 9(=NS), and 0O = K/2N are shown in Fig. 3, with 
the contour lines with the maximum amplitude of the deflection w 
taken as unity. It will be seen that, with the application of the static 
torsion, the axial nodal lines are obliquely rotated in the loading di­
rection and that the wave pattern for u i becomes almost identical with 
that for the static buckling (see reference [11]). 

Instability Regions. First, the variation of the relative openness 
dij of instability regions with the circumferential phase difference e 
of two vibration modes exciting simultaneously at the resonance is 
examined by using the eigenvectors 0y obtained along with the cal­
culation of natural frequencies a>;. This is because two vibration 
modes, having the same circumferential wave number but having the 
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Fig. 4 Relation between relative openness and circumferential phase difference in the case with y = 0.5, Z = 191, and q0 = 0.5 

different circumferential phase, may be excited simultaneously at the 
resonance. As a typical example, the results for the case with y = 0.5, 
Z = 191, and qo = 0.5 are shown in Fig. 4. In this figure, the instability 
regions with fly less than 10~2 are omitted as they will be of less 
practical importance. From this figure, the following is observed. The 
relative openness of the combination instability region 0;y- (i ^ j) is 
widest when the value of the circumferential phase difference e is in 
the vicinity of ir/2N. On the other hand, that of the principal insta­
bility region dij (i = j) is widest when the value of e is equal to 0 and 
TT/N. The value of the relative openness dij depends on the circum­
ferential wave number N which two vibration modes excited simul­
taneously have equally. 

Next, with the effect of the static torsion taken into consideration, 
the instability regions are determined for the same shape of shells 
under the loads qo = 0,0.25,0.5, and 0.75. These results are shown in 
Fig. 5. In this figure and the following, the relative openness dij rep­

resents the maximum value with respect to the circumferential phase 
difference. Only the instability regions with 0y & 10~2 are considered 
for natural frequencies up to the third order of axial modes. From this 
figure, one can easily find the location and the relative openness of 
the instability regions, together with the wave number as well as the 
modes of the excited vibration. The following observations can be 
made. Under the purely periodic torsion without the static one, one 
has only the instability regions of combination resonance type, in 
which two modes of vibration of ith and ;'th axial orders are para-
metrically excited. To judge from the magnitude of the relative 
openness 6^, the instability region associated with (i,j) as (1,2) is of 
most practical importance. The relative openness #12 has a maximum 
when the wave number N is near the buckling wave number Ns. 
Under the simultaneous action of the static torsion, one has the 
principal instability regions with i = j , besides the combination in­
stability regions with i 7^ j . With an increase in the static torsion, the 
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Fig. 5 Effect of static torsion on the central frequency and the relative openness of the instability regions: y = 0.5, Z = 191 

relative openness of the principal instability regions 0y- (i = ;'), espe­
cially dn> grows rapidly, while that for the combination type Bij (i ^ 
j) remains almost unchanged. When the static torsion exceeds one 
half of the buckling load, the principal instability region for the vi­
bration mode of the first order, associated with the wave number 
around Ns, is of most importance. The central frequencies <ov- of each 
instability region are shifted toward the lower frequency with the 
static torsion. 

To check the influence of the shell geometry, the instability regions 
for the cases with Z = 57.2,644 and y = 0.5 are determined with the 
results shown in Figs. 6 and 7. In these cases, two loading conditions 
are considered: qo = 0 and 0.5. It can be seen from these figures that 
with the change in the shape factor Z, the magnitude of the central 
frequencies a>y together with the dependence on wave number N are 
changed significantly, obviously due to the variations in the natural 
frequencies. However, no substantial changes are observed in the 
magnitude and in the wave number dependence of the relative 
openness 0y. It was omitted to illustrate the effect of the truncation 
ratio 7, but the same tendency was observed. Hence, it is to be noted 
that the main remarks on the instability regions stated in the forgoing 
are still valid irrespective of the shell geometry. 

Conclusions 
On the basis of the dynamic version of the Donnell-type equations, 

the dynamic stability of clamped, truncated conical shells subjected 
to both static and periodic torsion has been theoretically studied 
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within relatively low frequency ranges. The main results obtained here 
may be summarized as follows: 

1 Under the purely periodic torsion only the combination insta­
bility region exists, while the simultaneous action of the static torsion 
gives rise to the principal instability region also. 

2 With the increase in the static torsion, the relative openness of 
the principal instability region, especially that for the vibration mode 
of the first order, grows rapidly, while that of the combination type 
remains almost unchanged. When the static torsion exceeds one half 
of the buckling load, the principal instability region for the vibration 
mode of the first order, associated with the wave number around the 
buckling one is of most importance. 

3 The relative openness of the instability regions depends sensi­
tively on the circumferential phase difference of two vibration modes 
excited simultaneously at the resonance with the same circumferential 
wave number. 

4 The aforementioned conclusions are valid irrespective of the 
shell geometry. 

5 The magnitude of the central frequencies and its dependence 
on wave number are changed significantly with the change in the shell 
geometry. 
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APPENDIX 1 
For completeness, actual expressions of the coefficients appearing 

in equations (19) are given in the following: 

An = 3Trn*GM + /3„2)4/3„ 

B„,m = n(j3m* + 7?2)[(4 + ft*2 _ , 2 ) ( 4 + pm2 

+ j8„_1«)(4 + /3m2 + ft,+i2) + 4/?m V ( 4 + ft*2) 

Dn,m = ft,2{(4 + /3m2 + ^n_!2)(4 + ft„2 + / W ) 

-4ft„2(4 + ft„2))/nA„m 
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En,m = nr,[(2 + /?m
2)(4 + j3m

2 + /3„-i2)(4 + /3m
2 + /?„+1

2) 
- 2/3m

2iftn2(4 + 0m
2) + /3n-i/3„+i!]/Xnm 

Xmn = (4 + /3m+„-i2)(4 + /3m_n+i2)(4 + /3m+n+1
2) 

X (4 + /?„ 2) 
tfmn(»i) = 12/?m /W; + D2(E(1 + ")(2 + v)\l + (-1)"7"+1) 

x [J7-2 - (-Dmy-"+1\Km^ + (3 - I/XT"2" 

- (-l)m7n-1IKm<2> " (1 + ")(l - DU " (-l)mT~''"1)^m(3,] 
+ (1 + (-l)n7-'-1)[(3 - v)\yi - (-l)m7"-''+1)Km<l) 

+ ((1 + «0V + 8(1 - K))(72 - (-l)mV>-1\KmW 

+ (1 + l/)(7) - 1)(1 - (-l)m7"+1)^m(4)]]/Xm 

Xm = 7,(1 + *)|(ij + l)2 + /3m-i2!l(r? - l)2 

+ Pm-Mv + l)2 + / W 2 I 
X {(v ~ l)2 + /?m+i2!l(r) + l)2 + /3n_,2|((r, + l)2 + /3„+1

2) 
X [{(1 + K)2 + (i)2 + 1) + (3 - i/)2)(7 - 7-1)2 

- (3 - y)2(7" - 7~')2] 

/fm(D = 2(1 - r,2)(r, - 1){(1 + v)V + 4\Im - |(1 + v)(2 + v)rf 

+ (2v2 + 3v- 3)ij + 4jJm 

Km™ = 2(1 - r,2)(l - v)Im + [1 + (2 + i/)rj)«/m 

Km«> = 2(1 - TJ2)(1 + J7)7m + [1 - (2 + v)v\Jm 

KmW> = 2(1 - IJ2)(IJ - 1)((1 + v)r) - 4|/m - ((1 + K)(2 + J>)r;2 

- (2v2 + 3v - 3)r, + 4)Jm 

Im = /3m
2(l + m"2) + 1 + r,2 

APPENDIX 2 

Table 2 Buckling load and the corresponding wave-
number parameter in each case: v = 0.3. (The value of 7/ 
is assumed to be able to change continuously.) 

Present Reference [11] 

7 

0.2 

0.5 

0.8 

Z 

10 
100 

1000 

10 
100 

1000 

10 
100 

1000 

fts 

41.55 
124.2 
608.6 

188.8 
326.7 

1454 

1781 
1840 
3624 

Vs 

3.05 
6.33 

13.6 

5.68 
9.58 

21.8 

17.0 
17.8 
32.8 

fts 

41.55 
124.3 
608.6 

188.8 
326.8 

1454 

1781 
1839 
3623 

Vs 

3.05 
6.43 

13.4 

5.69 
9.58 

21.8 

16.9 
17.8 
32.8 

Table 3 Natural frequencies of the first order: v = 0.3, 
Z = 932, y = 0.438, a = 20° 

N 

Present 
Reference [12] 

N 

Present 
Reference [12] 

2 

1737 
1736 

7 

899.1 
898.2 

3 

1131 
1131 

8 

1042 
1041 

4 

837.5 
837.0 

5 

744.6 
744.0 

6 

788.1 
787.4 

9 

1210 
1209 

10 

1403 
1400 

11 

1617 
1614 
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Elastic Instability of a Heated 
Annular Plate Under Lateral 
Pressure 
On the basis of the dynamic version of the nonlinear von Karman equations, a theoretical 
analysis is performed on the elastic instability of a uniformly heated, thin, annular plate 
which has suffered a finite axisymmetric deformation due to lateral pressure. The linear 
free uibration problems around the finite axisymmetric deformation of the plate are 
solved by a finite-difference method. By examining the frequency spectrum with various 
asymmetric modes, the critical temperature rise under which the axisymmetric deforma­
tion becomes unstable due to the bifurcation buckling is determined, which is found to 
jump up to 7.2 times within a range of very small lateral pressure. 

In troduc t ion 
The large axisymmetric deflection of thin annular plates under 

various lateral loads and boundary conditions has been studied by 
numerous researchers [1-8]. Moreover, the axisymmetric postbuckling 
behavior of the annular plate with the free inner edge and subjected 
to uniform compressive thrust at the clamped-movable outer edge 
has been studied by Huang [9,10], and Uthgenannt and Brand [11]. 
The axisymmetric postbuckling behavior of heated annular plates 
with both edges clamped or simply supported has been studied by Pal 
[12]. Recently, the author examined the thermal buckling of a clamped 
annular plate with axisymmetric initial deflection [13] and the elastic 
instability of a clamped annular plate under uniform compressive 
thrust and lateral pressure [14]. The latter results of the author's 
studies showed that there are two ranges of the combined loads under 
which the axisymmetric deformation of the plate becomes un­
stable. 

The object of the present paper is to study the elastic instability 
of a uniformly heated, thin, circular annular plate which has suffered 
a finite axisymmetric deformation due to lateral pressure. The ma­
terial properties of the perfectly clamped annular plate are assumed 
to be independent of temperature. A finite-difference method is ap­
plied to the dynamic version of the nonlinear von Karman plate 
theory. By examining a continuous variation of the asymmetric linear 
natural frequencies in the neighborhood of the axisymmetric finite 
equilibrium state, one may detect the unstable axisymmetric defor­
mation of the plate. Through the numerical results, it is shown in this 

case also that there are two ranges of the magnitude of combined loads 
under which the axisymmetric deformation of the plate becomes 
unstable due to the bifurcation buckling. 

Basic Equations and Boundary Conditions 
Consider that a thin, isotropic annular plate with thickness h, inner 

radius a, outer radius b is heated uniformly and subjected to a uniform 
lateral pressure p . Assume that its temperature rise T above the un­
strained state is constant throughout the plate and that its material 
properties, i.e., Young's modulus E, Poisson's ratio v, the mass density 
p, and the thermal expansion coefficient a are independent of tem­
perature. The coordinate system is taken as shown in Fig. 1. The 
transverse displacement of the midplane and the stress function for 
stress resultants are denoted by W and F, respectively. As a basis for 
the analysis of the asymmetric small vibration of the plate in the 
neighborhood of nonlinear axisymmetric equilibrium state, we use 
the dynamic version of von Karman's equations. These equations are 
given in nondimensional form as follows: 
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Fig. 1 Dimensions and coordinate system of the annular plate 

where subscripts following a comma stand for partial differentiation 
and 

„ d2 I d I d 2 

dx2 x i>x x2 d82 

In these equations, the nondimensional quantities are related to the 
corresponding physical ones through the following relations: 

a 6(1 - v2) 
7 = 7 , ( « •»>" • - {U> V) 

r 
x = - , 

b 

vr 
t •• 

h 

ab2hET 

W, f 
F 

V 
D 

•• v T ^ 7 

h2 

t 
r = b~2 

spb* 

Dh 

D_ 

ph 

(4) 

in which 7 is a ratio of inner to outer radii, D = Eh3/12(l — v2) is the 
flexural rigidity of the plate and t is time. The displacements of the 
midplane in the radial and circumferential directions are denoted by 
U and V, respectively. 

Assuming that the annular plate is perfectly clamped along both 
edges, we have the following boundary conditions as x = 7, and 1. 

; w.x = 0 (5) 

Denoting the time-independent, nonlinear, axisymmetric defor-
. mation state by uo(x), WQ{X), and fo(x), the relevant equations are 
obtained from equations (l)-(3) and (5). 

(6) 

x'p (7) 

(8) V,x 

X 

V 
-~tl 

X 

X - (xv),x 
X 

+ t =0, 

= ~6f 

,x = ^ + \ 

t = 0 at : 7 , 1 

where 

V=fo,x, f=W(K 

In order to analyze the asymmetric small free vibration of the plate 
in the vicinity of an axisymmetric equilibrium state, we assume u, u, 
w, and / in the form 

u = u0(x) + ui(x) cos Nde'"T, v = Vi(x) sin NBe1"7 

w = w0(x) + wi(x) cos N9eiar, f = f0(x) + fi(x) cos Nde1"* (9) 

where N and w are the number of circumferential waves and a circular 
frequency, respectively, while u\, v\, w\, and fi are infinitesimal 
quantities. 

The equations governing the asymmetric small free vibration of 
the plate in the neighborhood of the axisymmetric equilibrium state 
are obtained by substituting equation (9) into equations (l)-(3) and 
(5), subtracting the equations of axisymmetric deformation from 
resulting equations and retaining only the linear terms in the infini­
tesimal quantities. This leads to 

V x * - ^ N2 

f">!,.« + [WU Wl|f,x 

/ N2 \ 

I N2 , 
+ \wlx wijri; 

1 /I N2 , 
"i,« + fwi = — \-h ~—h- vh 

12 \c xi 

(10) 

+ w2wi (11) 

Nv\ + «i = — 
12 ^ - ' I ^ — A } 

-Nu\ + xvix — t>i — ATfcoi 

x 

N(l 
) \ X 

h 

«i = v 1 = W\ = i»i^ = 0 at x = 7 ,1 

where 

„ d2 Id N2 

V l 2 = + 

dx2 x dx x2 

With equation (12), equation (13) becomes, at % = 7 and 1, 

101 = wi,, = 0, x2fliXX - v(xfu - N2h) = 0 

xsfi„x ~ (1 - " + 2N2 + vN2)xfi:X + 3N2fi = 0 

(12) 

(13) 

(14) 

N u m e r i c a l P r o c e d u r e s and R e s u l t s 
The details of the numerical procedures used in this study were 

described in reference [15] and will not be repeated here. The system 
of nonlinear differential equations (6)-(8) governing the axisymmetric 
deformation was solved by Newton's method, in which the direct 
solution of the nonlinear system is replaced by the solution of a se­
quence of linear correctional equations. These equations, as well as 
the eigenvalue problem posed by equations (10), (11), and (14) were 
solved by central differencing and the application of Potters' algo­
rithm [16]. Iterative calculations of Newton's method were done until 
the condition |6y ( n ) /y ' n ) | ^ 10~4 was satisfied, where 8yM andy ( , l ) 

correspond to the values of correction term and solution of n iteration 
at each station, respectively. A mesh of 100 points on the interval of 
(1 — 7) was considered in the finite-difference method. 

When the values for the radius ratio 7, Poisson's ratio v, and the 
load parameters t and p are given, we can determine the eigenvalues, 
i.e., the natural frequencies o> in this case for each circumferential 
wave number N. If the square of any natural frequency thus obtained 
is negative, the corresponding original axisymmetric deformation will 
be unstable. Hence, the branching of the asymmetric equilibrium state 
from the axisymmetric one may take place at the state where one of 
the natural frequency becomes zero. 

As a numerical example, we take an annular plate with 7 = 0.5 and 
v = 0.3. 

Fig. 2 shows the variation of the square of the first order of natural 
frequencies with the wave numbers N = 2,3,4, and 5 as a function of 
the temperature rise t for the plate under p = 30. From this figure, 
it can be seen that there are the ranges in which the square of the 
natural frequencies corresponding to N = 3 and 4 becomes negative. 
Hence, the axisymmetric deformation is unstable between two circule 
marks, i.e., A (tCI s t = 104.5) and B (tcr = t = 113.2). When the tem­
perature rises from the unstrained state of the plate, the branching 
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Fig. 2 Relations between the temperature rise and the square of the first 
order of natural frequencies with various wave numbers: y = 0.5, p = 30 

Fig. 4 Relations between the temperature rise and the maximum value of 
the axisymmetric deflection: y = 0, p = 0 ~ 50 
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Fig. 3 Relations between the temperature rise and the maximum value of 
the axisymmetric deflection: y = 0.5, p = 0 ~ 104 

of the asymmetric equilibrium state with N = 4 from the axisym­
metric one occur at the point A. If the axisymmetric equilibrium state 
were realized at a temperature rise beyond the point B, the branching 
of the asymmetric equilibrium state with N = 4 from the axisym­
metric one will take place at the point B, during a fall in tempera­
ture. 

Fig. 3 shows the relations between the temperature rise and the 

P P 
Fig. 5 Instability regions for the axisymmetric deformation: y = 0.5 

maximum value of the axisymmetric deformation for various values 
of pressure. Detailed results for the cases when p is less than 50 are 
shown in Fig. 4. In these figures, small circles, triangles, squares, and 
so on, denote the branching points, while broken lines correspond to 
the unstable axisymmetric equilibrium states in which the square of 
some natural frequencies becomes negative. The points A and B in 
Fig. 4 indicate the location of the corresponding points in Fig. 2, re­
spectively. The bifurcation buckling with the indicated wave number 
N may occur at the branching points corresponding to ends of the 
broken lines. The following may be observed from these figures. The 
asymmetric bifurcation buckling of the annular plate without lateral 
pressure occurs at the point E with t°c r = 103.4 and N = 4. For the 
annular plate under p < 44.40, the axisymmetric deformation be­
comes unstable near i°c r . When the temperature rise becomes higher 
than 7.2 iCI°, the bifurcation buckling with N = 9 occurs and the axi-
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0.3 

Fig. 6 Distributions of (a) axisymmetric deflection, (b) axisymmetric radial 
and hoop stress resultants just before buckling, and (c) bifurcation buckling 
deflection: p = 30, A (tcr = 10.45), B (fcr = 113.2) 

Fig. 7 Distributions of (a) axisymmetric deflection, (b) axisymmetric radial 
and hoop stress resultants just before buckling, and (c) bifurcation buckling 
deflection, C (p = 0, rcr = 740.4), D (p = 5000, iicr = 806.6) 

symmetric deformation becomes unstable. From the results stated 
in the foregoing, the relation between the temperature rise and 
pressure destabilizing the axisymmetric deformation is determined 
with the results as illustrated in Figs. 5. Fig. 5(a) shows a part of Fig. 
5(b) after magnification. In these figures, the shaded ranges show the 
combined loads destabilizing the axisymmetric deformation. The 
points A, B, C, D, and E indicate the location of the corresponding 
points in the foregoing figures, respectively. From these figures, the 
following observations may be made for the annular plate here con­
sidered. The instability region near t°„ exists only for the plate under 
pressure less than 44.40. The temperature rise i c r which gives rise to 
the bifurcation buckling jumps up to 7.2 t°c r , and then gradually in­
creases with pressure. 

Figs. 6 and 7 show the distributions of (a) the axisymmetric de­
flection, (6) the axisymmetric radial and circumferential stress re­
sultants, Nro and Ngo, just before bifurcation buckling, and (c) the 
buckling deflection for the plates under p = 30 and those under p = 
5000 and 0, respectively. In these figures, x = 0.5 and 1 in the abscissa 
correspond to the inner and outer edges of the annular plate, while 
N°ro stands for the axisymmetric compressive radial stress resultant 
at the buckling temperature rise t®CT of the heated annular plate 
without lateral pressure, Moreover, the cases A,B,C, and D indicate 
the states of the corresponding points in the foregoing figures, re­
spectively. It is to be noted that for the heated plate without lateral 
pressure, iV°ro is equal to the circumferential stress resultant N°go at 
buckling, as the plate is in a state of uniform compression. It will be 
seen from Fig. 6(b) that the circumferential compressive stress re­
sultant iV#o becomes larger than the radial stress resultant Nro, as the 
buckling temperature rise tc r increases from A to B. From Fig. 7(6), 
this tendency will be seen to be especially marked in the case with high 
pressure. From Fig. 6(c), it will be observed that both buckling de­
flections at the points A (tcr = 104.5, N = 4) and B (tcr = 113.2, N = 

4) almost agree with that of the point E (t°cr = 103.4, N = 4). Fig. 7(c) 
indicates that the buckling deflections at the points C(tCI = 7404, N 
= 9) and D (tcr = 806.6, N = 9) almost agree, and have many waves 
in the circumferential direction and two half waves in the radial di­
rection. Judging from these figures the bifurcation buckling for the 
plate under high pressure appears to be caused by the large circum­
ferential stress. 

Conclusions 
The elastic instability of a uniformly heated circular annular plate 

under lateral pressure is studied by examining the linear free vibration 
in the vicinity of the finite axisymmetric equilibrium state. Main re­
sults obtained through the calculations for the radius ratio y = 0.5 
are summarized as follows: 

1 The combination of the temperature rise and lateral pressure 
destabilizing the axisymmetric deformation of the annular plate exists 
always for the higher temperature than 7.2 times the buckling one £°cr 

of the annular plate without lateral pressure. 
2 The bifurcation buckling due to the higher temperature rise 

than 7.2 t°cr, is caused by the large hoop stress and has many cir­
cumferential waves. This buckling temperature rise t cr increases with 
pressure. 

3 Besides the forestated one, the annular plate under very small 
pressure gives rise to the buckling with a few circumferential waves 
due to the temperature rise near i°c r . 
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Dynamic Response of a Beam 
With a Geometric Nonlinearity 
Analytical and experimental studies were made of the dynamic response of a system with 
a geometric nonlinearity, which is encountered in many practical engineering applica­
tions. An exact solution was derived for the steady-state motion of a viscously damped 
Bernoulli-Euler beam with an unsymmetric geometric nonlinearity, under the action of 
harmonic excitation. Experimental measurements of a mechanical model under harmonic 
as well as random excitation verified the analytical findings. The effect of various dimen-
sionless parameters on the system response was determined. 

1 In troduc t ion 
The problem of forced vibration of a dynamic system with mo­

tion-limiting stops is of great importance in many practical engi­
neering applications. For example, this problem is encountered in such 
cases as 

1 The effect of gapped supports on the response of piping systems 
in nuclear power plants subjected to postulated rupture condi­
tions. 

2 The vibration of mechanical equipment possessing dead space 
nonlinearities. 

3 The vibration isolation of dynamic systems mounted on resilient 
supports with motion-limiting stops. 

Several investigators have conducted numerous analytical, nu­
merical, and experimental studies of dynamic systems with geometric 
nonlinearities and, in some cases, with material nonlinearities (see, 
for example [1-10]). However, closed-form solutions are lacking, 
particularly for nonlinear continuous systems. 

For better determination of the dynamic response of real nonlinear 
structural systems, this study is concerned with the "exact" solution 
for the steady-state motion of a harmonically excited, viscously 
damped Bernoulli-Euler beam with an unsymmetrical geometric 
nonlinearity located at an arbitrary point along its span. 

The formulation of the problem and the solution algorithm are 
presented in Section 2; the experimental studies that were conducted 
are given in Section 3; and the application of the analytical results to 
investigate the effects of various system parameters is discussed in 
Section 4. 

Contributed by the Applied Mechanics Division for publication in the 
JOURNAL OP APPLIED MECHANICS. 

Discussion on this paper should be addressed to the Editorial Department, 
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y. 
10017, and will be accepted until September 1,1981. Readers who need more 
time to prepare a Discussion should request an extension from the Editorial 
Department. Manuscript received by ASME Applied Mechanics Division, 
March 1980; final revision, September, 1980. 

2 Analytical Studies 
Formulation. The model of the system under consideration is 

shown in Fig. 1. It consists of a viscously damped continuous Ber­
noulli-Euler beam of mass M(x) and stiffness EI(x) which is separated 
by a gap d from an elastic stop located at a distance h from the beam 
support point. The elastic stop has a stiffness Kt. Although Fig. 1 
shows a cantilever beam, the method of solution is applicable to beams 
with arbitrary boundary conditions. 

The motion of the system in Fig. 1 is governed by the partial dif­
ferential equation 

d d^Wix t) 
L*[W(x, t)} + — C[W(x, t)} + M(x) ~ ~ = F(x, t) (1) 

dt dt2 

over the length L of the beam, where 

L* = a linear, homogeneous, self-adjoint differential operator 
of order 2p with respect to spatial coordinate x that 
specifies the stiffness distribution of the beam. 

C = an operator that is a linear combination of operator L* 
and function M, viz., 

C = aM + PL* (2) 

M a function that specifies the mass distribution of the 
beam. 

F(x, t) is a harmonically varying load equal to 

F(x) cos cct 

with 

F(x) = Q2SoM(x) 

(3) 

(4) 

for base excitation. 
Steady-State Solution. Experimental studies of the system under 

consideration indicate that the predominant type of response under 
harmonic excitation is that in which the beam contacts the elastic 
stop, and the conditions of the system are repeated, once per cycle, 
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Fig. 1 Regimes of motion of elastic beam with geometric nonlinearity: ( a ) 
Actual system; ( 6 ) Unconstrained range of motion; M/<1)(x,f); ( c ) Constrained 
range of motion; W* 2 , (x , f ) 

of the excitation. A typical segment of the time-history of such 
steady-state motion during one period of the excitation is illustrated 
in Fig. 2. 

The steady-state solution of the system shown in Fig. 1(a) consists 
of two segments corresponding to W^Hh, t) < d, i.e., when there is 
no contact between the beam and the elastic stop (the spring), and 
W^(h, t) > d, i.e., the solution region in which the beam and the 
elastic stop are in contact (see Figs. l(b, c)). The solution should 
satisfy certain conditions of continuity of the displacement and ve­
locity of the system at times of release and contact for one cycle. These 
conditions may be stated as follows: 

(a) Everywhere along the beam, the displacement W^l\x, a2) and 
velocity W^Hx, a2) at the end of the first region of solution (the no-
contact solution region) should be equal to the corresponding dis­
placement and velocity, respectively, at the beginning of the second 
solution region. 

(b) Everywhere along the beam, the displacement JV(1>(«, «i) and 
velocity Wm(x, ai) at the beginning of the first solution region should 
equal the displacement l¥(2)(x, "3) and velocity W^(x, az), respec­
tively, at the end of the second solution region (contact region). 

(c) At the point of contact between the beam and the elastic stop, 
the displacements W^(h, a{), W^(h, a2), W&){h, a2), and W™(h, 
as) at the beginning and the end of both solution regions should be 
equal to the gap d. 

Thus the steady-state solution must satisfy the following condi­
tions: 

Wm{x, a2) = W™(x, a2) = W2(x) 

•W<»(x, a2) = W<-2Hx, ct2) = W2(x) 

W-2Hx, a3) = W^(x, an) = Wi(x) 

(5) 

(6) 

(7) 

W^(x, a3) = WM(x, on) = Wi{x) (8) 

W<2Kx, a3) \x=h = W<»(x, at) \x.h = Wx(h) = d (9) 

W(1>(*, a2) \x.h = W™(x, a2) \x=h = W2(h) = d (10) 

Solution Procedure. Referring to Fig. 2, let fa^Hx) be the i th 
eigenfunction associated with the homogeneous equation of the un­
damped system for the ; t h solution region and assume that the 
eigenfunctions satisfy the orthogonality condition 

f <t,iW(x)M(x)<l>sVHx)dx = 5isMj 
Jo 

0) (11) 

and 

CL 4>iU)(x)L*[4,s^(x)]dx = &i,Kil» (12) 
Jo 

where 5;s is the Kronecker delta, and M; W and K, W are, respectively, 
the generalized mass and generalized stiffness of the ith mode for 
solution region j . 

Using the normal-mode approach, the solution for region j can be 
written as 

W<J\x,t)= £ 0iO>(3)g;C/)(t) 
i = l 

where 7 = 1 or 2, depending on the solution region. 
Then, substituting for W^^(x, t) into equation (1) leads to 

M;C%0>( t) + d^qMt) + Ki^qiU)(t) = Q;0)(t) 

(13) 

-is: 4>i<»WfiV>0c)dx cos (fit + a0) (14) 

where a is a phase angle related to the origin to by a$ = fito. 
The solution of equation (14) is 

t7;«(t) = exp -f^W-aj) 

xL«(a,){^ f , « s i n - ^ ( f i t - a ; ) 
•,0') 

„,(/) 
+ Vi(j)cosJ—-(Qt - aj)\ + 4i <»(«,•) 

Vi (j) 

lC0;<J>7,;0> 
sin—pr(fit — aj) 

n 0) 

+ 8inei0)\-i—riU)aiIl-!i-(Qt - aj) (15) 
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+ cos d, 
I Vi 

,.(/> 
+ »)iWcos-—-(fit - otj 

(j) 

ft«sin-^-(fit-ay) 

+ AjW cos (fit + TfW) 
(15) 

(Coret.) 

where 

mU) = V i - [ft0 ' ']2, n « = fiA^' 

4,.0) = (/,WKi«>)/V(l - [r.O)]2)2+ (2f£0)riU))2 

/.•"''= § L <i>i<J>(x)f<JHx)dx 

T,-W = ao - Y;tf), 

7,-W = t an- 1 |2ftWr,.0-)/(l - [r,0>P)j 

subject to the conditions ay < fit < ay+i where ct\ = 0 ,9 ; ° ' = T;W 
+ a; and a/ = fity, 0:2 = unknown to be determined, a^ = 2ir. 

The velocity of the system is given by 

<?;<%) = e Xp - - ^ y ( f i t - a y ) 

gi0,(a.)j--i_sinJ_(fi,_a.; 

+ * u ) ( « j ) -
.•(/) 

m (/) ft^sin-^fit-ay) ...0') 

— W w cos—— (fit - ay) 

+ sin 0; 0) 
a)iWr;0>A;0) 

n.-tf) 
•.0). 

r.-M 

W ,V) 
X (fit - ay) - 77,-U) c o s - » _ (Q t - aj) 

n (j) 

+ cose,-v> 

- f i A ; 0 ' s i n ( f i t + T i « ) (16) 

subject to the condition 

ay < fit < ay+i. 

Evaluating equations (15) and (16) at fit = ay+i yields 

9 i «(ay + 1 ) = Sl^lq^Kaj) + S^q^Haj) + S 5 ; « sin 0;«) 

+ S6 ;W cos 0,-« + S 7 , « cos (ay+i + T ; « ) (17) 

and 

<7.-°''(ay+i) = S3iWqi(J1(aj) + S4,-W'd; W(a,-) + S 8 ; « sin 0,0') 

+ S9.-0') cos 0,-« + S10.-W) sin (ay+ i + T,-W) (18) 

where all the undefined symbols are related to the parameters in 
equation (15). 

The solution for j = 1 is subject to the condition 

a i < fit < a 2 (19) 

and the solution for j = 2 is subject to the condition 

a2 < fit < a3. (20) 

Initially, the unknowns of the motion are W\(x), W2W, W\(x), 
W2{x), «o, and a2. With some effort (see Appendix), the use of the 
orthogonality conditions in equations (11) and (12), together with the 
steady-state conditions as expressed by equations (5)-(10) and with 
equations (17) and (18), will eventually lead to a set of two coupled 
nonlinear algebraic equations of the form 

STRIKER 

TARGET 

Fig. 3 Model configuration 

Fig. 4 Steady-state excitation and forced nonlinear response of beam/target 
system; Q/2ir = 30.4 Hz 

g2(ao, "2) = 0 (21b) 

£i(a0 , a2) = 0 (21a) 

that involve only the two unknowns a 0 and a2. 
Once the system properties are specified, equations (21) can be 

solved by conventional numerical techniques to yield the values of 
ao and a2. The rest of the unknowns of the motion can then be found 
by back substitution. 

3 E x p e r i m e n t a l S t u d i e s 
The model shown in Fig. 3 was used to investigate the range of va­

lidity of the analytical results, and to evaluate the effects of system 
parameters. The striker and target beams were made from sheets of 
mild steel. In addition to a number of strain gages that were mounted 
on the beams, several vibration pickups were attached to the test 
fixtures and the vibration exciter (which furnished base motion) to 
monitor the system response. 

Vibration Test Procedure. In a typical test, the gap clearance 
d was set to a specific value, the shaker base amplitude level So was 
selected, and the shaker frequency was set to a given frequency value 
fi. The excitation and the system response were then measured and 
recorded. Measurements were made of the following quantities: 
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UNCONSTRAINED SYSTEM 
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d/S„ - 2.5 
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Fig. 5 Comparison between theory and experiment of the response of a 
continuous system with a gap: K* = 25, f0 *> 0.02, clearance ratio d/SB = 
3.33 

A 
\ u. 

- K W 

1 

Vyw 

x/L - 1/2 , - , / : 

0.5 1.0 
nt/» 
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Fig. 6 Construction of a typical solution 

S(t) = sinusoidal base acceleration = —fl2So sin lit. 
W(x, t) = displacement at chosen stations along the beam. 
W(x, t) = velocity at chosen stations along the beam. 
ti(x, t) = striker beam strain at the chosen stations. 
ti{x, t) = target beam strain at a station chosen along the 

target beam. 

The excitation frequency fl was then increased to some value fit 
and the same response parameters were measured and recorded again. 
Due to the nonlinearity of the system parameters, the response was 
determined for both increasing and decreasing excitation frequency 
values that spanned a range of ±50 percent with respect to coi, the 
fundamental frequency of the striker beam. 

Sample time histories of representative response quantities are 
shown in Fig. 4. The striker beam displacement was measured with 
an optical displacement follower, and the corresponding velocity was 
found by integrating the beam acceleration. 

Reduced Vibration Data. The data discussed in the section, 
"Vibration Test Procedure," were reduced to a more meaningful form 
by introducing the following dimensionless ratios: 

fi/coi = excitation frequency ratio = exciting fre­
quency/natural frequency of striker beam. 

d/So = clearance ratio = size of gap between striker and 
target beam/amplitude of a sinusoidal base mo­
tion. 

Kt/Ks = stiffness ratio = target beam stiffness/striker 
beam stiffness = K*. 

WmaJSg = amplification ratio = peak S-S amplitude of 
striker beam/amplitude of sinusoidal base mo­
tion. 

f = ratio of critical damping corresponding to the first 
mode 

Typical frequency response results are shown in Pig. 5. 

4 Appl i ca t ions 
Cantilever Beam With a Stop. In order to apply the present 

theory to a specific beam/stopper system, the striker beam mode 
shapes in both ranges of the motion must be determined. Consider, 
for example, a cantilever beam with an elastic stop at its free end (i.e., 

h/L = 1 in Fig. 1). The modal frequencies and shapes of the beam in 
the unconstrained range of the motion (range 1 in Fig. 2) are readily 
available in standard vibration books. In the range of motion where 
the beam and stopper are connected, the natural frequencies and 
mode shapes can be found by using a procedure similar to that in [11, 
12]. 

The damping parameters a and /3 can be related to the frequencies 
and ratios of critical damping of two modes m and n by [13] 

ot = (2fm - fiwm)u>„. 

and 

0 = 2(f„6 fmcum)(ai„2-ojm
2). 

(22) 

(23) 

In the present study, the values of a and /3 were determined from 
equations (22) and (23) so as to make ft and fo the damping ratios of 
the first two modes of vibration of the unconstrained region of solu­
tion, equal to fo s constant. The damping ratio ft W> for each mode of 
both solution regions is then determined by the following equa­
tion: 

tiW = 0.5 
o.O) 

+ |3<o; 0') (24) 

Steady-State Response. Typical time histories of the steady-
state solutions for an arbitrary set of parameters are illustrated in Fig. 
6, where the displacement W(x, t), the velocity W{x, t), and the cur­
vature W"(x, t) &t different stations along the striker beam length 
are shown for one period of the excitation. For this case the dimen­
sionless stiffness ratio is K* = 1, the dimensionless gap size is d/So 
= 2.5, the ratio of critical damping in the first two modes is fo = 0.05, 
and the harmonic excitation has a frequency of 0.8 of the fundamental 
frequency of the striker beam. Five modes were used in the calcula­
tions. 

The contribution of the higher modes to the response is clear in all 
the time histories shown in Fig. 6, as was the case in the experimental 
results shown in Fig. 4. Note also that the qualitative behavior of the 
beam response agrees with reality: 

1 The stress (curvature) is zero at the free end and increases as 
x/L approaches zero, the beam's fixed boundary. 
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2 The ratios of the peak response at different locations along the 
beam approximately correspond to the same ratios associated with 
the first modes. 

3 The major contribution from the higher harmonics (more sig­
nificant in the case of velocity and stress) is due to the second beam 
mode which for the present example is a^Aoi » 6/1. 

Additional qualitative features of interest in the results shown in 
Fig. 6 are that 

1 The beam conditions at fit = 0 match those at the end of a 
period fit = 2ir, as required by the steady-state solution. 

2 The transients induced by the contact with the elastic stop start 
to decay at fit = 0 upon the separation of the beam and its target, thus 
attenuating (at an exponential rate determined by fo) the contribution 
of the higher harmonics to a negligible amount within a period of 
~0.75 7V 

3 The sharpest velocity change occurs at the contact point. 
4 The amount of penetration {W(L, t) — d) during contact at x/L 

= 1, as well as the duration of contact, is relatively small. 

If the striker and target beams are of comparable stiffness (i.e., K* 
= 1), a more reasonable analytical model would treat both striker and 
target as beams. 

In a comparison of theoretical and experimental results shown in 
Fig. 5, note the qualitative difference in the response of the system 
with increasing and decreasing excitation frequency. Keeping in mind 
that the beam/target system is essentially a nonlinear system with 
hardening restoring force characteristics, one would expect such a 
system to exhibit "jump" phenomena associated with the "backbone 
curve" related to the frequency response of the nonlinear Duffing 
oscillator [14]. Moreover, it is known that the amplitude-frequency 
relationship of the Duffing oscillator will result in a backbone curve 
that tends to "rotate" clockwise as the nonlinearity of a hardening 
system is increased, thus shifting the jump point associated with in­
creasing excitation frequency to a higher frequency value. These 
observations apply, in a qualitative sense, to the amplitude-frequency 
curve of the beam/target system. 

(b) 

Fig. 8 Variation of dimensionless contact time with frequency ratio; d/So 
= 2.5; K' = 5, 10, 20; f = 0.5, 0.10 

It is seen from Fig. 5 that the peak beam/target response occurs at 
a frequency ratio significantly higher than unity; this again is con­
sistent with the behavior of the hardening Duffing oscillator, whose 
peak response is known to decrease in amplitude but occur at an 
ever-increasing frequency value as the magnitude of the nonlinearity 
increases [14]. 

In Fig. 7 the effects of the dimensionless target stiffness ratio K*, 
dimensionless gap size dJSo, and beam damping ratio f on the peak 
response of the free end of the example cantilever beam are shown 
over a relatively wide excitation frequency band. The maximum re­
sponse peaks are markedly affected by the target stiffness and in­
herent striker beam damping, but less by the gap size. The reduction 
of the maximum peaks with increasing target stiffness and the shift 
in frequency where the peaks occur with increasing K* are indeed 
consistent with the behavior expected of such systems for the reasons 
just discussed. 

Since the system under discussion has an unsymmetric nonlinearity 
(a one-sided stop), one would not expect the beam motion to be 
symmetric with respect to its equilibrium position. Nonetheless, for 
the range of parameters under discussion, the positive peak response 
very nearly equals the corresponding negative one at all locations 
along the beam. Of course, the main reason for this behavior is that 
since the beam displacement is periodically constrained to a certain 
amplitude every system period, the "initial conditions" at the end of 
the contact period cannot propagate in time (under periodic excita­
tion, a lightly damped dynamic system will require a time t /7 \ » 1 
to reach steady-state values). 

Fig. 7 also demonstrates that as K* and the damping ratio increase, 
the ability of the elastic stop to reduce peak response decreases; for 
example, a fourfold increase of K* from 5 to 20 changes the peak re­
sponse in Fig. 7(a) by the ratio » 7/5, or 1.4. Thus, in practical engi-
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Fig. 9 Response of beam model; (a) Harmonic excitation; (b) Random 
excitation 

neering applications, little additional control of the beam response 
can be gained by stiffening the stop beyond a certain level. 

Note that if the gap becomes progressively smaller while all other 
parameters remain constant, the amount of penetration (Wm!iX — d) 
increases. Penetration also increases if damping is decreased and 
excitation levels are increased while gap size remains constant. 

The variation of the dimensionless contact time Tc* with excitation 
frequency ratio is shown in Fig. 8. Keeping in mind that «2 is a mea­
sure of the fraction of the excitation period during which the beam 
is not in contact with the stop, then Tc* = 1 — ail^lii) is the fraction 
of the excitation period during which contact does occur. The curves 
in Fig. 8 indicate that Tc* varies from 0 for 0.9 > fi/coi S; 1.5 to about 
0.25 (a quarter of an excitation period) at frequency values corre­
sponding to the peaks of WmSLX as shown in Fig. 7. Comparison of the 
results shown in Figs. 7 and 8, makes clear that the amount of pene­
tration and duration of contact have similar (nonlinear) dependence 
on the other system characteristics. 

Referring back to the jump phenomenon shown in Fig. 5, it was 
found that the width of the frequency band over which unstable be­
havior occurs is dependent on a number of factors such as gap size, 
stiffness ratio, amount of inherent damping, rate of change of the 
exciting frequency, etc. This fact has important ramifications for the 
behavior of the beam/target system under arbitrary transient exci­
tation, particularly stochastic excitations. Fig. 9 shows the nonlinear 
dynamic response of the beam/target system under stationary random 
excitation. In addition to the richness of the various response quan­
tities with higher-mode contributions, it is interesting to note that 
beam/target impacts persist for a long time even after the excitation 
level that induced the onset of such impacts has dropped to much 
lower levels. If the same excitation levels were applied to the linear 
system (i.e., without the target), it would not generate a relative beam 
motion that exceeds the available gap. 

The relatively simple example studied has some of the basic fea­
tures of nuclear power plant piping systems with snubbers. Based on 
the analytical and experimental results shown here, it is clear that 
caution should be exercised in analyzing nonlinear systems of the type 
previously discussed. This is particularly true where repetitive im­
pact-induced stresses are a concern, such as in cases where low-cycle 
fatigue is significant. 

Regarding the "exact" solution in this paper, it is worth noting that 
in nonlinear systems periodic forcing inputs do not always lead to 
periodic solutions. One case in point is the class of strange attractor 
solutions [15-17] that have been found recently in both theoretical 
and experimental studies in which nonperiodic, bounded, chaotic 
motions can occur under periodic excitation. Ueda [15], for example, 
has found such solutions for a single equilibrium point system with 
strong nonlinearity. 

5 S u m m a r y and Conc lus ions 
An "exact" closed-form analytical solution for the steady-state 

motion of a viscously damped Bernoulli-Euler beam with an un-
symmetric geometric nonlinearity was derived using a modified 
normal mode approach. The elastic beam was assumed to have uni­
form properties and arbitrary boundary conditions, and was subjected 
to a harmonic excitation. The geometric nonlinearity consisted of an 
elastic spring placed at some arbitrary location within the span of the 
beam and separated from the beam by a certain gap. 

Experimental studies with a mechanical model were performed to 
verify the validity of the analytical solution and also to investigate 
the effect of system parameters under both harmonic and random 
excitation. A fairly good agreement between the theoretical and ex­
perimental results was achieved. 

The effects of various dimensionless system parameters (such as 
excitation frequency, damping, target stiffness ratio, and gap size) 
on the system displacement, velocity, and stress at various locations 
along the beam were investigated and found to be significant. 
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+ hij cos djm + hhj cos (a2 + T / 1 ' ) 

*nm7vmv +/>6; sin (a2 + r/2>) + >*7; sin 0/2> + feS; cos 0/2> 

APPENDIX 
+ h9j cos (a3 + r / » ) ] = E <t>imWqn = Wx(*) (37) 

D e r i v a t i o n of E q u a t i o n s (21) ' 
Multiplying both sides of equations (17) and (18) by <fcU>(*) and £ r M O p Q p l + /,ilptfpl + hnp sin 0P<D + hUp cos 0P™ 

summing over i wi th/ = 1, 2 yields the following: p 

E *,<»(*) {SliWq^ + S2^qn
 + kUp C 0 S (a2 + Tp(1)) + kUp S i " (a2 + Tp<1>) ,„ 

t + M6psin0p<2> + M7pcos0p<2> + / i l 8ps in (a 3 + Tp<1>)] 
+ S5;™ sin fl/« + S6;*1) cos 0,<» 

+ S7f<» cos (a2 + T,-<»)) = W2(*) = E 0»(2>U)9i2 (25) 

E *,<»(*) {S3, <«qii + S4i<
1)4ii 

= E 0P
(1)(^)(?pi = # i ( * ) (38) 

p 

and 

+ S8i<
1>sin0;<1> + S9;(1>cos0j<1> k 

+ S10i<» sin (a2 + TJW)} = W2(x) = E &(2>(*)<i;2 (26) 
i 

E<l>ii2Hx)\Sli^qi2 + S2i^qi2 
i 

+ S5tW> sin 0;<2> + S6,<2> cos 0;<2> 

+ S7;<2> cos (a3 + Ti<2>)) = Wi(s) = £ ^ " ( z t a a (27) 
' + h31;co8 01-<

1> + h32;cos(a 2 + T1-<
1>)] = d (40) 

E 4>i {2)(x) |S3; (2)q;2 + S4; <2><ji2 + S8; <2> sin 0, <2> + S9; <2> cos 0; <2> From the definition of n «> and 0 ;« , 

+ /i23ft cos («2 + Tk
(l)) + /i24A sin (a2 + T* ' 1 ) ) 

+ ft25* sin 0fc<2> + h26k cos 0ft<
2> + /i27* cos (a3 + T*<2>)] = d 

(39) 

Also, equation (33) can be written as 

E [/i28;Qii + fc29i<hi + h30i sin 0;'1 ' 

0;y ) = a:o+(ffy-7.•o ' ,)• (41) 

Making use of trigonometric identities to express sin and cos of 0; W 

w n e r e in terms of ao and ctj, then equations (37)-(40) become 

+ S10,-<2> sin (a3 + r,<2>)) = W^x) = E </>i(1}(x)qn (28) 

?ii = 9i (1)(ai) (29) E [hljqji + h2Jqjl + h50j sin a 0 

9i2 = <?; (2W (30) 
. ; i = . i ( 1 ) ( a i ) ( 3 1 ) +h5lpoosao] = Z ^ ( x ) m (42) 

<7<2 = 4<(2,(a2) (32) E [h l 0 p ( ,p l + hllp<jp l + h52p sin a 0 

p 

(10), yields + / l 5 3 p c o s a 0 ] = E*p < 1 ) U)9 P l (43) 

Using equations (13), (17), and (18), together with equations (9) and P 

p 

E 0;(2)W<?;(2)(a3) = E 0>(2>W |S1,(2)<?;2 hl%qki + h20kqkl + hSOi sin a0 + h61k cos a0 = d (44) 

+ S2;(2)<?;2 + S5;(2> sin 0,-(» + S6,<2> cos 0;<2> ^28;<7;i + h29,-qii + h62t sin a 0 + /i63; cos a 0 = d (45) 

+ S7; (2 ) cos (a 3 + TJ<2))) = d (33) -phe orthogonality conditions of equations (11) and (12) can be 
further used with equations (42) and (43) to yield 

E *i(U(fc)9,-(1)(a2) = E fcw(W tSl,-«%i 

' <?;i = E [Hhjqji + H2ijqn + H3y sin a 0 + H4(y cos a0] (46) 
+ S 2 ; l l % l + S5i ( 1 ' s in0, ( 1 ) y 

+ S6t^ cos 0;<i) + S7 ;W cos (.a2 + TiV)\ = d (34) _ . . H Q 

<?mi = E l«&mp<?pi + H6mpqpi + Hlmp sin a 0 + H 8 m p cos a0J 
Using equation (26), together with the orthogonality condition of p 

equations (11) and (12), yields (47) 

1 ^ Ir,i 1 /-to • , ^.o . « m Note that equations (44)-(47) provide four equations through which 
9i2 = 7 T ^ E C,l,m<7ml + C2( m 9 m l + C3;msin0m<1 ' M • j u j t • j 

' Mi'-2' m the unknowns <?;i, qn, cto, and «2 can be determined. 
, n . a m , rr • 1 , 11111 , o e . The various undefined coefficients are omitted for the sake of 
+ C4(„1cos0m<1> + C5 ( ms in(a2 + Tm<1>) (35) . . . 

brevity. In general, they are algebraic expressions involving the system 
Similarly, equation (25) yields parameters. 
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Earthquake Response of Deformable 
Liquid Storage Tanks 
A method for analyzing the earthquake response of deformable, cylindrical liquid storage 
tanks is presented. The method is based on superposition of the free lateral vibrational 
modes obtained by a finite-element approach and a boundary solution technique. The 
accuracy of such modes has been confirmed by vibration tests of full-scale tanks. Special 
attention is given to the cos 6-type modes for which there is a single cosine wave of deflec­
tion in the circumferential direction. The response of deformable tanks to known ground 
motions is then compared with that of similar rigid tanks to assess the influence of wall 
flexibility on their seismic behavior. In addition, detailed numerical examples are pre­
sented to illustrate the variation of the seismic response of two different classes of tanks, 
namely, "tall" and "broad" tanks. Finally, the significance of the cos nd-type modes in 
the earthquake response analysis of irregular tanks is briefly discussed. 

In troduc t ion 
The only special feature of the earthquake-response problem, 

compared with any other form of dynamic loading, is that the exci­
tation is applied in the form of support motions rather than by ex­
ternal loads; thus the essential subject of the present discussion is the 
method of defining for the tank wall the effective external load history 
resulting from a given form of support motion. 

The hydrodynamic fluid pressure exerted on the wall of a de­
formable tank due to a ground motion G(t) is given by the super­
position of four pressure components: 

p i = the long period component contributed by the "convec-
tive" fluid motion (sloshing). 

P2 = the "impulsive" fluid pressure component which varies in 
synchronism with the horizontal ground acceleration. 

ps = the short period component contributed by the cos 0-type 
vibrations of the tank walls. 

Pi = the contributions of the cos rafl-type vibrations (n £ 2) of 
the tank walls. 

Each of these four pressures has a different variation with time. 
It has been shown [1] that the coupling between liquid sloshing 

modes and shell vibrational modes is weak; and consequently, the 
convective dynamic pressure can be evaluated with reasonable ac­
curacy by considering the tank wall to be rigid. It is the purpose of this 
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paper to evaluate the hydrodynamic pressure components P2 and p3; 
to develop the effective earthquake load by employing the expression 
of the work done by external loads through arbitrary virtual dis­
placements; and to obtain the time histories of shell displacements 
and stresses. 

Coordinate S y s t e m and F u n d a m e n t a l A s s u m p t i o n s 
The liquid-shell system under consideration is shown in Fig. 1. It 

is a ground-supported, circular cylindrical, thin-walled liquid con­
tainer of radius R, length L, and thickness h, with the wall connected 
to a rigid base. The tank is partly filled with liquid to a height H. If 
the tank wall is not connected to a rigid base, the strong earthquake 
response will be different. 

A cylindrical coordinate system is used with the center of the base 
being the origin. The radial, circumferential, and axial coordinates 
are denoted r, 6, and z, respectively, and the corresponding dis­
placement components of a point on the shell middle surface are de­
noted by w, v, and u, respectively. The tank is subjected to a ground 
motion G(t) in the constant direction of 8 = 0. 

Throughout this investigation, the liquid is assumed to be homo­
geneous, inviscid, and incompressible. In addition, the amplitudes 
of vibration are considered to be small. The strain-energy expression 
of the shell includes the effects of both stretching and bending. A 
detailed analysis of this problem is given in reference [1]. 

F r e e Latera l V ibra t iona l Modes 
The dynamic characteristics of the liquid-shell system are deter­

mined [2] by means of a discretization scheme in which the elastic shell 
is modeled by finite elements (refer to Fig. 2) and the liquid region 
is treated as a continuum by boundary solution techniques. In this 
approach the number of unknowns is substantially less than in those 
analyses where both tank wall and liquid are subdivided into finite 
elements. 
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Tank Base 

Fig. 1 Tank geometry, coordinate system, and earthquake excitation 

The extremization of the appropriate variational functional leads, 
for each circumferential wave number n, to the following matrix 
equation of motion: 

[M]{q] + [K]{q] = |0) (1) 

where (<jj is the nodal displacement vector of the shell, [M] = [Ms] + 

[Mi]; [Ms] and [Mi] being the consistent mass matrix of the shell and 
the added mass matrix of the liquid, respectively, and [K] — [Ks] + 
[K's]; [Ks] and [K's] are the shell stiffness matrix and the added stiff­
ness matrix due to the initial hoop stress, respectively. 

The resulting eigenvalue problem is solved by means of a digital 
computer. A comparison between the computed natural frequencies 
and mode shapes with those measured by vibration tests of full-scale 
tanks confirms the reliability of the theoretical analysis [3]. 

Tank Response to Earthquake Excitations 
The matrix equation which governs the earthquake response of the 

liquid-shell system for a particular value of n can be written as 

M l * ) + [C]\q] + [K]\q] = [Pe((\ (2) 

where [M] and [K] are the mass and stiffness matrices defined in 
equation (1); [C] is the damping matrix; and (Peffl is the effective 
earthquake load vector resulting from a given ground motion G(t). 
For a perfect circular cylindrical shell, the effective earthquake load 
vector takes the form 

(Peff! = 
- [F\G(t) n = l 

n 7*1 

(refer to equation (22)) 
(3) 

and consequently, the earthquake response can be obtained by su­
perposition of the vertical modes corresponding to n = 1 only. Re­
cently, shaking table experiments with aluminum tank models [4,5] 
and vibration tests of full-scale tanks [3] showed that cos red-type 
modes do respond to rigid base excitations; and this is attributed to 
noncircular imperfections of the cross section 

Cos 0-Type R e s p o n s e to E a r t h q u a k e E x c i t a t i o n s 
1 The Effective Force Vector. The total displacement vector 

of the shell can be considered as the sum of two components: the rel­
ative displacement vector \d\ defined by 

W = < 

u(6,z 
v(6,z 

W(0,2 

,t) 

t) 

.0 
-

(4) 

and the displacement vector [dg] associated with the ground dis­
placement G(t); it can be written as 

\ds 

0 

- s in (0) 

cos (0) 

G(t) (5) 

.Nomenclature. 
[C] = damping matrix 
|d| = relative displacement vector 
\d\e = element nodal displacement vector 
\dK\ = displacement vector associated with 

ground motion 
<? = element number 
|FA,j = inertia force vector 
g = acceleration of gravity 
G(t) = ground displacement 
h = shell thickness 
H = liquid depth 
Wo = height of impulsive mass 
/ i = modified Bessel function 
[K] = stiffness matrix 
[K„] = shell stiffness matrix 
[K'x] = shell stiffness matrix due to static 

hoop stress 
L = shell length 
Lv = length of a finite element 
m = total mass of liquid 
mo = impulsive mass 

Mmax = maximum impulsive wall moment 
[M] = mass matrix 
[Mi] = added mass matrix of liquid 
[M.,] = consistent mass matrix of shell 
n = circumferential wave number 
NEH = number of shell elements in contact 

with liquid 
NEL = number of shell elements along its 

length 
Nz = axial membrane force resultant 
No = circumferential membrane force resul­

tant 
p = hydrodynamic pressure 
t-feffl = effective earthquake load vector 
|(/| = shell nodal displacement vector 
Q(t) = base shear 
[Q] = modal displacement matrix 
r = radial coordinate 
R = tank radius 
Sd = spectral displacement 
t = time 

u = shell axial displacement 
u = shell circumferential displacement 
w = shell radial displacement 
W = work done by external loads 
z = axial coordinate 
/?; = modal participation factors 
5 = variational operator 
fy = damping ratios 
\i](t)\ = modal amplitude vector 
0 = circumferential coordinate 
pi = mass density of liquid 
ps = mass density of shell 
</) = liquid velocity potential function 
d)j = circular natural frequency 
Subscripts 
e = an element 
/ = liquid 
max = maximum 
s = shell 
z = axial direction 
0 = circumferential direction 
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ELEMENTS 

(a) Finite - element Idealization ( 

of the Shell 
Fig. 2 Finite-element definition diagram 

Shell Element 

The external forces acting on the shell due to ground motion G(t) 
include (i) the distributed inertia force of the shell which is given 
by 

{Fg\ = -psh\dg\ = -pshG(t) • 

0 

-sin (0) 

cos (0) 

(6) 

and (H) the hydrodynamic pressure on the wall of a similar rigid tank. 
This pressure can be expressed as 

pJR,6,z,t) = -pl — (R,6,z,t) 
dt 

can be expressed as 

X L f*2ir 
J (\Fg)

T\8d])Rd8dz 

+ f J " (pg(R, d, z, t) Sun cos (d))Rd6dz (10) 

Substituting equations (6), (7), and (9) into equation (10) yields 

bW = -G(t) LsirR CLh(-8v! + 5wi)dz 

where 

Jfiy 
H ki 

G(t) cos {<Xix)dx 

+ £ hi I 5u>i cos (aiz)dz 
;=i J o 

2TrRpiI1(aiR) 

at 'h(mR) 

2p,G(t) - (-D'^hiaiR) 

/i(ajfl) cos (cttz) cos (0) 

cos (ffljz) cos (0) (7) 

' afH'h(aiR) 

(11) 

(12) 

With the aid of the finite-element model of the shell, the first term 
in equation (11) becomes 

H ; t i af'h(aiR) 

where 4> is the velocity potential function associated with the ground 
motion G(t); pi is the liquid mass density; I\ is the modified Bessel 
function of the first kind of order 1; and a; are constants given by 

h(-bvi + bwjdz = psirR £ he\Sd\i\f], 
o e=i 

•\bq\T\F) (13) 

a, =-
(2i - 1)TT 

m 
(8) 

The work done by these external loads during arbitrary virtual 
displacements 

where NEL is the number of shell elements along the shell length; {d}„ 
is the nodal displacement vector of the element "e"; and the vectors 
j / | e and \F\ are given by 

ar= 

\bd] = • 

bui cos (0) 

bvi sin (0) 

bwi cos (0) 

and 

(9) 

f\ A 
' 2 ' 2 ' 12' ' 2 ' 2 ' 12. 

_ NEL 
|F) = L PsTTRhe\f}e 

(14) 

(15) 
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Furthermore, the second term in equation (11) can be expressed 

» NBH _ _ 

&u>! cos ('aiz)dz = £ £ !<5d|JV)» 
i = l e = l 

(16) 

where ATEff is the number of shell elements in contact with the liquid 
and {f}ie is given by 

ff)7e = [0,0,h,h4,0,0j„,fia]e (17) 

in which 

7is = L, 
1 6 , 12 

- — + — smai(e - 1) + —cosOj(e - 1) 
[at afl af 

6 . 12 
; sin a,e cos < 

af af 

fu = Ll - s i n a ^ e - 1) - I— cosajfe - 1) 
I a; \af afl 

sin o,-e cos a;e 
a? a? 

fn - Le 

la = Ll 

'6 , 12 
— sin a;(e - 1) cos a;(e - 1) 
af af 

(1 6 \ 12 1 
+ I—I—; | sin a;e H—- cos a;e ; 

W af/ of J 

' 2 • * 6 
sin ai(e - 1) + — cos a;(e - 1) 

xsm 
a? 

/ I 6 \ 1 
a ;e + — T cosa.e 

W afl 
iirLp 

at = — - - (i = 1, 2 , . . . ) and e = 1, 2 , . . . , NEH. (18) 
ti 

Equation (16) can be expressed more conveniently as 

T,bi C hwi cos (atz)dz = Z bi\5q}T\T}i 
;=i Jo ,-=i 

•\5q\T\F} 

where 

_ NBH - — » _ 

(Fli = E !7)ie and [F\ = £ 6.-|P},-
e = l i » l 

(19) 

(20) 

It is important to note that the infinite series in equation (20) con­
verges very rapidly and only the first few terms are needed for ade­
quate representation of the series. 

The virtual work expression can now be written as 

8W = -G(t)l8q}T({F} + [f]) = -GiWqWF] (21) 

and therefore, the effective earthquake load vector is given by 

|Peftj = -\F)G(t) (22) 

2 Modal Analysis. The matrix equation of motion of the liq­
uid-shell system can be solved directly by numerical integration; 
however, in analyzing the earthquake response of linear structures, 
it is generally more efficient to use modal superposition to evaluate 
the seismic response and to carry out the analysis for only a few nat­
ural modes. 

First, the nodal displacement vector of the shell is expressed as 

19} = [Q]Mt)\ (23) 

GROUND ACCELERATION 

Max. = 0.348 g 

_l 1 I : I 
2.0 3.0 4.0 5.0 6.0 7.0 B.O 9.0 10.0 

TIME IN SECS 

TIME IN SECS 

Fig. 3 

••hj + wjnj = -PjG(t); j = l,2,...,J (24) 

Introducing damping into equation (24), then one can rewrite such 
equations as follows: 

% + 2tjUji,j + wjVj = - f t G ( t ) ; j = 1, 2 , . . . J (25) 

For G(t) given by a segmentally linear function, for £,- < t < t;+i, 
equation (25) becomes 

Vj + ZtjUjVj + wjtij = -fy \Gi + 
AGj 

At 
(t - tt)) (26) 

where AG; = G;+i - G; and At = ij+i - £; = constant. The solution 
of equation (26) at time t = t;+1 can be expressed in terms of that at 
t = U by [6] 

1J£+1 

.Vi+li 
••[Atf.w.At)] + [J3(f, «, At, ft] 

Gi • 

Qi+i. 
(27) 

where [Q] is a rectangular matrix of the order NX J which contains 
the modal displacement vectors associated with the lowest J natural 
frequencies; N is the number of degrees of freedom (4 X NEL), and 
(r/(t)l is the modal amplitude vector. 

Employing the orthogonality conditions of the natural modes, the 
undamped matrix equation of motion can be reduced to J indepen­
dent differential equations for the unknowns ijy 

in which the subscript j is omitted for brevity. Therefore, if the modal 
amplitude rj(t) and its time derivative i)(t) are known at t;, then the 
complete time history can be computed by a step-by-step application 
of equation (27). 

3 Numerical Examples. A digital computer program has been 
written to compute the earthquake response of partly filled tanks by 
the method outlined in the preceding sections. The program obtains 
the free vibrational modes, formulates the generalized mass and load 
vectors, and computes shell nodal displacements and accelerations 
which are used to solve for the shell force and moment resultants, for 
the hydrodynamic pressures, and for base shear. 

Example (1): A Tall Tank. The computer program is first uti­
lized to estimate the earthquake response of an open top tall tank 
whose dimensions are: R = 24 ft (7.32m), L = 72 ft (21.96m), and h 
= 1 in. (2.54cm). The tank is assumed to be full of water and to be 
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Fig. 4 

subjected to the N-S component of the 1940 El Centro earthquake; 
only the first 10 sec of the record are employed in the analysis and this 
portion is displayed in Fig. 3(a). The modal damping ratios of the 
liquid-shell system are assumed to be 2 percent. 

The time history of the relative radial component of shell acceler­
ation at the tank top and in the 0 = 0 direction, w(Q, 72, £), is shown 
in Pig. 3(6) for comparison with the ground acceleration; it is clear that 
the relative acceleration is much greater than that of the ground. 

The maximum relative displacement of the shell, wmix (0, 72, t), 
can be computed approximately using the El Centro response spec­
trum; it is given by 

« W (0, 72, t) = 0Sdq (28) 

where /? is the earthquake participation factor of the fundamental 
mode; S<j is the spectral displacement corresponding to the funda­
mental period; and q is the modal amplitude of the radial mode shape 
at the top of the tank. Hence, wmax (0, 72, t) = (1.55)(0.295)(1.0) = 
0.457 in. (1.16cm) which is in close agreement with the value of 0.445 
in. (1.13cm) obtained by time integration of equation (27) and su­
perposition of 4 modes of vibration. This also indicates that the dis­
placement response of the tank is due mainly to the fundamental 
mode. 

Having obtained the relative displacements of the shell, the force 
and moment resultants can be computed. Pig. 4 displays the time 
history of the membrane force resultant Nz computed at 3 ft (0.92m) 
above the base. To compare this stress with that induced in a similar 
rigid tank, one can make use of Housner mechanical model [7]. The 
elements of such model are given by mo = 0.902m and Ho = 0.375H 
where m is the total mass of the contained liquid. The impulsive 
moment is therefore given by 

Mmax = moffo + m„ - p m a x 

= 74.78 X 106 lb ft (101.5 X 106 N.m) (29) 

which produces axial membrane force resultant 

M 
{Nz )max = — ^ = 3 4 4 3 " 8 lb/™- (6 0 3-3 N / m m ) (3°) 

trR2 

It is clear that such force resultant is much lower than that in a flexible 
tank. This is due to the fact that the impulsive loads arise through 
acceleration of the shell. If the shell is flexible, two acceleration 
components must be considered: (£) the acceleration of the unde-
formed shell, i.e., the ground acceleration, and (ii) the relative ac­
celeration due to shell deformations. In a rigid tank, only the accel­
eration of the undeformed shell is considered which introduces the 
noticeable difference in the magnitude of shell stresses. To further 
clarify this point, consider, for illustration purposes, that the masses 

P„(0, 7.2, I) 
Mox.M.83 psi 

I I I I I I I I I 1 1 
0.0 1.0 2.0 3.0 1.0 5.0 6.0 7.0 8.0 9.0 10.0 
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Fig. 5 

mo and ms are attached to the tank wall by springs with stiffnesses 
that simulate the fundamental natural period of the tank. To estimate 
the impulsive moment, one has to employ the spectral acceleration 
which is 2.46 time the ground acceleration, and therefore, the maxi­
mum axial membrane force is given by 

UV2)max = 3443.8 X 2.46 

= 8471.8 lb/in. (1484 N/m m) 

which is in close agreement with that obtained by a shell analysis. 
The maximum value of the membrane force resultant JV« at a dis­

tance of 6 ft (1.83m) above the base is 2166 lb/in. (379.5 N/m m). To 
compare with that obtained in a similar rigid tank, one has to compute 
the hydrodynamic pressure. For a rigid tank, the maximum hydro-
dynamic pressure occurs at the bottom of the container; its value is 
given by [7] 

pd(R, 0, 0, t) = tanh I———i 

= 4.92 psi (33.9 kPa) (31), 

and consequently, the maximum dynamic membrane force resultant 
can be computed by 

N„(0, 0, t) max (Pd)max- R 

= 1417 lb/in. (248.3 N/m m) (32) 

which is less than that of a flexible tank. 
It should be noted that the moment resultants M2 and Mo in a tall 

tank have negligible effect on the extreme fiber stresses of the 
shell. 

As is known, the impulsive hydrodynamic pressure consists of two 
components: one due to ground acceleration and one due to the rel­
ative acceleration of the deformed shell. The maximum value of the 
pressure at a distance of 7.2 ft (2.2m) above the base, due to ground 
acceleration only, is 3.63 psi (25 kPa) which is less than that obtained 
by equation (31); however, it is pointed out in [8] that the Housner 
model overestimates the hydrodynamic pressure for this particular 
H/R by about 33 percent which indicates a close agreement between 
the computed pressure and the "exact" pressure in rigid tanks. The 
time history of the additional pressure due to shell deformation at 7.2 
ft (2.2m) above the base is shown in Fig. 5. Its maximum value is 1.33 
times that due to ground acceleration only; however, the ratio is much 
larger at higher elevations. It should be noted that the maximum 
amplitudes of these two components of the impulsive hydrodynamic 
pressure do not occur, in general, at the same time. 

The maximum base shear due to ground motion (Qg(f ))max is in 
reasonable agreement with that computed for rigid tanks which is 
given by 
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T a b l e 1 Impul s ive e a r t h q u a k e re sponse of a tal l tank 
input : N-S c o m p o n e n t of t h e 1940 El Centro e a r t h ­
q u a k e 

Maximum radial 
component of 
shell 
displacement 
ui(0,72, t) 
in. (cm) 

Maximum axial 
force resultant' 
JV2(0,3,t) 
lb/in. (N/m m) 

Maximum 
tangential 
force resultant 
JV«(0, 6, t) 
lb/in. (N/m m) 

Maximum base 
shear 
Q(t) 
lb(N) 

Damping 
2%« 

0.445 

(1.13) 

8375 
(1467) 

2166 
(379.5) 

51.08 X 106 

(2.27 X 107) 

5%6 

0.344 

(0.87) 

6473 
(1134) 

1674 
(293.3) 

39.47 X 10B 

(1.75 X 107) 

10% b 

0.296 

(0.75) 

5564 
(974.8) 

1439 
(252.1) 

33.94 X 106 

(1.51 X 107) 

Rigid tank 

— 

3444 
(603.3) 

1417 
(248.3) 

27.18 X 105 

(1.21 X 107) 

° Computed by time integration. 
6 Computed by response spectrum. 

(Qi')max = (m0 + m.,)(5max • 

= 27.18 X 106 lb (1.21 X 107N) (33) 

The slight difference between this value and that of the present 
analysis is due to the fact that the Housner model overestimates the 
impulsive mass mo for tall tanks. The total impulsive base shear is also 
checked by the method presented in [8] where the liquid-shell system 
is analyzed using Flugge shell theory in combination with a Ritz-type 
procedure and the natural modes of vibration of uniform cantilever 
beams. The analysis gives a value of 52.47 X 10B lb (2.33 X 107 N) 
which is in close agreement with the value of 51.08 X 105 lb (2.27 X 
107 N) obtained in the present analysis. It should be noted that the 
analysis in [8] is applicable only to uniform shells which are completely 
filled with liquid. 

The troublesome aspect of analyzing the earthquake response of 
storage tanks is to define the appropriate value of damping. It can only 
be estimated from earthquake response of real tanks; unfortunately, 
seismic response data from tanks during past earthquakes are not 
available. Although a modal damping ratio of about 2 percent seems 
appropriate for the liquid-shell system, the foundation soil also 
dissipates energy which cannot be exactly evaluated. For illustration 
purposes, Table 1 presents the maximum values of the response 
computed for different values of damping ratio f; it also displays those 
in a similar rigid tank for comparison. 

Example (2): A Tall Tank (Comparison With Shaking Table 
Results). To illustrate the effectiveness of the analysis under con­
sideration, the computed earthquake response of an open top tall tank 
is compared with that obtained by shaking table tests [5], The tank 
model was made of aluminum; its modulus of elasticity was 10 X 106 

psi (6.89 X 107 kPa) and its density was 0.244 X 10-;) lb sec2/in.4 (2.61 
X 103 kg/mi!). The model has the following dimensions: R = 3.875 ft 
(1.18m), L = 15 ft (4.58m), and h = 0.09 in. (0.23cm) in the lower 10 
ft (3.05m) of its length and h = 0.063 in. (0.16 cm) in the upper 5 ft 
(1.53m). The tank was partly filled with water to a depth of 13 ft 
(3.97m). The input motion was the N-S component of the 1940 El 
Centro earthquake; the time history was speeded by a factor of 1.73 
and the peak acceleration was increased to 0.5g. 

Table 2 presents a comparison between the computed and observed 

T a b l e 2 C o m p a r i s o n w i t h s h a k i n g tab le t e s t s [5] 

Max. radial 
component 
of shell 
displacement 
u)(0,15, t) 
in. (cm) 

Max. axial 
force 
resultant 
iV*(0, 0.625, t) 
lb/in. (N/m m) 

Max. base 
shear 
Q(t) 
lb(N) 

Flexible Rigid 
( f=2%)° (impulsive 

(impulsive only) only) Observed" 

0.150 
(0.381) 

418.1 
(73.2) 

3.90 X 104 

(1.74 X 106) 

— 

155.3 
(27.2) 

1.79 X 104 

(7.97 X 104) 

0.131 
(0.333) 

362.6 
(63.5) 

2.75 X 104 

(1.22 X 106) 

0 The input motion used in calculation of tank response is not identical to 
the actually applied shaking table acceleration. 

responses; it also displays the response of a similar rigid tank for 
comparison. Inspection of this table indicates that the computed and 
the observed responses are much higher than those computed for a 
rigid tank. It can also be seen that the seismic response of a flexible 
tank computed by the present method is higher than the observed 
response in a shaking table test. However, one must keep in mind that 
the input acceleration used in the calculation of the response is dif­
ferent from the actually applied acceleration in these tests. 

It is found that the input acceleration used in shaking table tests 
does not exactly resemble the motion of the 1940 El Centro earth­
quake, especially at the fundamental natural frequency of the model. 
For such a frequency, the spectral acceleration of the actually applied 
motion is 0.95# for a 1 percent damping ratio; however, the spectral 
acceleration of the record employed in the calculation of the response 
is 1.45g for a 2 percent damping ratio. If one takes into account this 
difference in spectral accelerations and modifies accordingly the 
observed response, one can achieve a good correlation between the 
computed and observed responses. For example, multiplication of the 
observed base shear of 2.75 X 104 lb (1.22 X 106 N) by a factor of 
(1.45/0.95) yields a value of 4.19 X 104 lb (1.86 X 105 N) which is 
comparable to a computed value of 3.9 X 104 lb (1.74 X 105 N) (note 
that the observed base shear includes both the impulsive and con-
vective components; however, for the problem under consideration, 
the convective component is much smaller than the impulsive one). 
The modification suggested in the foregoing yields reasonable values 
for all response quantities which are proportional to the acceleration; 
however, those quantities which are directly proportional to the 
spectral displacement are slightly underestimated. This indicates that 
the observed fundamental period is higher than the computed period 
by about 10 percent. 

Example (3): A Broad Tank. The computer program is also used 
to estimate the earthquake response of an open top, fixed base, broad 
tank whose dimensions are: R = 60 ft (18.3m), L ~ 40 ft (12.2m) and 
h = 1 in. (2.54cm). The tank is assumed to be full of water and be 
subjected to the N-S component of the 1940 El Centro earthquake. 

The time history of the radial component of shell acceleration at 
mid-height, w (0,20, t), is shown in Fig. 6; it should be noted that the 
maximum amplitude of the radial component of shell acceleration 
occurs near the bottom of the tank not at the top as in tall tanks as 
shown in Fig. 7. 

The axial membrane force resultant Nz at a distance of 1.67 ft 
(0.51m) above the base is 1085 lb/in. (190 N/m m). The parameters 
of the Housner mechanical model are given by mo = 0.38 m, Ho — 
0.375 H; and therefore, the impulsive moment is 
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Fig. 6 

Mmali = \moH0 + ms - Gmax 

= 60.53 X 106 lb ft (82.15 X 106 N.m) 

and the corresponding axial membrane force resultant is 446 lb/in. 
(78.1 N/m m) which is much lower than that in a flexible tank. It 
should be noted that the computed dynamic moment resultants (Mz 

and Mo) in fixed-base broad tanks are very high; however, in a real 
tank the wall is not rigidly "built in" at the base and this reduces local 
bending stresses significantly. Therefore, only the membrane stresses 
in a broad flexible tank are compared to those of a similar rigid 
tank. 

The normalized hydrodynamic pressure distributions pe and pw 

due to ground motion and due to shell deformation, respectively, are 
plotted separately in Fig. 8; it can be seen that the pressure component 
pw has an axial distribution similar to that of pg which is in contrast 
to the pressure distribution in a tall tank. It should be also noted that 
the maximum amplitude of pw is much higher than that of pg. For 
example, Pu,(0, 4, t)max is 9.53 psi (65.66 kPa) while p#(0, 4, t) 

max 'S 

4.92 psi (33.9 kPa). 

Cos nd-Type Response to Earthquake Excitations 
In a perfect circular tank, cos re0-type modes cannot be excited by 

rigid base motion; however, fabrication tolerances in civil engineering 
tanks permit a departure from a nominal circular cross section and 
this tends to excite these modes. 

Little can be found in the literature about the importance of the 
cos nS-type modes in an earthquake response analysis. Veletsos and 
Turner [9] carried out an approximate investigation of the seismic 
response of an out-of-round tank. They computed the hydrodynamic 
pressure in an irregular rigid tank and applied it to a flexible tank. It 
should be noted, however, that the hydrodynamic pressures in a 
flexible tank may differ significantly than those of a rigid tank. An 
analysis of the effect of irregularity of the circular cross sections of 
flexible tanks can be found in [1] and will not be presented herein. The 
fact remains that the magnitude and distribution of fabrication error 
cannot be predicted, and consequently, only a hypothetical analysis 
can be made. It is also of interest to note that a recent experimental 
study [10] showed that buckling of full tank models depends largely 
on the stresses associated with the cos 0-type modes. 

Conclus ion 
In view of the results of the study, one can conclude that the flexi­

bility of tank walls that are anchored to a rigid base has a significant 
effect on the seismic response of both tall and broad tanks. These 
dynamic stresses are much greater than those computed assuming 
rigid walls. 

References 
1 Haroun, M. A., "Dynamic Analyses of Liquid Storage Tanks," Earth-

U V M 

Fig. 7 Fundamental natural modes 

L/R = 0.67 L/R •= 3.00 

Fig. 8 Impulsive hydrodynamic pressure distribution 

quake Engineering Research Laboratory Report, EERL 80-4, California In­
stitute of Technology, Feb. 1980. 

2 Haroun, M. A., and Housner, G. W., "Free Lateral Vibrations of Liquid 
Storage Tanks," Proceeding of the Third EMD Specialty Conference, Austin, 
Texas, ASCE, Sept. 1979, pp. 466-470. 

3 Housner, G. W., and Haroun, M. A., "Vibration Tests of Full-Scale 
Liquid Storage Tanks," Proceedings of the Second U.S. National Conference 
on Earthquake Engineering, Stanford, Calif., Aug. 1979, pp. 137-145. 

4 Clough, D. P., "Experimental Evaluation of Seismic Design Methods 

Journal of Applied Mechanics JUNE 1981, VOL. 48 / 417 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



for Broad Cylindrical Tanks," University of California Earthquake Engineering 
Research Center, Report No. UC/EERC 77-10, May 1977. 

5 Niwa, A., "Seismic Behavior of Tall Liquid Storage Tanks," University 
of California Earthquake Engineering Research Center, Report No. UC/EERC 
78-04, Feb. 1978. 

6 Analyses of Strong Motion Earthquake Accelerograms, Response 
Spectra, Vol. Ill, Part A, EERL 72-80, California Institute of Technology, Aug. 
1972. 

7 U.S. Atomic Energy Commission, "Nuclear Reactors and Earthquakes," 
TID-7024, Washington, D.C., 1963, pp. 367-390. 

8 Veletsos, A. S., and Yang, J. Y., "Earthquake Response of Liquid Storage 

Tanks," Advances in Civil Engineering Through Engineering Mechanics, 
Proceedings of the Annual EMD Specialty Conference, Raleigh, N.C., ASCE 
1977, pp. 1-24. 

9 Veletsos, A. S., and Turner, J. W., "Dynamics of Out-of-Round Liq­
uid-Storage Tanks," Proceedings of the Third EMD Specialty Conference, 
Austin, Texas, ASCE, 1979, pp. 471-474. 

10 Shih, C , and Babcock, C. D., "Scale Model Buckling Tests of a Fluid-
Filled Tank Under Harmonic Excitation," presented at the 1980 Pressure 
Vessels and Piping Technology Conference, ASME, San Francisco, Calif., Aug. 
1980, Preprint 80-C2/PVP-66. 

.Readers Of 
The Journal Of Applied Mechanics 
Will Be Interested In: 
AMD Vol. 16 
Effects Of Voids On Material Deformation 
Eds. S.C. Cowin, M.M. Carroll 
1976 Bk. No. 100101 192 pp. $20. Members $10. 

AMD Vol. 17 
Propagation Of Shock Waves In Solids 
Ed. E. Varley 
1976 Bk. No. 100102 114 pp. $16. Members $8. 

AMD Vol. 18 
Computing In Applied Mechanics 
Ed. R.F. Hartung 
1976 Bk. No. 100108 178 pp. $20. Members $10. 

AMD Vol. 20 
Constitutive Equations In Viscoplasticity: Computational 
And Engineering Aspects 
Eds. J.A. Stricklin, K.J. Saczalski 
1976 Bk. No. 100106 214 pp. $20. Members $10. 

AMD Vol. 21 
Constitutive Equations In Viscoplasticity: 
Phenomenological And Physical Aspects 
Ed. K.C. Valanis 
1976 Bk. No. 100107 80 pp. $14. Members $7. 

AMD Vol. 22 
The Mechanics Of Viscoelastic Fluids 
Ed. R.S. Rivlin 
1977 Bk. No. 100110 126 pp. $20. Members $10. 

AMD Vol. 23 
1977 Biomechanics Symposium 
Eds. R. Skalak, A.B. Schultz 
1977 Bk. No. 100111 238 pp. $30. Members $15. 

AMD Vol. 24 
Passenger Vibration In Transportation Vehicles 
Eds. A. Berman, A.J. Hannibal 
1977 Bk. No. 100112 130 pp. $15. Members $7.50 

AMD Vol. 25 
Computing Methods In Geophysical Mechanics 
Ed. R.P. Shaw 
1977 Bk. No. 100113 208 pp. $22. Members $11. 

Descriptions of other volumes of interest appear on pages 258, 264, 271, 296, 312, 367, and 390. 

Address Orders To: 
ASME Order Department • P.O. Box 3199, Grand Central Station • New York, N.Y. 10163 

418 / VOL. 48, JUNE 1981 Transactions of the ASME 

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



F. Victor1 

Research Assistant. 

F„ Ellyin 
Professor and Head. 

Mem. ASME 

Structures and Solid Mechanics Section, 
Department of Civil Engineering, 

University of Sherbrooke, 
Sherbrooke, Quebec, Canada 

J1K2R1 

Acceleration of Unbalanced Rotor 
Through the Resonance of 
Supporting Structure 
The dynamic response of a simple beam excited at its midspan by the action of a turboma­
chine secured to it, is investigated in detail. The forcing function includes transients at 
startup or shutdown. Effects of the shear deformation, rotatory inertia, and the internal 
viscous damping, which may depend on the frequency, are considered individually as well 
as in combined forms. The results indicate that the maximum amplitude of vibration is 
highly dependent on the acceleration rate through the critical frequency. There is also 
an apparent shift in its position as compared to the classical resonance frequency. Influ­
ences of shear deformation and rotatory inertia are significant when the supporting struc­
ture (or foundation) is relatively massive. 

In troduc t ion 
The response of a simple system when subjected to a force of 

time-dependent frequency has been investigated in the past [1-6]. 
However, extension of these studies to systems with several degrees 
of freedom becomes extremely complicated. Furthermore, the effect 
of shear deformation and rotatory inertia has generally been neglected 
in the previous studies. In structures supporting rotating machinery 
these effects as well as the influence of acceleration of rotor unbalance 
have to be investigated. 

The purpose of this paper is to study in detail the response of a 
beam under the action of an unbalanced rotor, starting from a position 
of rest and accelerating through critical frequencies. The critical 
frequencies are the natural frequencies of the system. The effect of 
various parameters such as acceleration or deceleration rates, shear 
deformation, rotatory inertia, and viscous damping is investigated. 

Massive structures supporting turbogenerator machinery are 
generally composed of beam elements. A simply supported beam 
subjected at its midspan to an accelerating unbalanced rotor force is 
representative of the main load transfer member. This study is, 
therefore, of interest in understanding the response of structures 
supporting rotating machinery. It provides a method whereby effects 
of acceleration or deceleration through critical frequencies could be 
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Fig. 1 A beam supporting an unbalanced rotor 

predicted. It also points out the parameters that are not generally 
known or considered in the present-day design practices. For example, 
if the design criterion is a manufacturer prescribed maximum am­
plitude of vibration, the designer of the support structure (foundation) 
must have information regarding the transients at startup or shut­
down. That is, the effects of the startup regime to reach the operating 
frequency and its rate of decrease to arrive at a shutdown state should 
be studied. The steady-state analysis presently employed in the design 
of foundations cannot predict the maximum amplitude. This ampli­
tude is highly dependent on the acceleration or the deceleration rate, 
shear deformation, and frequency-dependent damping. 

F u n d a m e n t a l E q u a t i o n s and So lu t ion 
In order to appreciate the motion of a structure which is dynami­

cally excited by a turbomachine secured to it, let us examine the be­
havior of a supporting element shown in Fig. 1, subjected to the action 
of an unbalanced rotor. 
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Fig. 2 Forces acting on a small element of beam 

Forcing Function. The forcing function of an unbalanced rotor 
could be extremely complicated. It depends on the mounting details. 
We will assume a simple model representation (Fig. 1) of the form 

P(t) = -mrd
2[e sin Q. + h + yr(t)]/dt2 

(1) 

where mr is the unbalanced mass, e its eccentricity, and the remaining 
symbols are defined in the accompanying Nomenclature. 

Carrying out the derivation at the right-hand side of equation (1), 
the unbalance rotor force is given by 

P(t) = m re[fi'2 sin Q - Q" cos Q - y"r(t)/e] (2) 

To simplify the study of the beam response under the action of 
accelerated unbalanced rotor, we will further assume that the torque 
applied to the rotor by the power source is constant during most of 
the acceleration period. The angular acceleration would also be con­
stant, were it not for the part of the torque which is absorbed by the 
vibration. Due to the buildup of the vibration, a torque associated with 
the unbalance appears which is in opposite direction to that received 
from the power source. This reaction therefore reduces the angular 
acceleration below the ideal situation with no parasitic vibration [1], 
Thus the angular travel, £2, is assumed to vary with time according 
to 

U-
'UrT^StVTl -

wr(t - Ti/3) 

t3/T?)/3 for 

for 

0 < t < Ti 

t> Ti 
(3) 

To utilize the formulation of the steady-state vibration, the rotor 
unbalance forcing function must be transformed to a set offerees, each 
of which has a constant circular frequency, i.e., 

P(t) = E [X(un) + <o>ryA*>n)] exp (iant) (4) 

where 

X(u„) = — f UW2sin a - Q" cos fi) exp (-io>nt)]dt (5) 
T Jo 

and 

yAun) = £ yAt) • exp (-iunt) (6) 

The integration appearing in equation (5) is carried out by using 
the Newton-Cotes rule of the fourth-order [7] and the principle of 
fast-fourier transform [8]. 

Equation of Motion. The differential equation for the damped 
vibration of the Timoshenko beam model is given by [9] 

EId*y(x, t)/dx4 + nd2y(x, t)/dt2 

- — (1 + E/kG)d*y(x, t)/dx2dt2 

A 

in2 

kGA 

IC 

d*y(x, t)/bt* + Cdy(x, t)/dt 

— (1 + E/kG)d3y(x, t)/Z>x2dt 
A 

IC2 IuC 
+ r - r - r d2y(x, t)/dt2 + 2 - r — &y(x, i ) /d t 3 = 0 (7) kGA2 kGA2 

For the vibration with constant circular frequency, it is possible to 
assume that the vibration is harmonic and the complete solution of 
equation (7) has the form [10] 

y(x, t) = [ai cos(Xi*/0 + a2 sin {\\x/l) + as cosh (\$&ll) 

+ 04 sinh (\2x/l)] • exp (iajt) (8) 

Applying d'Alembert's principle to the dynamic equilibrium in the 
vertical direction for a small element shown in Fig. 2 and using 
equation (8), one obtains the following relations for the bending 
moment and shearing force: 

EI -
M(x, t) = — [XiXiai cos {\\x/l) + XiXi02 sin (Xix/l) 

lz 

- X2X2a3 cosh (\2xll) — X2X2O4 sinh (X2*/0] • exp (imt) (9) 

EI--
Q(x, t) = — — XiX2[X20i sin (\ix/l) - X2a2 cos (\ix/l) 

I6 

+ X1O3 sinh (X2X/I) + Xi<i4 cosh (X2x//)] exp (j'cot) (10) 

.Nomenclature-
a,- = the ith constant of integration 

h = distance shown in Fig. 1 

i, = V3!-
I = length of beam element 

t = time 

x = distance 

ymd = the maximum amplitude when 

damping is considered 

ymT = the maximum amplitude when shear 
deformation and/or rotatory inertia effects 
are considered 

yAt) = the deflection at the rotor location 

y (x,t) = the deflection at distance x and time 

A — cross-sectional area 

C = damping per unit length 

E = Young's modulus 

G = shear modulus 
/ = moment of inertia 
k = Timoshinko shear coefficient 
L = length of a simply supported beam 
R = VfjAL^ 
T = total time of displacement history 
Ti = acceleration time 
7 = ERVkG 
\-l\lu£Q-2iub/un)/EI\V* 
Xi = X(X2(fl2 + 7 ) / 2 + [1 + \4(R2 

,y)2/4Jl/2)l/2 
X2 = X|-X2(fl2 + 7) /2 + [1 + X4(fl2 

_ 7)2 /4]1 / 2 |1 / 2 

\i = Xi - x v x ! 
X2 = X2 + X47/X2 
ju = mass of the beam per unit length 
To = the first natural period 
to = circular frequency 

coo = the first critical frequency 

a);, = C/2fi 

to; = the ith critical frequency 

u>n = the rath frequency in the series 

cor = the operating speed of the rotor 

Wit = the j'th natural frequency of the simply 
supported beam 

toor = the first natural frequency when shear 
deformation and/or rotatory inertia effects 
are considered 

Q = angular travel of the rotor 
12' = angular speed of the rotor 
Q'c = the rotor speed at the maximum re­

sponse amplitude 
fi" = angular acceleration of the rotor 
U"c = 2u r V 1 — coo/o>r/Tx, the angular accel­

eration at critical frequency 
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Fig. 3 Relationship between the displacement envelope at midspan, y, and 
the time parameter b, for various values of a 

Using equation (8) and the boundary conditions of a simply sup­
ported beam for the symmetrical vibration modes, the coefficients 
of integration a i to a 4, can be expressed in terms of the deflection and 
bending slope amplitudes at the extremities of a beam element. The 
corresponding moments and shear forces are then obtained from 
equations (9) and (10). Equating each term of the forcing function, 
equation (4), to the difference of the shearing force at the midspan 
for each circular frequency, a relation is obtained between the mid-
span deflection and the applied force 

^ ) = 4 ^ $(co„) - \*mr/nL, 
• X(o)n) • exp (ib>nt) (ID 

in which $(a>„) is the frequency function for the nth term. It has the 
form of 

<t>(wn) = XiMX? + Xl) cosh X2 cos Xi/ 
[X2 cosh X2 sin Xi - Xi sinh X2 cos Xj] (12) 

It is to be noted that the procedure described herein can be applied 
to analyze a framed structure subjected to any similar forcing func­
tion. 

Numerical Analysis and Discussion 
Response of an Ideal System. Numerical calculations have been 

carried out to investigate the dynamic behavior of a simply supported 
beam subjected to an accelerating rotor unbalance force starting from 
the rest. For the sake of simplicity, the deflection at the driving point 
will be discussed herein. 

To generalize the discussion, the following dimensionless variables 
are introduced: 

a = o>r/c<>o (3 = T I / T 0 

n = c/2 L + -yH wo b = tho 

e = fi"/wo to = 0o/«o 

„ = Q > o 

(13a,6) 

(13c, d) 

(13e,/) 

(18*) 

In the first instance an ideal case of the undamped response will 
be examined. The effect of rotatory inertia and shear deformation on 
the response of the beam will be studied later on. 

Fig. 3 shows the relationship between the displacement envelope 
at the midspan, ye, and the time factor, b, for a = 0.5,0.8,1.2 and 1.5, 

respectively, (1 = 30 and mr/nL = 0.1. The solid lines indicate the 
results obtained from the present analysis by considering the effect 
of acceleration. For the purpose of comparison, the envelope curves 
for the two cases (a = 0.8 and 1.2) obtained through consideration of 
a steady-state response at a given instance are shown in dotted lines 
in the same figure. This type of response will be termed "instanta­
neous steady-state" herein. 

Consider the case when the operating speed, wr, is less than the first 
critical frequency, i.e., a < 1.0. In this case one noted that the dis­
placement envelope oscillates around the instantaneous steady-state 
response envelope and the oscillation amplitude increases as the op­
erating frequency approaches the natural frequency of the system. 
For those cases where the operating frequency is greater than the 
natural frequency of the system (i.e., a > 1.0), the displacement en­
velope curves deviate considerably from that of the instantaneous 
steady-state response. When the instantaneous frequency, Q,', of the 
rotor approaches the critical frequency of the system, indicated by 
the "0" marks on the curves of Fig. 3, the deflection envelope as ex­
pected increases rapidly and reaches a maximum value. After this 
maximum has been attained, a very small amount of input energy is 
required to keep the system in motion. However, since there is no 
damping, the displacement envelope oscillates around a certain level 
with a maximum value slightly less than the first one already attained. 
This slight reduction in the maximum value for the subsequent re­
sponse is due to the change in strain energy of the system resulting 
from the consideration of the conservation of energy. The level at 
which the oscillation occurs and its amplitude become smaller when 
the operating frequency is removed from any one of the critical 
frequencies, c.f., a = 1.2 and 1.5 in Fig. 3. 

It is noted that the displacement envelope in Fig. 3 especially for 
the case of a = 1.2, is not a smooth curve. This phenomenon is due to 
the contribution of the higher modes on the response spectrum and 
the irregularities will diminish after the rotor attains a constant speed. 
It should also be noted that the maximum amplitude does not occur 
at the critical frequency. There is an apparent shift in its position and 
this shift should be kept in mind when the results of a vibration test 
are interpreted. 

The analysis is carried out for different rotor to support beam mass 
ratios (mr/nL) varying from 0.01 to 1.0. The influence of this mass 
ratio, as to be expected, is in the determination of the natural 
frequencies of the system, see Fig. 4. However, when the system re­
sponse to the rotor unbalance forces is normalized as in Fig. 3, for 
constant values of coefficients a and /?, the difference in the maximum 
response is within 2 percent. We will therefore, present the results for 
a mass ratio of mrl\xL =0.1 which is a representative value of large 
turbomachine support systems. 

An interesting problem is the relationship among the maximum 
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Fig. 6 The effect of acceleration rate through critical frequency on the shift 
of the maximum amplitude of vibration, for different values of a 

amplitude of vibration, the rate at which the rotor is accelerated 
through the critical frequency, and the level of the operating speed 
from that of the critical. It is evident from Fig. 5 that the maximum 
amplitude, ym, is highly dependent upon the acceleration rate through 
the critical frequency, i.e., the greater the acceleration through the 
critical frequency and/or the greater the deviation of a from unity, 
the smaller the maximum amplitude of the system. 

Fig. 6 demonstrates the relationship between the shift of the 
maximum amplitude and the acceleration through the critical fre­
quency for various levels of the operating speed. It is observed that 
the shift increases with the increase of the acceleration rate and/or 
with the increase of the frequency ratio, a. The dotted line in Fig. 6 
for a = 1.1 is intended to show that the maximum amplitude will occur 
for this case after the rotor speed has reached its maximum value and 
stabilized at that level. Note that the acceleration through resonance 
takes place at a value of 4.6a)p X 10 -3 rad/sec/sec. 

To eliminate the effect of the rate of change of the acceleration 
when passing through the critical frequency, a case of rotor unbalance 
with a constant acceleration is considered. The relationship between 
the maximum amplitude, its shift for a constant rate of acceleration 
is illustrated in Fig. 7. It is clear from this figure that the effect of the 
increasing acceleration is to diminish the maximum response am­
plitude, and to shift its location with respect to the critical frequency. 
In comparing Figs. 6 and 7, it becomes evident that a decrease of ac­
celeration rate to achieve the operating speed would alter the location 
of the maximum response amplitude, displacing it toward the critical 
frequency. 

Effect of Shear Deformation and Rotatory Inertia. Let us now 
examine the effect of shear deformation and rotatory inertia on the 
maximum amplitude of the vibrating system. It is a well known fact 
that the effect of shear deformation and/or rotatory inertia in a 
steady-state analysis is to decrease the values of the natural 
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Fig. 8 The effect of the shear deformation and rotatory inertia on the first 
critical frequency of a simply supported beam 
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Fig. 10 Relationship between the displacement envelope at mldspan, y, 
and the time parameter ft, for two values of a 

frequencies of the system. This effect becomes more pronounced for 
the higher natural frequencies. Pig. 8 shows the effects of shear de­
formation and/or rotatory inertia on the first natural frequency for 
the system under consideration. 

The influence of shear deformation, rotatory inertia, and their 
combination on the maximum amplitude of the beam subject to the 
action of an accelerating rotor unbalance load, is shown in Fig. 9. It 
is noted that this effect in general is to decrease the maximum am­
plitude of the beam, except for the small values of R when the rotatory 
inertia effect is considered alone. This general trend could be ex­
plained by observing that first, due to decrease in the value of natural 
frequency, the ratio between the operating speed and the natural 
frequency of the system is increased, thus resulting in a decreasing 
amplitude. The second influence is due to the higher acceleration rate 
when passing through the reduced natural frequency (c.f., Fig. 5). 

When the effect of the rotatory inertia is examined alone, the 
maximum amplitude increases for small values of R, similar to that 
observed in a steady-state analysis. However, for higher values of R, 
the effect of rotatory inertia becomes similar to that of the shear de­
formation. 

Damping Effect. The effect of the viscous damping on the dy­
namic response is now investigated. This effect is of prime importance 
in some practical cases. Fig. 10 shows the relationship between the 
displacement envelope and the time parameter, b, for a = 0.8 and 1.2, 
i8 = 30, T\ = 0.02 and m/pL = 0.1. The solid lines are obtained from 
consideration of the acceleration effect, while the dotted lines are 
those of the instantaneous steady-state analysis. In the case when the 
operating frequency is less than the first critical one, the displacement 
envelope will be identical to that obtained from the instantaneous 
steady-state consideration, except for some disturbance. This dis­
turbance is very small in comparison to that observed for the un­
damped case (c.f., Fig. 3). 

In most practical cases, however, the operating speed is greater than 
the critical frequency of the system, e.g., the low-tuned foundations. 
In these cases, there is appreciable increase in the displacement am­
plitude when the instantaneous frequency of the rotor passes through 
the critical one. This amplitude reaches a maximum value, then it 
decreases rapidly to converge, with some oscillation, to the level of 
the steady-state amplitude at the operating speed. Note that the 
foregoing maximum amplitude is smaller than that of a steady-state 
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Fig. 11 Effect of damping on the maximum amplitude of vibration, for different 
values of a 

resonance. This reduction is due to the effect of acceleration through 
the critical frequency. 

Fig. 11 shows the influence of damping ratio, ?), on the maximum 
amplitude for a = 1.1,1.2,1.3, and 1.5, respectively, /? = 30 and mr/iiL 
= 0.1. One notes that the greater the damping in the system, the 
smaller the maximum amplitude of vibration. This effect becomes 
more pronounced when the operating speed is in the neighborhood 
of any one of the critical frequencies. 

From the foregoing discussion, it is evident that in the design of the 
supporting structure for rotating machinery such as the low-tuned 
turbine foundations, the effect of acceleration or deceleration of the 
machine speed must be taken into account. The magnification factor 
based on the steady-state analysis at the normal operating speed may 
lead to erroneous results. The maximum amplitude occurs during 
acceleration from position of rest to reach operating frequency or 
deceleration for shutdown. In these periods, the maximum amplitude 
of vibration is greater than that predicted by the steady-state re­
sponse. The designer must acquire the speed-time relationship from 
the manufacturer of the machine in order to predict and design 
against high amplitudes which may cause damage to the ma­
chinery. 

Conclusions 
The following conclusions may be drawn from the results of the 

present work: 

1 The greater the acceleration rate through the critical frequency, 
the smaller the maximum amplitude of vibration and the greater the 
shift of the position of this maximum with respect to the critical fre­
quency (Figs. 5 and 6). 

2 The maximum amplitude of vibration is dependent on the op­
erating speed and its deviation from the critical frequency of the 
system. 

3 Usage of the magnification factor based on the steady-state 
analysis at a normal operating frequency for predicting the maximum 
amplitude, is valid only when the operating speed is less than the first 
critical frequency of the system. In all other cases, the effect of the 
acceleration on the response should be considered. 

4 In vibration tests, continuous records are often taken over a wide 
range of speeds. As the speed of the machine is increased or decreased, 
smaller amplitudes will be registered in comparison to that when the 
machine is held at a constant speed directly on a critical frequency. 
Furthermore, there is a shift in the position of the maximum ampli­
tude with respect to the critical frequency of the system. 

5 Consideration of the shear deformation and rotatory inertia 
effects, in general, lead to the reduction of the maximum amplitude. 
These effects cannot be neglected, especially in the analysis of massive 
structures. 

6 The effect of viscous damping is to decrease the response am­
plitude rapidly after it has reached the maximum value. The maxi­
mum amplitude decreases with the increase of the damping in the 
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system. This effect becomes more pronounced when the operating 
speed is in the neighborhood of any one of the critical frequencies. 
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Buckling of a Clamped-Hinged 
Circular Arch Under Gas 
Pressure and Related Problems 

R. Schmidt1 

The technical literature is replete with solutions to buckling 
problems of symmetric arches [1,2]. On the other hand, very few cases 
of buckling of asymmetric arch-load systems have been investigated 
[1,2]. Herein, we consider the in-plane stability (in the classical sense) 
of a circular elastic arch subjected to a static external gas pressure p. 
One end of the arch is immovably clamped and the other is immovably 
hinged. The cross-sectional area A of the arch rib is uniform. 

The governing equations for buckling can be obtained as in [3 or 
4]. They are2 

T a b l e 1 D i m e n s i o n l e s s b u c k l i n g 
d i f f e r e n t c e n t r a l a n g l e s 2 a 

load a 3 p c r / E I for 

2a 

(deg) 

20 
30 
40 
60 
80 
90 
100 
120 
140 
160 

03Pcr 

EI 

462.17 
205.00 
114.99 
50.701 
28.204 
22.135 
17.795 
12.145 
8.7438 
6.5424 

2a 

(deg) 

180 
200 
220 
240 
260 
280 
300 
320 
340 
360 

a3Pcr 

EI 

5.0391 
3.9740 
3.1953 
2.6156 
2.1807 
1.8569 
1.6251 
1.4758 
1.4047 
1.3924 

ft + 62ft = - ( c p i - ei), 
m 

u\ — i»i = —aei, v\ + u\ = a f t , 

(1) 

(2) 

where ft is the angle of rotation of a tangent to the centroidal line, fti 
= dft/a!0, 0 is the position angle measured clockwise from the vertical, 
a = R is the radius of the undeformed circular centroidal line, Ui and 
vi are the buckling displacement components of a point on the cen­
troidal line in the tangential and inward normal directions, respec­
tively (DO is the prebuckling radial displacement), e\ is a constant of 
integration, p\ is a parameter related to the increase in p , 

EA 

•1 + -

I 

' a*A' 

EI 

(3) 

(4) 

E is the modulus of elasticity, and / is the centroidal moment of areal 
inertia. 

The general solution of equations (1) and (2) is 

ftt = Ci cos bej) + C3 sin b<j> + cpi - e t 

mb2 ' 
(5) 

1 Professor of Engineering Mechanics, Department of Civil Engineering, 
University of Detroit, Detroit, Mich. 48221. Mem. ASME. 

2 This perturbative formulation of the arch buckling problem is subtly dif­
ferent from the classical formulation. 
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Ui 

a 

v\ 

(_,2 C3 
:
 CA H sin 60 cos I 

6 b 

C4 — C5 cos 0 + C6 sin 0 + 

C2 sin b<j> C3 cos 60 

> + 
(cpi - e t)0 

mb2 

(cpi - d ) 0 

mb2 

b(b2-l) b(b2-l)' 

C2 cos b4> 
— = C5 sin 0 + Cg cos 0 — 
a b2 — 1 

C3 sin 60 cpi — e\ 
1 ~ 1" ei> 6 2 - l mb2 

(6) 

(7) 

(8) 

in which the constants (cpi - e{)/mb2, C2, C3, C4, C5, and C6 are re­
lated to each other linearly by the boundary conditions 

ft = "1 = Vi = 0 at 0 = -a, 

ft = wi = ui = 0 at 0 = a, 

(9) 

(10) 

and ei, in (8), is neglected in comparison with ejmb2, since m62 « 
1 in the case of slender nonshallow arches buckling elastically. The 
resulting system of homogeneous equations yields the characteristic 
equation 

\(b2 - 1) [(62 - 1) tan a - b2a] - cot a) sin2 6a 

+ [(62 - l ) 6 2 a - 64 tan a] cos2 6a 

= [(62 - l ) 6 a cot 2a - \b(b2 + 1)] sin 26a, (11) 

whose pertinent eigenvalues are given in Table 1. 
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BRIEF NOTES 

We observe that the critical values of the gas pressure on the 
clamped-hinged arches, presented in Table 1, fall between those for 
hingeless and one-hinged symmetrical arches [5, p. 301]. 

We also make use of this opportunity to correct some of the inac­
curacies in the critical values quoted in the technical literature. 

In [5, Table 7-2, p. 301], in the case of one-hinged arch, the values 
p„aa/EI = 162 and 17.4 for 2a = 30° and 90° should be replaced by 
160 and 18.0, respectively, and, in the case of the three-hinged arch, 
the values 27.6 and 6.75 for 2a = 60° and 120° should be replaced by 
27.1 and 6.76, respectively. 

In [6], the critical value of the constant-directional pressure on a 
semicircular two-hinged arch of constant cross section was given as 
Per- 3.265 Ella3. The same authors also stated that this value con­
stitutes the critical buckling load for a closed circular ring. Despite 
the fact that the critical load for a free ring has been calculated by 
many investigators to be pa = 4 EI/a3 (e.g., [1]), the value given in 
[6] was strongly defended in [7], A recalculation by the author has 
yielded p „ = 3.271 EI/a3 for the two-hinged semicircular arch, p c r 

= 4 EI/a3 for the free complete ring, and p c r = 0.7014 EI/a3 for the 
complete ring immovably clamped at a point. 

Furthermore, recalculation of Table 1 of [8] has yielded: pCIa
3/EI 

= 74.95,19.59, 9.000, and 0.7014 for a = 30°, 60°, 90°, and 180° in­
stead of the values pC!a

3/EI = 80.5,19.4, 9.0, and 5.6, respectively, 
given in [8] for the case of constant-directional pressure on hingeless 
circular arches; and paa

3/EI = 75.06,20.11,10.60, and 6.472 for a = 
30°, 60°, 90°, and 180° instead of the values pCIa

3/EI = 80.5, 20.2, 
10.9, and 6.5, respectively, presented in [8] for the case of centrally 
directed pressure on hingeless circular arches. Also, equation (26) in 
[8] can be reduced from three to one term, viz., 

On the Savart-Masson Effect 

« » = • 

Reo + zj: 

R + z 

Moreover, in [1, p. 2-109] and in [9], the equation 

P 

2EI 

a tan a — 2(1 — cos a) 

(3 + 2I/a2A)a cos a + (3 + a tan a) sin a. 

should be replaced by, [10], 

P 

2EA 

a tan a — 2(1 - cos a) 

(3 + 2I/a2A)a cos a — (3 — a tan a) sin a 

in which the term 2I/a2A may be neglected as very small in compar­
ison with 3. The calculated graphical results are correct in both [1 and 
9]. 
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I. Suliciu1 

Introduction 
The purpose of this Note is to show that the Savart-Masson (or stair 

case) effect (for a fixed previous thermomechanical history, a fixed 
ambient temperature, and a fixed amount of impurities) can be de­
scribed by using a rate-type constitutive equation, such as that of [2] 
but with a variable viscosity coefficient. 

Next, one describes several facts, experimentally observed, which 
are essentially incorporated in the proposed model (for details, see 
[1]): 

1 This phenomenon appears as a stair case effect, at small con­
stant rates or small increments of the applied stress, in a "soft" testing 
machine. 

2 Some experimental results show that the jumps in strain are 
produced in the neighborhood of certain fixed values of stress [7, 8, 

! ] • 
3 If the stress rate a exceeds a certain value, the stair case effect 

disappears, i.e., the o~ ~ e curve becomes a smooth curve. 
4 From the experimental measurements of strain variation in time 

there follows that: the strain increases slowly in time on the almost 
vertical portions of the a ~ e curve; when a certain value of the stress 
is reached, a very fast increase of the strain is produced at almost 
constant stress. 

5 Another experimental evidence is that the length of the hori­
zontal steps increases when the strain increases. 

The Constitutive Equation 
The semilinear rate-type constitutive equation will be taken under 

the form 
& = Ei-k{a-f(e)), (1) 

where <r and e are the stress and strain respectively, E > 0 is the Young 
modulus and k > 0 is the viscosity coefficient. The smooth curve a = 
f(e), e > 0, a 3= 0, is an equilibrium curve (one assumes that f{e) is a 
monotonic increasing function in this case); the way this curve is 
chosen will be discussed as follows. The continuous function {x) is 
defined as 

(x) = xli(x), (2) 

where H(x) is the Heaviside function. 
The solution of equation (1) with t(t) = en+at, a = const > 0, cr(0) 

= ao (say o-0 = /(eo) and k = const > 0), is a = a(t, a, k). The curve (en 
+at, a(t, a, k)), for t > 0, represented in the e-o- plane, will be denoted 
by 

cr = g(e,a,k). (3) 

This curve has the following properties: 

g(e,a2,k)>g(c,a1,k)>f(e), o2 > ax > 0, e > e0 (4) 

g(e,a,k2)>g(e,a,k1)>f(e), 0<k2<klt e > e 0 . (5) 

The properties (4) and (5) are known properties of the constitutive 
equation (1). For o and k fixed for e » eo (i-e., for t » 0), the curve a 
= g(e, a, k) becomes (approximately) parallel to the equilibrium curve 
a = /(e), at a distance depending on a and k. For a quasi-linear rate-
type constitutive equation such properties have been studied in 
[9]. 

From the foregoing remarks it is clear that the constitutive equation 
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Romania. 
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30°, 60°, 90°, and 180° instead of the values pCIa

3/EI = 80.5, 20.2, 
10.9, and 6.5, respectively, presented in [8] for the case of centrally 
directed pressure on hingeless circular arches. Also, equation (26) in 
[8] can be reduced from three to one term, viz., 
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Moreover, in [1, p. 2-109] and in [9], the equation 
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should be replaced by, [10], 
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type constitutive equation such properties have been studied in 
[9]. 

From the foregoing remarks it is clear that the constitutive equation 
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Fig. 1 Stress-strain curves for different stress rates. (The computations have 
been started from the state (e = 0.908 percent, <r = 0)). — Experimental data 
(Sharpe [7] test 957); — # — Equilibrium curve (C); —X— "Quasi-static" 
curve (S); Computed curves. a = 306 psl/min; —•— a = 30.6 
psi/min; — • — a = 3060 psi/min; — B — a = 30,600 psi/min. 

(1) with a variable k can model the Savart-Masson effect. In what 
follows, one discusses a form of the function k = k(e, cr) which will 
allow the description of this effect according to Remarks 1-3 of the 
previous section; Remarks 4-5 will be used to check the validity of the 
model. 

First, one will make precise the way one chooses the curve a = f(e) 
in equation (1). Remark 1 of the previous section suggests as equi­
librium curve ([1, pp. 657,42-43]) "the envelope of the bottom of the 
steps" of the stair case function a ~ e (see the full line of Fig. 1 which 
reproduces the experimental data of [6]). For strains between 0.3 
percent and 3.0 percent, a function of the form 

<r = f(e) = pce°" (C) ft = 4.05 X 104 psi, ac = 0.45 (6) 

will give a good approximation as shown in Fig. 1. 
For the comparison of the numerical data with the experimental 

data, one has selected the experimental results presented by Sharpe 
[6] since they are obtained on the same type of aluminum as those used 
in [3, 4] (cf. also [5]) but in a dynamic domain. This choice will also 
permit to compare the viscosity coefficient determined here with that 
obtained in the previously quoted papers. 

The chosen viscosity coefficient will be a function of the form 

k(t,a) = k0 + k(<r)\<r-g(t)\, (7) 

for /(f) = ft e«< < a ^ g(c) and 0.003 < 6 « 0.03. The curve a = g{c) 
must be chosen as the lowest possible curve obtained in a loading 
process with a = c = constant, for which the stair case effect disap­
pears. The fact that there exists a c > 0 for which the stair case effect 
disappears is an observed experimental behavior. Here, Bell's dynamic 
parabola [1] 

<r = g{t) = fae1'*, ft = 5.6 X 104 psi, (8) 

has been chosen as curve cr = g(e). The choice (8) will give a much 
larger distance between the curves (C) and (S) from Fig. 1 than it 
(probably) is for the real body considered here but it allows us to see 
much better how the position of the o~t curves varies with cr. 

One denotes by <r;, o"; < 07+1, i = 1, 2,. . . , N — 1 the stress values 
where the horizontal jumps in strain take place on the a ~ e curve (see 
Fig. 1) and one chooses X such that 

0 < 2 X « min |o-;+i-o-; | . 
;=i,2 w - i 

The function k(a) will be defined as 

r M , V [ [ X 2 - ( O - - < T ; ) 2 ] i f |<r -o- i | <X, i = 1,2 N 
k(<r) = k\ X 

IP otherwise 
(9) 

where k\ = constant > 0. 
With the choice (6) of the function /(c) and with the choice (7) to 

(9) of the function k(c, a), the experimental facts mentioned in in­

troduction at 1-3 are incorporated in the model. In the next section 
one determines, based on the experimental data of [7], the coefficients 
ko, k\, and X such that the computed cr ~ e curve behaves according 
to the experiments. As a consequence, the experimental facts men­
tioned in the previous section at Points 4 and 5 will be automatically 
described. 

The Comparison Between Numerical and 
Experimental Data 

One uses the experimental data [7] (Fig. 1) for the a ~ i relation, 
obtained for a = 306 psi/min. For the comparison of the experimental 
strain e = c(t) with the computed one, the experimental data [1,8,10] 
will be used in principle only since these data are obtained in com­
pression and torsion, respectively. 

According to the previous discussion, the constitutive equation can 
be written as 

Ei = a + [k0 + h(<y)\u- ftf1/2|]<<r - ftf°> (10) 

where k(a) is defined by formula (9). 
The constants k0, k\, and X were chosen as 

k0 = 1 (min) '1 , ki = 1 (min)-Mpsi)-3, X = 5 psi. (11) 

Note that the constant ko is smaller than the dynamic viscosity 
coefficient [4] (cf. also [6]) by at least 6 orders of magnitude. 

The experimental data of Fig. 1 show that, for strains between 1 
percent and 3 percent, large increments of strain are produced for 
cr;(psi) X 10"3 = 5.3; 5.6; 5.85; 6.25; 6.6; 6.8; 7.2; 7.5; 7.75; 8.05; 8.4. 

Note that the horizontal portion of the computed curve increases 
with the strain as is experimentally observed. 

The choice (11) for k\ and X in formula (9) gives a variation for the 
variable viscosity coefficient fei<X2 — (cr — (T;)2)|cr — fte1'2! that 
ranges from zero up to a value of the order of 104(min)_1. This means 
that the maximum value of this coefficient is by 2-3 orders of mag­
nitude smaller than the dynamic viscosity coefficient. By integrating 
equation (10) where the constants are given by (9) and cr = 306 psi/ 
min. One gets a u ~ f curve which is close to the experimental one as 
shown in the figure. On the other hand it follows that the time nec­
essary for the process to move on the vertical and the horizontal 
portions of the a~ e curve is in agreement with the experimental data 
[1, 8,10]. The figure also presents the behavior of cr ~ £ curves with 
respect to stress rate changes. 

Concluding Remarks 
This Note shows, in principle, that the Savart-Masson effect can 

be described by a rate-type constitutive equation. The viscosity 
coefficient has strong variations in some regions of the e, a plane that 
lie above the equilibrium curve cr = /(e). The Portevin-Le Chatelier 
(serration) effect is also due to these variations but this assertion will 
be discussed elsewhere. Since the available experimental results 
(especially to this author) referring to a given material with a fixed 
previous thermomechanical history are very limited, an attempt to 
a deeper analysis of the structure of the viscosity coefficient k(t, a) 
could not be performed. 
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Crack-Tip Stress and Strain 
Singularity in Thermally 
Loaded Elastic-Plastic Material 

S. Aoki,1 K. Kishimoto,2 and M. Sakata3 

For the thermal stress problems, an elastic-plastic fracture me­
chanics parameter, J-integral [1] loses the property of path-inde­
pendence and it is not evident if the elastic-plastic stress or strain field 
near a crack tip is characterizable in terms of J-integral. Recently, 
Wilson, et al. [2], Gurtin [3], and McCartney [4], have discussed 
path-independent integrals for thermoelasticity. For elastic-plastic 
problems, Blackburn, et al. [5], Ainsworth, et al. [6], and the present 
authors [7], have proposed new path-independent integrals, J*, Jg, 
and J , respectively. In the present paper, the relationship between 
the J-integral and the stress or strain near a crack tip in a thermally 
loaded elastic-plastic material is determined. 

We consider a two-dimensional crack in an elastic-plastic body 
subjected to thermal stress, as shown in Fig. 1. O-Xi, X2 is the fixed 
frame and T denotes any curve surrounding the crack tip O. A is the 
area surrounded by the curve T and the crack surfaces. For simplicity, 
we neglect the traction on the crack surfaces, the body forces, the 
inertia of material, and the fracture process region. The energy-release 
rate due to crack extension is given by J-integral [7]: 

•--J> 
dut 

dT + J!- ^-dA 
dXl 

(1) 

where T,- is surface traction, u; displacement, ay stress tensor, and 
tii strain tensor. It has been proved theoretically in the literature [7] 
that the J-integral given by equation (1) does not lose the property 
of path-independence and the physical significance as the energy-
release rate, even if the material is not homogeneous. 

We decompose the strain e;y into elastic strain «ye, thermal strain 
e;/, and plastic strain e;yp. 
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Fig. 1 Crack in elastic-plastic body subjected to thermal loading 

dj = df + « ; / + tij" (2) 

In the case when the material under consideration is homogeneous, 
at least in the Xi-direction, equation (1) becomes 

J= CwdX,- CTi^dT+ CC 
Jr JT dXi JJA 

dUij' + eijQ) 
07; dA 

'A ' dXr 

where 

We I (Tijd€ije 

Jo 

(3) 

(4) 

We assume T to be a small circle of radius p and consider that the 
thermal strain e;/ arises in proportion to temperature increment. It 
may be assumed that the crack-tip singularity of thermal strain does 
not exist in the usual circumstancess and t ; / may be neglected com­
pared with tije and e;yp as p ->• 0. In case that the elastic-plastic be­
havior is modeled through the deformation plasticity theory and 
unloading does not occur, the material can be treated as a nonlinear 
elastic material and hence equations (1) or (3) reduces to 

where 

J = lim f 

W 

WdX "I T^dT 
r aXi 

= I oijdtij 

(5) 

(6) 

Here we have assumed that the material is homogeneous in the small 
circle of radius p. From equation (5), we obtain 

J = Mm J (7) 

(8) 

where J is the Rice J-integral 

J= C WdX2- P Ti — dT 
J r JT dX1 

Since 6;/ is much smaller than the other strain components as p 
-* 0, the stress and strain at the vicinity of the crack tip have the HRR 
type [8, 9] singularity: 

tJij = ay 

IE lim J 
P-.0 

0-y2 Inr 

l/(n+l) 

«fy(fl,n) 

/ 
(9) 

E lim J ' 

E \aY
2Inr\ 

n/(n+l) 

hj(6,n) 

where (r, d) is the polar coordinate system as shown in Fig. 1, E the 
Young's modulus, ay the yield stress, /„ an integration constant, and 
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For the thermal stress problems, an elastic-plastic fracture me­
chanics parameter, J-integral [1] loses the property of path-inde­
pendence and it is not evident if the elastic-plastic stress or strain field 
near a crack tip is characterizable in terms of J-integral. Recently, 
Wilson, et al. [2], Gurtin [3], and McCartney [4], have discussed 
path-independent integrals for thermoelasticity. For elastic-plastic 
problems, Blackburn, et al. [5], Ainsworth, et al. [6], and the present 
authors [7], have proposed new path-independent integrals, J*, Jg, 
and J , respectively. In the present paper, the relationship between 
the J-integral and the stress or strain near a crack tip in a thermally 
loaded elastic-plastic material is determined. 

We consider a two-dimensional crack in an elastic-plastic body 
subjected to thermal stress, as shown in Fig. 1. O-Xi, X2 is the fixed 
frame and T denotes any curve surrounding the crack tip O. A is the 
area surrounded by the curve T and the crack surfaces. For simplicity, 
we neglect the traction on the crack surfaces, the body forces, the 
inertia of material, and the fracture process region. The energy-release 
rate due to crack extension is given by J-integral [7]: 
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dT + J!- ^-dA 
dXl 

(1) 

where T,- is surface traction, u; displacement, ay stress tensor, and 
tii strain tensor. It has been proved theoretically in the literature [7] 
that the J-integral given by equation (1) does not lose the property 
of path-independence and the physical significance as the energy-
release rate, even if the material is not homogeneous. 

We decompose the strain e;y into elastic strain «ye, thermal strain 
e;/, and plastic strain e;yp. 
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Fig. 1 Crack in elastic-plastic body subjected to thermal loading 

dj = df + « ; / + tij" (2) 

In the case when the material under consideration is homogeneous, 
at least in the Xi-direction, equation (1) becomes 

J= CwdX,- CTi^dT+ CC 
Jr JT dXi JJA 

dUij' + eijQ) 
07; dA 

'A ' dXr 

where 

We I (Tijd€ije 

Jo 

(3) 

(4) 

We assume T to be a small circle of radius p and consider that the 
thermal strain e;/ arises in proportion to temperature increment. It 
may be assumed that the crack-tip singularity of thermal strain does 
not exist in the usual circumstancess and t ; / may be neglected com­
pared with tije and e;yp as p ->• 0. In case that the elastic-plastic be­
havior is modeled through the deformation plasticity theory and 
unloading does not occur, the material can be treated as a nonlinear 
elastic material and hence equations (1) or (3) reduces to 

where 

J = lim f 

W 

WdX "I T^dT 
r aXi 

= I oijdtij 

(5) 

(6) 

Here we have assumed that the material is homogeneous in the small 
circle of radius p. From equation (5), we obtain 

J = Mm J (7) 

(8) 

where J is the Rice J-integral 

J= C WdX2- P Ti — dT 
J r JT dX1 

Since 6;/ is much smaller than the other strain components as p 
-* 0, the stress and strain at the vicinity of the crack tip have the HRR 
type [8, 9] singularity: 

tJij = ay 

IE lim J 
P-.0 

0-y2 Inr 

l/(n+l) 

«fy(fl,n) 

/ 
(9) 

E lim J ' 

E \aY
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where (r, d) is the polar coordinate system as shown in Fig. 1, E the 
Young's modulus, ay the yield stress, /„ an integration constant, and 
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Oij and tij are dimensionless functions of 8 and the hardening exponent 
n. The substitution of equation (7) into equation (9) leads to 

/ EJ \lHn+l)_ 

O-YI EJ \n/(n+l) 

Thus, for thermal stress problem, the stress and strain near the crack 
tip are uniquely determined by the J-integral. Even in the case when 
the elastic-plastic behavior is best modeled with the flow theory of 
plasticity, the deformation near the crack-tip may be characterized 
by the HRR singularity (and then equation (10) may hold) except for 
very small region at the crack tip [10]. 
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Effect of the External Load on 
the Thermoelastoplastic Creep 
Deformation 

H. Ishikawa1 

Introduction 
In the author's previous papers the transient inelastic deformations 

of a heated circular solid [1] and hollow [2] cylinder are analyzed 
considering the static primary creep with Norton's law. The effect of 
the external load at various temperature levels on the creep defor­
mation is discussed here in detail with the strain-hardening hypothesis 
for physical primary creep. The thermal and material properties are 

1 Presently, c/„ Professor H. Lippmann, Lehrstuhl A fur Mechanik, Tech-
nische Universitat Miinchen, Arcisstrasse 21,8000 Munchen 2, West Germany; 
after September 30, 1981, Associate Professor, Department of Mechanical 
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reasonably assumed to be temperature-dependent to describe pre­
cisely the actual behavior of a material at elevated temperature. 

Analysis 
We consider an infinite solid circular cylinder of radius a, which 

is initially under the mean axial stress p . Then it is subjected to an 
axial symmetric temperature distribution which varies with time, 
assuming the zero initial uniform temperature of the cylinder. 

If the temperature at a generic radius r is T at time t, then the total 
strain should be written as 

er = er
e + S<*dT + (rP + er

c, etc. (1) 

where superscripts e, p, and c denote elastic, plastic, and creep 
components, respectively, and a is the coefficient of thermal expan­
sion. The time-independent plastic strain and the time-dependent 
creep strain should not be strictly distinguished from each other in 
the phenomelogical sense as the experiments show that these two 
components are not really different [3]. However, for convenience sake 
they could be separated as in (1), in engineering sense, following the 
customary concept [4]. 

The basic formulation has been given in [2] based on the incre­
mental theory of plasticity and the Mises-Mises creep theory. 
Moreover, the axial strain ez is assumed not to depend on r and z, and 
determined from the condition of the axial force i.e., 2TT SI azrdr — 
wa2p. Mendelson's [5] method of successive elastic solutions is used 
also in its modified total strain form to calculate the plastic, and creep 
strain increments as in [2]. Namely, using the von Mises yield criterion 
and the Prandtl-Reuss equations, the plastic strain increments can 
be obtained. The constitutive equation to calculate the plastic strain 
increments is the following Ramberg-Osgood stress-strain relation 
[6] in temperature fields 

where tt and ot are the uniaxial strain and stress, and o\ is the yield 
stress. 

The creep strain increments can be presented with Mises-Mises 
theory of creep [7], and the equivalent creep strain increment is de­
termined from the strain-hardening creep law that corresponds to the 
constant stress relation in uniaxial state [7], which shows the following 
physical primary creep as the constitutive equation: 

6 t
c = A ot

ntm, m < l (3) 

where A, n, and m are temperature-dependent material proper­
ties. 

Results 
In the numerical calculations, the solid circular cylinder is divided 

into 80 radial increments, whereas the period during which the plastic 
and creep deformations proceed is divided into 200 time increments. 
For q = 19 in stress-strain relation (2), corresponding to austenitic 
stainless steel (ASTM 316N), we assume the coefficient of thermal 
expansion a, the conductivity K, the elastic modulus E and the yield 
stress oi as 

a = 16.5 X (1 - 5.52 X 10~4 X T) X 10~6 (m/K), 

K = 11.0 X (1 + 1.82 X 10"3 X T) (W/mK), 

E = 206 X (1 - 5.08 X 10~7 X T2) X 109 (N/m2), 

o-i = 320 X (1 - 2.05 X 10-3 X T + 3.26 X 10~6 X T 2 - 1.92 

X 10"9 X T3) X 106 (N/m2) (4) 

for T < 732.2°C, 

A = exp [(T - 1869.3)/60.39] 

m = 2.398 X 10~3 X T - 0.8226, n = 3.6 X 10"3 XT + 2.964, 

and for T > 732.2°C 

A = exp [(T - 1102.3)/19.66], m = 0.933, n = 5.6 (5) 
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Oij and tij are dimensionless functions of 8 and the hardening exponent 
n. The substitution of equation (7) into equation (9) leads to 

/ EJ \lHn+l)_ 

O-YI EJ \n/(n+l) 

Thus, for thermal stress problem, the stress and strain near the crack 
tip are uniquely determined by the J-integral. Even in the case when 
the elastic-plastic behavior is best modeled with the flow theory of 
plasticity, the deformation near the crack-tip may be characterized 
by the HRR singularity (and then equation (10) may hold) except for 
very small region at the crack tip [10]. 
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Effect of the External Load on 
the Thermoelastoplastic Creep 
Deformation 

H. Ishikawa1 

Introduction 
In the author's previous papers the transient inelastic deformations 

of a heated circular solid [1] and hollow [2] cylinder are analyzed 
considering the static primary creep with Norton's law. The effect of 
the external load at various temperature levels on the creep defor­
mation is discussed here in detail with the strain-hardening hypothesis 
for physical primary creep. The thermal and material properties are 

1 Presently, c/„ Professor H. Lippmann, Lehrstuhl A fur Mechanik, Tech-
nische Universitat Miinchen, Arcisstrasse 21,8000 Munchen 2, West Germany; 
after September 30, 1981, Associate Professor, Department of Mechanical 
Engineering II, Hokkaido University, Sapporo, 060 Japan. 

Manuscript received by ASME Applied Mechanics Division, July, 1980; final 
revision, November, 1980. 

reasonably assumed to be temperature-dependent to describe pre­
cisely the actual behavior of a material at elevated temperature. 

Analysis 
We consider an infinite solid circular cylinder of radius a, which 

is initially under the mean axial stress p . Then it is subjected to an 
axial symmetric temperature distribution which varies with time, 
assuming the zero initial uniform temperature of the cylinder. 

If the temperature at a generic radius r is T at time t, then the total 
strain should be written as 

er = er
e + S<*dT + (rP + er

c, etc. (1) 

where superscripts e, p, and c denote elastic, plastic, and creep 
components, respectively, and a is the coefficient of thermal expan­
sion. The time-independent plastic strain and the time-dependent 
creep strain should not be strictly distinguished from each other in 
the phenomelogical sense as the experiments show that these two 
components are not really different [3]. However, for convenience sake 
they could be separated as in (1), in engineering sense, following the 
customary concept [4]. 

The basic formulation has been given in [2] based on the incre­
mental theory of plasticity and the Mises-Mises creep theory. 
Moreover, the axial strain ez is assumed not to depend on r and z, and 
determined from the condition of the axial force i.e., 2TT SI azrdr — 
wa2p. Mendelson's [5] method of successive elastic solutions is used 
also in its modified total strain form to calculate the plastic, and creep 
strain increments as in [2]. Namely, using the von Mises yield criterion 
and the Prandtl-Reuss equations, the plastic strain increments can 
be obtained. The constitutive equation to calculate the plastic strain 
increments is the following Ramberg-Osgood stress-strain relation 
[6] in temperature fields 

where tt and ot are the uniaxial strain and stress, and o\ is the yield 
stress. 

The creep strain increments can be presented with Mises-Mises 
theory of creep [7], and the equivalent creep strain increment is de­
termined from the strain-hardening creep law that corresponds to the 
constant stress relation in uniaxial state [7], which shows the following 
physical primary creep as the constitutive equation: 

6 t
c = A ot

ntm, m < l (3) 

where A, n, and m are temperature-dependent material proper­
ties. 

Results 
In the numerical calculations, the solid circular cylinder is divided 

into 80 radial increments, whereas the period during which the plastic 
and creep deformations proceed is divided into 200 time increments. 
For q = 19 in stress-strain relation (2), corresponding to austenitic 
stainless steel (ASTM 316N), we assume the coefficient of thermal 
expansion a, the conductivity K, the elastic modulus E and the yield 
stress oi as 

a = 16.5 X (1 - 5.52 X 10~4 X T) X 10~6 (m/K), 

K = 11.0 X (1 + 1.82 X 10"3 X T) (W/mK), 

E = 206 X (1 - 5.08 X 10~7 X T2) X 109 (N/m2), 

o-i = 320 X (1 - 2.05 X 10-3 X T + 3.26 X 10~6 X T 2 - 1.92 

X 10"9 X T3) X 106 (N/m2) (4) 

for T < 732.2°C, 

A = exp [(T - 1869.3)/60.39] 

m = 2.398 X 10~3 X T - 0.8226, n = 3.6 X 10"3 XT + 2.964, 

and for T > 732.2°C 

A = exp [(T - 1102.3)/19.66], m = 0.933, n = 5.6 (5) 
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0.03 

Fig. 1 Axial stress az
m 

In (4), the coefficient of thermal expansion, the conductivity, and 
the elastic modulus have been interporated from the data given in [8], 
whereas the yield stress and material properties for creep are taken 
from [9]. Moreover, the thermal diffusivity is taken to be h = 5.29 
mmVsec from [8] and Poisson's ratio v is assumed to be unaffected 
by temperature and to be equal to 0.4. 

In Figs. 1-3, the nondimensional representations are used, that is, 
oz* = (1 - v)aJE0a0T0tp* = (1 - v)p/E0a0To, tz* = (1 - v)tJa0T0, 
and s = (/i/a2)i, where Eo and «o are the elastic modulus and the 
coefficient of thermal expansion at T = 0 in (4), and To is the constant 
surface temperature to which the boundary of the cylinder is suddenly 
exposed. Also in these Figs. 1-3, oio is the yield stress at T = 0 in (4). 
All results presented in this Note were calculated for a solid circular 
cylinder of radius a = 3 mm. Then the relation between the real time 
t and the dimensionless time s becomes to t = (a2/h)s = 1.70s 
(sec). 

Fig. 1 shows the variation of az with r/a for different values of the 
external load p/oio at time s = 1.75, i.e., t = 3 (sec), when the steady 
state of temperature, that is T = 900°C at every place of the cylinder, 
is attained after subjection to rapid surface heating with the step 
temperature rise of To = 900°C. With large external load (piam - 0.4), 
the other two stresses ay* and ffj* become almost zero because the 
thermal stresses caused by the variation of temperature after 
subjection to rapid surface heating have relaxed from the large creep 
strain. In the meantime, az * will be expected to be equal to its mean 
tensile stress p* in the whole cylinder from the relaxation of thermal 
stress, and in fact for p/cio = 0.4 in Fig. 1, az * takes almost near values 
of az* = p* = 0.0252. The numerals p* = 0.0189 and 0.0126 in Fig. 
1 correspond to the values p/crio = 0.3 and 0.2, respectively. 

Fig. 2 shows the variations ez*,ez*
p, and ez*

c at the surface of the 
cylinder with s for the two values of the external load, i.e., plow — 0.4 
and 0 with the reference temperature To = 900°C. Taking into con­
sideration the fact that the temperature at the surface attains its 
constant value of T = 900°C in the instant of being subjected to rapid 

• surface heating and the fact that the total strain consists of an elastic, 
plastic, and creep strain together with thermal expansion, as is given 
in (1), it can be easily recognized from this Fig. 2 that the plastic strain, 
to which the special attention should be paid because of its minus sign, 
is dominant in the deformation of structure at the earlier stage, 
whereas the creep strain plays the important role after the plastic 
strain becomes constant, when the thermal stress is not produced any 

Fig. 2 Total strain tz", plastic strain tz'?, and creep strain ez"
c 

Fig. 3 Axial strain ez" 

more. Atp/oio = 0.4, e2* increases with s because of the increase of 
creep strain, which is accompanied with the relaxation of stresses as 
shown in Fig. 1. On the contrary, atp/cio = 0, ez* maintains its con­
stant value except the earlier stage of deformation because of very 
little increase of creep strain. Including both results, the effect of the 
external load on the deformation of structure with constant To = 
900°C is shown in Fig. 3 with the solid lines. With increase of p/crio, 
increases ez* as might be expected, while the effect of the magnitude 
of step temperature To on e2 * with constant p/oio = 0.4 is also shown 
in this figure with the dash-dot lines. At To = 900°C the extremely 
larger creep strain makes the outstanding characteristic in the be­
havior of the deformation, whereas even at To = 800°C, the temper­
ature should not effect much on the deformation of structure, showing 
the resistance of this stainless steel to creep deformation. 
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Some Observations in the 
Behavior of Laminated 
Composite Beams 

K. M. Rao1 

In recent years the analysis of structural members of composite 
materials has received the attention of many investigators. The be­
havior of these structural members depend on relative stiffness and 
thickness of layers, boundary conditions, and continuity conditions 
at the interfaces. Moreover accuracy of the results depend on the 
degree of refinement of the theory. The influence of the foregoing 
factors are studied by DiTaranto [1] and Rao [2] using strength of 
materials theory. Integral equation approach for formulating the 
Airy's stress function satisfying the equations of elastic anisotropic 
medium is suggested by Schile [4, 5]. A simple and straightforward 
procedure to select polynomial Airy's stress function, a special case 
of that of Schile [4,5] suitable to analyze rectangular laminated beams 
under polynomial loading is proposed in reference [3] by the author. 
Here the author aims to study the influence of the aforementioned 
factors on the behavior of laminated composite beams using the 
foregoing procedure to select Airy's stress function. This refined so­
lution, when applied to clamped-clamped laminated beam, brings out 
some strange and interesting observations in its behavior, and these 
observations are found to be contradictory to those given by ele­
mentary theories [1, 2] of certain layer-materials combinations. 

Analysis 
The beam shown in Fig. 1 is assumed to be made of an arbitrary 

number of layers N wherein each layer is of specially orthotropic 
medium, and the interlayer surfaces are perfectly bonded. The beam 
is subjected to a normal surface traction of intensity q; under these 
conditions each layer is in a state of generalized plane stress. The 
compatibility condition of nth layer of such a beam is [3] 

d * 4 dx^dy* d y 4 

in which <j>n{x,y)is Airy 's s t ress function, a n d 

(1) 
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Fig. 1 Geometry of the beam 

kin2 + k2n
2 = (2S12n + SS3n)/S22n, ku

2k2n
2 = SuJS22n (2) 

In equation (2), Slln, Si2n, S22n, and Ss3n are the elastic constants 
of n th layer; the corresponding strain-stress relations are 

eXn — SunO~xn + Si2nay, ' Sl2n Oxra + S22n Gy 

eXyn ~ &WnTxyn 

where exn, eyn> exyn are the engineering strains, and axn, o-yn, rxyn i 
the stresses in nth layer. These quantities are defined by 

(3) 

exn '• 
i>un 

dx ' 

dyn 
'• > t 

dy 

dx2' 

dun dVn 

dx *y 

a2<£n 

(4) 

(5) 
oy^ dx dxdy 

where un(x, y) and vn(x, y) are the deformations along x andy-axes, 
respectively (Fig. 1). 

According to the procedure proposed by the author [3] to select the 
polynomial Airy's stress function, stress function <j>n (x, y) for nth layer 
of the beam under uniformly distributed load is 

<M*>y) = a2nx
2/2 + b2nxy + c2ny

2/2 + banx
2y/2 + c3nxy2/2 

+ d3ny
3/G + e 4 n * y / 2 + d4nxy3/6 + e4nyVl2 

+ dSnx
2ya/e + /Wy5/20 (6) 

in which 

ein = - (kin2 + k2n
2)Cin/kln2k2n

2, 

fbn = ~ (kin2 + k2n
2)df,Jk\n

2k2n
2 (7) 

and a2n, b2n f5n are the coefficients of stress function. 
The boundary and continuity conditions, to be used to evaluate the 

aforementioned coefficients, are 

°yi = _ 9 . T
xyi - 0 a t y = -hi; 

o-yi = o-y2, rxyi = rxy2, Ui = u2, vi = v2 a t y = 0; 

Cyn = Vyn+1, Txyn — TXyn+l< Un — Un+1, Vn ~ Vn+1 

at y = hn (n = 2, 3, . N- 1); 

ffyjv = rxyjv = 0 at y 

N ^y„ 

•hN; 

C y" 
dy, o-xn(y - H)dy, 1

 XynuJ ) 
n=\ *Jy'n-l 

= (Pi, - Mi, fli) at x = 0 (8) 

in which 

H = (hh-x + hh)/2 (9) 

indicates the location of end points of the Mh layer that are con­
strained kinematically, and 

yi = 0, y„ = K (n = 2, 3 , . . . , N) 

y'i = -hu y'2 = 0, y ' n - i = /i„_i (n = 3,4, ...,N) 

In the previous expressions, hn is the distance of the farthest longi­
tudinal surface of nth layer measured from x -axis; Pi , Mi, and R\ are 
the reactions at the end x = 0 (Fig. 1). 
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( 5 « I , | » 0 - l , P = 0 0 l ) 

Fig. 4 Variation of central deflection v over the depth 

The kinematic end conditions of a clamped-clamped beam are 
taken as 

Uk = Vk = duk/dx = 0 at both ends x = 0, L and H, (10) 

where L is the span of the beam (Fig. 1). 
The problem can be completely solved by evaluating the stresses 

COT, Oyn, and rxyn, and deformations un and vn with the help of 
equations (3)-(6); in turn substituting these into equations (7)-(10), 
sufficient number of algebraic equations are obtained to solve for the 
constants of integration and coefficients of stress functions 4>n(n -
1,2, ...AT). 

Results and Conclusions 
The previous analysis is particularized to the case of 3-layered 

beam, and the numerical data of ax, rxy, and u is presented in Figs. 
2-8. In these figures X = L/(h\ + h3), £ = (h3 — h^lh\, f = h2/h1 and 
P = S111/S112; Bijk, Tijk, and Mijk denote, respectively, the bottom, 
top, and middle fiber of ith layer in a beam with p = 0-jk or OR. For 
the beam corresponding to p = 0.01,0.1, and 0.2, the layers are made 
of isotropic materials in which the top and bottom layers are of the 
same material and the middle layer is of comparatively flexible ma­
terial; p = OR denotes the beam in which the top, middle, and bottom 
layers are, respectively, of boron/epoxy, glass/epoxy, and graphite/ 
epoxy composites, the material properties of these being taken from 
Jones [6]. In the graphs a, 8, and r signify, respectively, the normal 
stress in the top fiber of midsection, deflection of midsection, and 
maximum shear stress at one-fourth span of an equivalent Euler 
beam. The equivalent Euler beam is defined as one which has same 
outer dimensions, end conditions, and load as laminated beam, and 
which has the medium with Young's modulus E = 1/Sm. 

The strange and interesting observations that are made by the 
author are as follows: 

1 When the middle layer is flexible (p = 0.01), the deflection given 
by elasticity solution is much less than that given by elementary so­
lution (Figs. 2 and 3). When p = 0.01, £ = 1 and f = 2 (Fig. 2), the ratio 
is as much as 1:7. As the elastic modulus ratio p tends to unity and f 
tends to zero, this deviation decreases. 

2 At lower values of span-to-depth ratio (X < 8) and p = 0.01, the 
deflection varies considerably over the depth (Fig. 4). 

3 The normal stress ax given by elasticity and elementary theories 
differ considerably both by quantity and quality at low values of p 
(Figs. 6 and 7). The stress pattern given by elasticity solution is re­
versed in nature (i.e., compressive stress on convex side and tensile 
stress on concave side) compared to conventional stress pattern in a 
beam when p = 0.01. This reversed stress pattern changes to con-
ventioned one as p approaches to unity (Fig. 7). For the case of 
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Fig. 5 Variation of shear stress rxy over the depth at one-fourth span 

orthotropic layered beam (p = OR), the stress in top layer (MIOR) 
is tensile, whereas that in bottom fiber (S3 OR) changes from tensile 
to compression over 0.05 < £ < 2.0. 

4 It is also observed that the reversed stress pattern in isotropic 
layered beam with p = 0.01 continues up to X is about 12; and the 
stress on the concave side of orthotropic layered beam (TlOfl) is 
tensile upto X is about 8. 

5 The inner fibers of top and bottom layers of isotropic layered 
beam with a very flexible middle layer are stressed more than the 
outer fibers, whereas generally the outer fibers of a beam are stressed 
more (Fig. 7). 

6 In case of orthotropic layered beam, maximum value of normal 
stress <rx in top layer is in the middle fiber, and that in bottom layer 
is in bottom fiber (Fig. 7c). 

7 At midsection the location of the point at which ax is maximum 
is highly dependent on the parameters p, £, and f. 

8 The stress ax varies linearly over the depth of each layer of iso­
tropic layered beam; but as shown by Fig. 8. ax varies nonlinearly over 
the depth of each layer of orthotropic layered beam. For span-to-
depth ratio X > 10, even incase p = OR, ax varies linearly over the 
depth of the beam. 
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The author feels that the discrepancy in the results of elasticity and 
elementary solutions of a beam with flexible middle layer is due to 
the existence of significant amount of shear strain at the clamped 
ends. In the models of DiTaranto [1] and Rao [2], the shear strain is 
not accommodated in an element at the fixed end. But in the present 
model it is accommodated by the rotation of transverse fiber relative 
to the longitudinal fiber at the clamped end. These observations show 
the inadequacy of the elementary theory for the analysis of laminated 
beam with flexible layers. 
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Drag on a Droplet in 
Translating Fluctuating Flow 

M. B. Stewart1 and F. A. Morrison, Jr.2 

Introduction 
A droplet in a fluctuating translating flow experiences an unsteady 

force exerted by the surrounding fluid. We consider low Reynolds 
number flow with a relative velocity 1/(1 + e exp (icot)) where e is 
small. 0) is the oscillation frequency and t is the time. We seek the 
effect of this small oscillation on the force imposed on an isolated 
spherical droplet. 

Starting from Stokes classical creeping flow analysis, Proudman 
and Pearson [1] used matched asymptotic expansions to describe 
steady low Reynolds number motion past a rigid sphere. Illingworth 
[2] subsequently determined effects of small superimposed oscilla­
tions. 

Taylor and Acrivos [3] found the analogous steady low Reynolds 
number extension of the Hadamard [4] and Rybczynski [5] analysis 
of creeping droplet motion. In this Note, we generalized Illingworth's 
results to include fluid spheres. 

The axisymmetric flow is described using Stokes stream function 
\j/ in spherical coordinates r,d,tj>. The flow of an uncompressed fluid 
with constant viscosity and density obeys 

— (E2f) - Jty, yjs) = vE4i/ 
dt 

(1) 

fi is the cosine of the polar angle d and v is the kinematic viscosity. For 
later convenience, we have introduced the notation 

J(M) = 
d[f, (E2S)/r2 (1 - ft2)] 

d(r,jt) 

E2 is the Stokes stream function operator 

E2-
d2 1 - ix2 d2 

dr2 r2 dp,2 

(2) 

(3) 

The free-steam velocity variation suggests a stream function of the 
form 

\[/ - \po + E exp (icot)i/'i (4) 

The flow in three regions is analyzed here. Flow interior to the 
droplet is coupled, at the droplet radius a, to the inner flow of the 
exterior fluid which, in turn, is matched to the outer flow. 

The dimensionless position, p, used for the inner flows, is r/a. The 
corresponding stretched coordinate, p, of the outer flow is Re p. The 
steady flow Reynolds number, Re, is Ualve using the exterior fluid 
kinematic viscosity. The dimensionless inner stream functions are 
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Introduction 
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effect of this small oscillation on the force imposed on an isolated 
spherical droplet. 

Starting from Stokes classical creeping flow analysis, Proudman 
and Pearson [1] used matched asymptotic expansions to describe 
steady low Reynolds number motion past a rigid sphere. Illingworth 
[2] subsequently determined effects of small superimposed oscilla­
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of creeping droplet motion. In this Note, we generalized Illingworth's 
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The free-steam velocity variation suggests a stream function of the 
form 
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The flow in three regions is analyzed here. Flow interior to the 
droplet is coupled, at the droplet radius a, to the inner flow of the 
exterior fluid which, in turn, is matched to the outer flow. 
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corresponding stretched coordinate, p, of the outer flow is Re p. The 
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\p/Ua2. These are Tp within the droplet and\p outside. The outer flow, 
far from the droplet, is described by \j/ = Re2^/[/a2 . 

Accordingly, the steady flows are governed by 

and 

'Vto + «Wo,to]=0 

E / ^ o + ReJ / , [ to. to] = 0 

E„* to + X Re J , [to, to! = 0 

(5) 

(6) 

(V) 

X is the ratio of external to internal kinematic viscosity. 
The oscillating components satisfy 

E-f fa + Jp(K fa) + J'Mi, to) - i aEp2 fa = 0 (8) 

V fa + Re [Jp(fa, fa) + J„(fa, fa)} - ia Re2 E&x = 0 (9) 

and 

£ / t o + X Re [J„(to, to) + »Mto. to)] - ia* Re2 JS / to = 0 (10) 

Terms of order e2 are neglected, a is iove/U
2, the ratio of Strouhal 

number to Reynolds number. 

T h e S t e a d y D r a g C o m p o n e n t 
Taylor and Acrivos obtained a solution to equations (5)-(7) by 

expanding each of the steady stream functions in the manner 

to = too + Re toi + • ( i i ) 

The flow remains bounded at the origin and approaches uniform 
streaming far from the droplet. Tangential velocity and stress are 
continuous across the droplet surface. This surface is impervious. The 
flows in the exterior fluid are matched. 

The zeroth-order solution in the outer steady flow represents uni­
form streaming. The corresponding inner flows are those of Hadamard 
and Rybczynski. Taylor and Acrivos obtained the first-order steady 
stream functions and the corresponding drag on the rigid sphere 

F = iriAeaU 2|?x±i) + R£(?i±§)V (12) 
17 + 1 / 4 \ 7 + 1 

)xe is the external fluid viscosity and y is the ratio of external to in­
ternal viscosity, the reciprocal of Taylor and Acrivos K. 

T h e O s c i l l a t ing D r a g Component 
With this background, we address the oscillating component. Three 

regimes, distinguished by the magnitude of the dimensionless fre­
quency a are considered. 

When the dimensionless frequency is much less than one, the flow 
is quasi-steady and the drag depends, as in a steady flow, on the in­
stantaneous velocity. We have simply 

F = irfieaU 2M + 5?W + .. 
7 + 1/ 4 \ 7 + l 

[1 + f exp (icot)] 

(13) 

When the dimensionless frequency is large, much greater than Re - 1 , 
the local acceleration dominates. This corresponds to a large Strouhal 
number. The convective acceleration terms in equations (9) and (10) 
are neglected. The transient Stokes relations apply and there is no 
need to match to an outer flow. As part of an analysis of droplet mo­
tion governed by the transient Stokes relations, Stewart and Morrison 
[6] found the drag on a droplet in an accelerating fluid. From their 
results, we can write an expression for the drag on a stationary droplet 
in an oscillating flow. 

F = 6wnea (1 + k)Z + " 

k2 is iu>a Re2 and 2 is given by 

Ue exp (iwt) (14) 

Z = 1 - 7 d + fe)[(-3 + 3&VX- k2\) exp (fcVX) 

+ (3 + 3feVX + k2\) exp (-kV\)]/A (15) 

and 

A = [(2 - 37 - 7*0(3 - 3 / J V X + k2\) 

+ k2\(l - feVX)] exp (feVX) 

- [ ( 2 - 3 7 - 7 f e ) ( 3 + 3fe\/X 

+ fe2X(l + feVX))] exp (-feVX) (16) 

Combining with equation (13) gives 

l r . 27 + 3 Re ; irp,eaU 2 1 
7 + 1 4 

27 + 3' 

. 7 + 1 

+ 6 U + / 0 L + -
k2 

eexp(icot) (17) 

When a greatly exceeds Re - 2 , k is large, the k2 term dominates and 
the most significant part of the oscillating force does not depend on 
internal viscosity. 

F = TTp,eaU 
27 + 3 Re 27 + 3\2 . „ „ ,. s 

2—• + — — + 2t<7 Re2 t exp (iwt) 
7 + 1 4 I 7 + I / 

(18) 

We finally consider a of order unity. In this case, local acceleration 
can be neglected for the inner flows, simplifying equations (9) and 
(10). Just as an expansion of the form (11) was useful for solving 
equations (5)-(7), the expansion 

to = too + Re toi + • • • (19) 

can now be utilized in the solution of equation (8) together with the 
simplified equations (9)-(10). 

The solution closely follows the rigid sphere analysis and is rather 
lengthy. Accordingly, only the results are presented here. Zeroth-order 
solutions are 

too = too = P2C2-1/2(M) (20) 

too = too = - 2p 
27 + 3 

7 + 1 7 + 1 
P + — - p - 1 C2-!/2(M) (21) 

Cn
 1,/2(A*) is the Gegenbauer polynomial of order n and degree —\. 

Defining a as 1 + 4i a, first-order solutions are 

toi = 
27 + 3 

2(7 + 1) 

-i /WV 

[( Oi 11 P' 
-1/2M 

l o a + o + l , _ , 

+ om (22) 

27 + 3 a2 + a + 1 

2 ( 7 + 1 ) a + 1 
too 

27 + 3 1 

4 ( 7 + 1) 

(67 + 5) 

27 + 3 

2(7 + 1) P 2(7 + 1) 
P 

(1 + p-2) c3-1/2M 
10(7 + 1 ) 2 

With this stream function, the force on the droplet is calculated. 

(23) 

r. 27 + 3 Re /27 + 3\2 27 + 3 
7rneaU\2— + — — +2— 

' 7 + I 4 \ 7 + l / 7 + 1 
1 2 7 + 3 a 2 + a + l „ ' 

1 + l Re 
6 7 + I a+l 

"eexp(jo)t) (24) 
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On an Elastic Theory of 
Friction 

N. Phan-Thien1 

Recently, Villaggio [1] proposed an elegant and simple theory of 
elastic friction which is based on a reasonable definition of the limit 
tangential load. He argued, very correctly, that if the contact bodies 
deform elastically then Coulomb's, or rather Amonston's law (see [2]) 
should not be accepted as a postulate, but as a consequence of the 
elastic deformation of the contact regions. This is justifiable if the 
contact surfaces are not very rough so that there is no plastic defor­
mation involved. Villaggio's starting point was the plane contact 
problem which was considered by Poritsky [3] using a potential 
analogy, refer to Fig. 1. To prevent interpenetration under the action 
of a normal force per unit width, Ni, it is necessary to produce over 
the contact band — a < x < a a normal displacement over each surface 
whose sum is given by 

vi + v2 = W0 - \px2, UV 

where Wo is the relative approach at x = 0 and p is given by p\ — p2, 
with pi and p% being the curvatures of the mating surfaces. 

Poritsky [3] showed that the contact length and the relative ap­
proach are given through (there is a factor \ missing in various equa­
tions of Poritsky's paper) 

a = (4Ni/wpE')m 

Ni = 27rJS'Wo/13, 

(2) 

(3) 

where 

E' 

•i>i' l - e 2
2 

Ei E2 

and Ei, vi are Young's modulus and Poisson's ratio of the body i, i = 
1,2. 

Now a tangential force per unit width, Si, is allowed to act on body 
1. Villaggio [1] called Si the limit tangential load if, under its action, 
that part of body 2 that lies in the interval — a < x < 0 becomes flat. 
This requirement leads to [1] 

^ P W ^ I ^ , ) (4) 
irJ p \ 1 - v2

2 Eil 

so that the coefficient of friction, /3 = S\/N\, is proportional to a (Ni) 
or Afi1/2, a fact at variance with available experimental data. Note that 
the factor (1 - i<i2).Ei/(l - V22)Ez in (4) should be replaced by its in­
verse if it is greater than unity [1]. 

Notwithstanding the aforementioned drawback, Villaggio's theory 
appears sound and ought to be improved in order to bring it into close 
agreement with experimental observations. 

Now, Archard [4] has pointed out that if the contact surfaces are 
covered with asperities, and each asperity with microasperities, and 
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Fig. 1 Plane contact problem considered by Villaggio [1] 

SMOOTH SURFACE 

Fig. 2 Contact of rough surfaces; the load is supported by the shaded 
asperities 

each microasperity with micro-microasperities, and so on, then such 
approximation gives successively a closer approximation to the law 
A a JVi, where A is the total contact area. This idea was exploited 
elegantly by Greenwood and Williamson [5] who assumed a random 
surface roughness. We now show that, using Greenwood and Wil­
liamson's method, Villaggio's theory can be brought into conformity 
with experimental data. 

Basically we consider the contact problem between a plane and a 
nominal flat surface covered with plane asperities whose height is a 
random variable with probability density function <t>{z); see Fig. 2. 
Here, nominal flat surfaces are defined as in Greenwood and Wil­
liamson's [5]; these surfaces have large apparent areas of contact so 
that the individual contacts are dispersed and the forces acting 
through neighboring spots do not influence each other. In effect, a 
collection of "dilute" indentors is considered. Mathematically we 
require that a characteristic wavelength of the plane asperities is large 
compared to the contact length a. 

Since the probability of having as asperity of height greater than 
W0 is given by J"HVMZ) dz, the expected normal load is 

N 
2jr 

13 
ME' 

J w0 
(z - Wo) <t>(z) dz, (5) 

and the expected limit tangential load is given by, if the asperities have 
the same curvature p, 

S = -
8.42 / 8 U/2 

13TT2 13 
— „i/2 Pl lM-

1 - vi J Wo 
(z - Wo)3/2<l>{z) dz, (6) 

where M is the total number of asperities. 
For exponentially distributed asperity height we have <t>(z) 

exp (—z/cr), where a is the mean asperity height. Also, 

f " ( z - W 0 ) < 
J w0 

<t>(z) dz = aaT(a + l)e-Wo/", 

where T(x) is the Gamma function. Thus the frictional coefficient is 
given by 
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where Wo is the relative approach at x = 0 and p is given by p\ — p2, 
with pi and p% being the curvatures of the mating surfaces. 

Poritsky [3] showed that the contact length and the relative ap­
proach are given through (there is a factor \ missing in various equa­
tions of Poritsky's paper) 

a = (4Ni/wpE')m 

Ni = 27rJS'Wo/13, 

(2) 

(3) 

where 

E' 

•i>i' l - e 2
2 

Ei E2 

and Ei, vi are Young's modulus and Poisson's ratio of the body i, i = 
1,2. 

Now a tangential force per unit width, Si, is allowed to act on body 
1. Villaggio [1] called Si the limit tangential load if, under its action, 
that part of body 2 that lies in the interval — a < x < 0 becomes flat. 
This requirement leads to [1] 

^ P W ^ I ^ , ) (4) 
irJ p \ 1 - v2

2 Eil 

so that the coefficient of friction, /3 = S\/N\, is proportional to a (Ni) 
or Afi1/2, a fact at variance with available experimental data. Note that 
the factor (1 - i<i2).Ei/(l - V22)Ez in (4) should be replaced by its in­
verse if it is greater than unity [1]. 

Notwithstanding the aforementioned drawback, Villaggio's theory 
appears sound and ought to be improved in order to bring it into close 
agreement with experimental observations. 

Now, Archard [4] has pointed out that if the contact surfaces are 
covered with asperities, and each asperity with microasperities, and 
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Fig. 1 Plane contact problem considered by Villaggio [1] 

SMOOTH SURFACE 

Fig. 2 Contact of rough surfaces; the load is supported by the shaded 
asperities 

each microasperity with micro-microasperities, and so on, then such 
approximation gives successively a closer approximation to the law 
A a JVi, where A is the total contact area. This idea was exploited 
elegantly by Greenwood and Williamson [5] who assumed a random 
surface roughness. We now show that, using Greenwood and Wil­
liamson's method, Villaggio's theory can be brought into conformity 
with experimental data. 

Basically we consider the contact problem between a plane and a 
nominal flat surface covered with plane asperities whose height is a 
random variable with probability density function <t>{z); see Fig. 2. 
Here, nominal flat surfaces are defined as in Greenwood and Wil­
liamson's [5]; these surfaces have large apparent areas of contact so 
that the individual contacts are dispersed and the forces acting 
through neighboring spots do not influence each other. In effect, a 
collection of "dilute" indentors is considered. Mathematically we 
require that a characteristic wavelength of the plane asperities is large 
compared to the contact length a. 

Since the probability of having as asperity of height greater than 
W0 is given by J"HVMZ) dz, the expected normal load is 

N 
2jr 

13 
ME' 

J w0 
(z - Wo) <t>(z) dz, (5) 

and the expected limit tangential load is given by, if the asperities have 
the same curvature p, 

S = -
8.42 / 8 U/2 

13TT2 13 
— „i/2 Pl lM-

1 - vi J Wo 
(z - Wo)3/2<l>{z) dz, (6) 

where M is the total number of asperities. 
For exponentially distributed asperity height we have <t>(z) 

exp (—z/cr), where a is the mean asperity height. Also, 

f " ( z - W 0 ) < 
J w0 

<t>(z) dz = aaT(a + l)e-Wo/", 

where T(x) is the Gamma function. Thus the frictional coefficient is 
given by 
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P = S/N 

•• 0.142 (ap)1/2 1 + mm 
l - c i 2 E 2 1 vi

2E1 

1 - v2
2 Ei 1 - n2 E2I 

(7) 

which is in qualitative agreement with the bulk of our experimental 
knowledge. For a Gaussian surface roughness, (3 can also be approx­
imated by (6) over several decades of the imposed normal load iV. 

Thus Amonton's frictional law, according to Villaggio's theory, 
appears to be a direct consequence of both the topology and the elastic 
deformation of the contact surface. 
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Bending and Twisting of 
Internally Pressurized Thin-
Walled Cylinder With Creep 

J. H. Lau1 and G. K. Listvinsky2 

I n t r o d u c t i o n 
A closed-form relation for the bending and twisting of a pressurized 

thin-walled cylinder which obeys the Bailey-Norton type isothermal 
power creep law with n = 2 is presented here. Dimensionless mo­
ment-curvature charts are also presented for various isostatic cir­
cumferential stress due to internal pressure, and isostatic shear stress 
due to twisting moment. The cylinder material is assumed to have 
identical tensile and compressive stress-strain rate relations. The 
derivation is based on the Bernoulli-Euler theory which stated that 
plane sections before bending remain plane during bending. It is as­
sumed also that the thickness of the cylinder is so thin, compared with 
the inner radius, that all the nonzero stresses are uniformly distributed 
across the wall thickness. 

The same problem without twisting moment has been studied by 
Edstam and Hult [1], wherein the integral equations were performed 
by means of Simpson's formula. It will be shown that the difference 
between the present solution with [1] is as high as 18 percent. 

A n a l y s i s 
A stationary state of creep will develop [3-5], if the average uniaxial 

stress-strain rate relation is 

« = (o7m)n, n > l , m > 0 , (1) 

and its multiaxial counterpart 

iij = Sia/m)"-1 Sijftm, (2) 

where 

: \l iSijSij , (3) 

and tij and Sy are the strain rate tensor and stress deviation tensor, 
respectively. 

For the pressurized cylinder under consideration, cylindrical 
coordinates are used with z being the axial direction and r and d being 
the radial and circumferential directions, respectively. The nonzero 
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stress and strain rate components are 0-9, az, Tez, ir, is, U, and yoz 

Equations (l)-(3) become 

"I' 
rnj 

iz = —z Wz - i"e\, 

and 

c = Vffo2 - ffeo~z + o~z2 + 3T»Z2. 

(4) 

(5) 

(6) 

Since plane sections remain plane, the strain rate distribution is 
linear 

Rsin0 
(7) 

where R is the radius of the cylinder, p is the radius of curvature rate 
due to bending. 

The equilibrium equations are as follows: 

at = PRIh, r t e = T/2rR2h, 

and 

M = R2h J»2ir 
Oz 

0 

(8) 

(9) 

where P is the internal pressure, T is the twisting moment, M is the 
bending moment, and h is the thickness of the cylinder. 

Let 

az = <r8/2 + /«?). 

Then, equations (5)-(7), and (10) yield 

f4(6) + 

Consequently 

f(6) = 

• O-D2 + 3 T 9 Z
2 fHB) • 

m2R sin 6 
= 0. 

(10) 

(11) 

<ro2 + - T f e
2 + 

i2RV 3 2 x 3 2) 
Of + - TfeJ 

(12) 

Substituting equations (10) and (12) into equation (9), in view of 
equation (8), we have 

M = 4R2hm yfrj s:M, sin2 6 - 1 sin 6d6, (13) 

where 

and 

3 
V = ^ 

Z = R/f>, 

PRU 3 

mhl 2 2irR2hm, 

Performing the integration, see Appendix, leads to 

(14) 
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which is in qualitative agreement with the bulk of our experimental 
knowledge. For a Gaussian surface roughness, (3 can also be approx­
imated by (6) over several decades of the imposed normal load iV. 

Thus Amonton's frictional law, according to Villaggio's theory, 
appears to be a direct consequence of both the topology and the elastic 
deformation of the contact surface. 
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A closed-form relation for the bending and twisting of a pressurized 

thin-walled cylinder which obeys the Bailey-Norton type isothermal 
power creep law with n = 2 is presented here. Dimensionless mo­
ment-curvature charts are also presented for various isostatic cir­
cumferential stress due to internal pressure, and isostatic shear stress 
due to twisting moment. The cylinder material is assumed to have 
identical tensile and compressive stress-strain rate relations. The 
derivation is based on the Bernoulli-Euler theory which stated that 
plane sections before bending remain plane during bending. It is as­
sumed also that the thickness of the cylinder is so thin, compared with 
the inner radius, that all the nonzero stresses are uniformly distributed 
across the wall thickness. 

The same problem without twisting moment has been studied by 
Edstam and Hult [1], wherein the integral equations were performed 
by means of Simpson's formula. It will be shown that the difference 
between the present solution with [1] is as high as 18 percent. 

A n a l y s i s 
A stationary state of creep will develop [3-5], if the average uniaxial 

stress-strain rate relation is 

« = (o7m)n, n > l , m > 0 , (1) 

and its multiaxial counterpart 

iij = Sia/m)"-1 Sijftm, (2) 

where 

: \l iSijSij , (3) 

and tij and Sy are the strain rate tensor and stress deviation tensor, 
respectively. 

For the pressurized cylinder under consideration, cylindrical 
coordinates are used with z being the axial direction and r and d being 
the radial and circumferential directions, respectively. The nonzero 
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and 
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Since plane sections remain plane, the strain rate distribution is 
linear 
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where R is the radius of the cylinder, p is the radius of curvature rate 
due to bending. 

The equilibrium equations are as follows: 

at = PRIh, r t e = T/2rR2h, 

and 

M = R2h J»2ir 
Oz 
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where P is the internal pressure, T is the twisting moment, M is the 
bending moment, and h is the thickness of the cylinder. 

Let 
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Then, equations (5)-(7), and (10) yield 
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Substituting equations (10) and (12) into equation (9), in view of 
equation (8), we have 

M = 4R2hm yfrj s:M, sin2 6 - 1 sin 6d6, (13) 

where 

and 
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Performing the integration, see Appendix, leads to 
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Table 1 

Fig. 1 Dimenslonless moment—curvature rate relation for various P 
and F 

ARzhm 3£ W + V?T]?!F - . f t 
.2 

- 2 i ) £ —, k 
2 

where 

: V 2 

2 ^ vM! 
< 1 , 

(15) 

(16) 

and F (ir/2, k) and £ (7r/2, ft) are the complete elliptic integrals of the 
first and the second kinds, respectively. Equation (15) is plotted in 
Pig. 1 for various values of i). 

Guided by Edstam and Hult [1], the "stress ratio" <j> is defined by 
the relation 

[q<2>]2 

(17) 

where 

and 

pi,!2=HH^bM (i8) 

j?(2)]2 = vm2 ( 1 + ^Y+Wtf 

Consequently, 

i + Vi + (t/i,)" 

2 + (M/irR2hm)2/r)' 
(20) 

Substituting equation (20) into equation (15) leads to the interac­
tion equation for M, P, and T. For the case, there is no twisting mo­
ment, Table 1 shows these results along with the results of (1). As can 
be seen that for 4> = 0.999, the difference between the present value 
with (1) is 18 percent. 

C o n c l u s i o n s 
A closed-form relation has been established for the bending and 

twisting of an internally pressurized thin-walled cylinder which obeys 
the Bailey-Norten type power law with n = 2. Dimensionless charts 
which can be used for engineering practice convenience have also been 
provided, The result presented herein (n = 2) is not only a good ap­
proximation of a wide class of materials, but also provides a standard 
tool for estimating the accuracy of different direct schemes such as 
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numerical integration, finite-difference, and finite-element 
methods. 
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APPENDIX 

M = «%mv^ f 2 v V T T T £ / n ) 2 sin2 0 - I sin 8dd 
Jo 

(19) Let 

Then 

Let 

M = 

V l + (£/»))2 sin2 0 = /3 

4 f i % m y ^ pVi+(t/i)2 /SyfJZTJ, T 
u = V/3 — 1 and dv = 

Then, J"udi> = uv — $vdu leads to 

V l + (£A))2-/?2 

V I + (£A/) 2- /? 2 

4R2hm-\frj 
= -V</3 - 1){1+ ( W - 0 * 1 

y/lWRP 

r.JTmV h + (g/,,)2 - ff2 
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Note that the first term on the right-hand side is zero, and that the 
second term can be evaluated from [2, Page 235], then we have 

4R2hm 3£ 
(IJ + V»J2 + £2) ^ -,k -2VE I-

where 

•fyh V i + (£A/)2 : < 1 . 

Inelastic Dynamic Response of 
Rectangular Plates by Finite 
Elements 
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I n t r o d u c t i o n 
The dynamic elastoplastic behavior of rectangular plates is studied 

by applying finite-element idealization and numerical integration. 
Step-by-step response is obtained by using explicit schemes and the 
effects of plastic flow are incorporated through the initial strain ap­
proach. Inelastic analysis is carried out by applying the explicit 0.42 0.50 0.56 
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Fig. 1 Response of a clamped square plate to different pulses 
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8=0.23 0.24 0.25 0.29 

( b ) Simply supported plate, q=l. l 

Fig. 2 Elastic-plastic boundaries for plates under uniform pressure; D elastic, 
^A plastic 

elastoplastic matrix relation that relates stress increments to total 
strain increments. The analysis is restricted to small deformations, 
the material is assumed to obey the von Mises yield criterion, and the 
stress-strain curve is taken to be bilinear. The computational details 
of the analysis are given in references [1,2]. 

R e s u l t s and D i s c u s s i o n 
The response of rectangular plates is found using the 12-degree-

of-freedom compatible element due to Bogner, et al. [3], which is baaed 
on Hermitian interpolation polynomials. Lumped mass matrix with 
geometric lumping was used. Responses were evaluated using a 
fourth-order Runge-Kutta scheme of Gill. Results are presented in 
Figs. 1-4 in terms of the nondimensional parameters d, q, 8, and X 
defined as 0 = t/Tu q = p /py , 8 = 8l(q • 8Y), X = V0/Vr, and Vr = 
pyTi/ (10 m) = k • a0/[pE/(l - v2)]1'2,.where t = time, Tx = funda­
mental period, p = applied distributed load, py = static yield load, 
8 = deflection of central point, 5y = static deflection under py, Vo 
= applied uniform impulse, Vr = reference velocity, m = mass per unit 
area, o"o = yield stress, p = mass density, v = Poisson's ratio, E = 
Young's modulus, and A; is a constant. For a simply supported square 
plate of side a, py = M0/(0.048 a2), 8y = 0.00406 Clt Tx = C2/18.73, 
and k = 0.576 where M 0 = <70/i

2/4, Ci = pYaAID, c2 = 27ra2(m/D)1k, 
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the material is assumed to obey the von Mises yield criterion, and the 
stress-strain curve is taken to be bilinear. The computational details 
of the analysis are given in references [1,2]. 

R e s u l t s and D i s c u s s i o n 
The response of rectangular plates is found using the 12-degree-

of-freedom compatible element due to Bogner, et al. [3], which is baaed 
on Hermitian interpolation polynomials. Lumped mass matrix with 
geometric lumping was used. Responses were evaluated using a 
fourth-order Runge-Kutta scheme of Gill. Results are presented in 
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= applied uniform impulse, Vr = reference velocity, m = mass per unit 
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( b ) Simply supported plate,X=3.75 

Fig. 3 Elastic-plastic boundaries for impulsively loaded plates 

0.14 

( b ) A = 2 . 8 

Fig. 4 Elastic-plastic boundaries for Impulsively loaded simply supported 
plates 

and D = Ehs/{12 (1 - v2)} where h = thickness of the plate. For a 
clamped plate, pY = Mo/(0.053 a2), SY = 0.00126 Ch Tx = C2/36, and 
k = 0.294. 

The responses of a clamped plate under the action of three different 
pulses are shown in Fig. 1. The pulse parameters, for comparison, are 
chosen on the basis of equal area and equal duration. Here the ordi­
nate refers to the nondimensional response obtained for impulsive 
load. It is seen that, for a pulse period of 6i = 0.11, the influence of 
pulse shape is not significant, and that for this pulse duration the 
impulsive approximation, predicts a response that is close to the actual 
one. For &\ - 0.22, however, the influence of pulse shape is more 
pronounced, and, the impulsive approximation results in a large upper 
bound to the actual response. 

In Figs. 2-4, the propagation of the plastic zones is presented for 
uniformly loaded and impulsively loaded plates. These results are 
obtained by defining yielding of the entire thickness on the basis of 
fully plastic moment and by using a 3 X 3 mesh and four Gaussian 
subdivisions in each element. In the case of uniformly loaded plates 
(Fig. 2) predictable patterns of plastic zones are observed. In fact they 
are in good agreement with the results obtained by Ang and Lopez 
[4] in their studies on the limit analysis of plates. In the case of im­
pulsive load, however, no definite pattern is noticed (Fig. 3). A com­
parison between Figs. 3(b) and 4 reveals that the mode of propagation 
of plastic zones in an impulsively loaded plate is a function of the 
initial velocity (X). 

During the initial phase of the response, the nodal displacements 
do not conform to the static deflection shape, and at such instances 
the maximum moment may not be at the centre or the edges. In an 
impulsively loaded plate, yielding is almost instantaneous, and, it 
appears that because of this the plastic zones do not follow any pre­
dictable pattern. 
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Fig. 1 Schematic diagram of a clamped plate subject to stress given by 
equation (1) 

where the principle of least work was used to calculate the stress 
distribution in a clamped plate. A schematic diagram of the plate is 
seen in Fig. 1. The calculations are based on the assumption that the 
stress in the film plane axz can be written as 

«xx = h(x) + yh(x) + y2Mx) 

Following Aleck's solution, 
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Fig. 2 Stress distribution in a clamped plate L/2h = A,v = 0.25, y = 1 according to equation (2), (a) computed with coefficients of Table 1,(6) computed 
with the coefficients of Aleck's paper [1] 

Table 1 Calculated values of Xy, A2yMiy, and Ay/Ay for v = 0.25 

X; A2j/Aij ASJ/AIJ 

1 
2 
3 
4 
5 
6 

21.46929445 
6.555641247 + 2.811853236i 
6.555641247 - 2.811853236i 
2.580328004 + 1.339360994i 
2.580328004 - 1.339360994i 
1.000579564 

-9.259707015 
-7.228832554 + 0.3938203841i 
-7.228832554 - 0.3938203841i 
-4.275900625 + 0.5528040859i 
-4.275900625 - 0.5528040859i 
-0.1308266266 

13.29296812 
8.305571674 - 0.9943166057i 
8.305571674 + 0.9943166057i 
3.137293505 - 0.4612713004i 
3.137293505 + 0.4612713004i 

-0.778698474 
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Fig. 5 Stress distribution in a clamped plate L/2h = 5,v = 0.2S, according to equation (2) 

where E is the Young's modulus, Aa is the differential thermal ex­
pansion coefficient, and AT is the temperature difference, so that 
AaAT is the total thermal expansion of the plate relative to the 
clamping member. The nondimensional variables x and y are nor­
malized to the plate thickness h. The coefficients Aij depend on L/2h 
and Poisson's ratio v, and the X/s depend on v. 

The solution of equation (2) involves finding the condition where 
a determinant equals zero [1]. A computer was used to find the roots 
of the polynomial associated with this determinant and to determine 
the values for X; and Ay. A measure of the accuracy of the calculation 
is how closely the determinant approaches zero upon substitution of 
the roots. The complex roots obtained by us result in zeros better than 
10~12, whereas the roots given by Aleck lead to values in the range of 
7.5 X 1(T5 - 10"10. 

Although the Ay's depend on Ll2h, the ratios oiAy/Aij and Ay/ 
A\j are independent of L/2h. Values of the coefficients Xy, AijlA\j, 
and Asj/Aij for v = 0.25 are given in Table 1. 

We find that the values of X2 and X3 in particular differ from those 
of Aleck and consequently the coefficient ratios also differ signifi­
cantly. Correspondingly, the calculated axx, Txy, and ayy are consid­
erably different from the previously reported values [1, 2]. In Fig. 2 
we have compared the stress distribution in a clamped plate for the 
case of y = 1 and L/2h = 1 using our coefficients with that using Al­

eck's coefficients. Figs. 3, 4, and 5 show stress distributions using our 
coefficients over the range 0 < y < 1 and L/2h = 0.25, 1, and 5. 

Finally, the stress calculations were extended to a polynomial 
containing four terms, 

ex* = fi(x) + yh(x) + y%(x) + ysf4(x) 

The corresponding stress equations are, 

(3) 

Oxx 

EAaAT 
'• Z E Aijy' 1 cosh \JX - 1 

;=i j=i 

Txy * 8 yl 

— — — = - E E A^ — \j sinh X;* 
EAaAT ;=ij=i 1 

(T„„ 4 8 yi+l 
E E Aij— Xj2coshX;'3c EAaAT 

(4) 
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It was found that the additional term in equation (3) does not alter 
the stress distribution significantly. 
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A Reinterpretation of the 
Palmgren-Miner Rule for 
Fatigue Life Prediction1 

M. Ben-Amoz.2 The author is to be commended for attempting 
to present a simple theory of interaction under cyclic loading that 
takes into account sequence-of-loading effects. Despite its apparent 
simplicity, the fact that the theory depends on the existence of a fa­
tigue limit in all metals, raises some questions in the writer's mind 
which deserve discussion. This writer, unaware of the author's work, 
has developed in the past two years in unpublished work, a phe-
nomenological model of metal fatigue for constant amplitude cycling, 
which was used as the basis for a theory of interaction under multi­
stage loading, quite different from the author's. The writer believes 
that discussion of his results in this forum would be of interest to 
JOURNAL readers as well as to the author in clarifying the significance 
of the Palmgren-Miner rule and the author's own theory. For sim­
plicity, the discussion will be confined to two-stage strain cycling, and 
to metals obeying the Coffin-Manson fatigue law, namely, Aep = 2 
ef (2N)_Afl, where Aep is the plastic strain-range; ef, the true fracture 
strain and N is the fatigue life; Mi is a constant, characteristic of the 
metal. In log-log coordinates, the fatigue curve for single-stage cycling 
is thus a straight line emanating from Aep = 2e/ at N = J, as shown 
in Fig. 1 of this discussion. The writer, in contrast to the author's as­
sumption, accepts the fact that some metals possess an endurance 
limit while others do not. Accordingly, attention will first be focused 
on metals without an endurance limit, in which case the straight line 
fatigue curve is assumed to be valid over the entire range \ ^ N < <». 
Let us now consider 2-stage cycling from low to high strain amplitudes 
corresponding to A/2 and Ni fatigue lives, respectively, as shown in 
Fig. 1. Assume that n2 cycles are applied at the lower strain amplitude 
(N2) and it is desired to determine the residual life Nir at the higher 
amplitude (Ni). Actually, we shall seek to determine bounds on the 
residual life at the higher amplitude. In doing so, it is worth empha­
sizing an overlooked fact that the true fracture strain in the Coffin-
Manson relation is actually a cyclic ductility which is assumed to be 
approximately equal to the monotonic ductility. In many (but not 
all) metals, the reduction in ductility due to cycling is quite small (but 
finite) so that this assumption is acceptable as an approximation. 
Keeping this fact in mind, one must allow for possibly larger reduc­
tions in cyclic ductility in some metals. Accordingly, let us assume that 
the residual fatigue life (RL) curve passing through N2

r = N2 — ni 
is parallel to the base fatigue curve, as in Fig. 1. This curve corresponds 
to the maximum possible reduction in cyclic ductility and thus pro­
vides one bound on the actual RL curve passing through N2

r = N2 

- n2. A second bound is obtained if one assumes no reduction in 
ductility, so that the RL curve converges to the base curve at N = \. 
Corresponding to the two RL curves, are the bounds Nir min and N\r 

1 By Z. Hashin, and published in the June, 1980, issue of the ASME JOURNAL 
OF APPLIED MECHANICS, Vol. 47, pp. 324-328. 

2 General Electric Company, 1000 Western Ave. (240G7), Lynn, Mass. 
01910. 

N.rm<n. 
(H-L) Kmax ( H _ L ) 

RESIDUAL LIFE W (CYCLES) 

Fig. 1 Bounds on residual life curves passing through N2' = W2 — n2 for 
low-high (L-H) and high-low (H-L) cycling in metals without endurance 
limit 

max, which from simple geometric relations (in log-log coordinates) 
are 

»2 ^ JV/ 

'N2" Nt 
< 1 -

, l 2 \ log2iViAog2N2 

N2I 
(Ni^N2) (1) 

It is seen that the lower bound represents the Palmgren-Miner 
straight line while the upper bound involves only the two endurances 
JVi, JV2. It is thus clear that if a metal undergoes a large reduction in 
ductility due to cycling, the interaction curve would approach the 
Palmgren-Miner line whereas if the reduction is neglibible (as in the 
case in most metals), the interaction curve approaches the upper 
bound. It is easy to show, based on Fig. 1, that by interchanging the 
bounds in (1), we obtain bounds for high-to-low cycling. Furthermore, 
the bounds (1) remain valid even if an endurance limit exists, provided 
both stages lie above or below the transition fatigue life NT. Only in 
the exceptional case when one stage lies above and the other below 
NT, different bounds apply. Such bounds have been established, in­
volving NT rather than the endurance limit, but are omitted due to 
space limitations. 

T. Bui-Quoc.3 The author's suggestion1 that the linear damage 
(Palmgren-Miner) rule is a special case of the "generalized theory of 
fatigue lifetime prediction" proposed in [1] is of interest, but some 
features of the demonstration, in the discusser's opinion, warrant a 
more elaborated treatment. The major points noted are as follows: 

1 What is the basis for the simplifying assumption used in the 
author's paper1 that the endurance limit of a fatigued specimen is 
identical to that corresponding to the original material? This does not 

3 Associate Professor, Section of Applied Mechanics, Department of Me­
chanical Engineering, Ecole Polytechnique, Montreal, Canada. 
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DISCUSSIONS 

reflect, in general, the material behavior [2, 3] and, in fact, the strength 
reduction associated with the original endurance limit has been taken 
into consideration in several investigations [4-7]. 

2 In [1], the general theory has been presented with four alter­
native procedures for estimating the remaining lives of a material 
under multilevel loading, i.e., two types of a-N diagram (log-log and 
semilog coordinates) combined with two convergence points of iso-
damage lines (the upper point corresponding to the ultimate tensile 
stress and the lower-point corresponding to the endurance limit). 
Experimental support has been given for one procedure only (asso­
ciated with the lower convergence point) in the case of a sequence of 
loading with two stresses. 

It appears that the estimated remaining lives depend primarily 
upon the convergence point consideration. As an example, for two 
decreasing stresses, i.e., Si > S2, the predicted sum of life-fractions at 
failure, i.e., 2(ra/ZV), is larger than unity with the upper-conver­
gence-point consideration and this sum is smaller than unity when 
the lower-convergence point is used. What is the potential of appli­
cability of each procedure, as well as its limitations? 

Since semilog coordinates are commonly used to plot experimental 
results in the a-N diagram, and since the data may be reasonably 
represented by a straight line in most cases, the further points in this 
discussion are presented on the basis of this type of plot. With this 
consideration, the general theory is reduced to two major alternatives 
characterized by the convergence points. 

3 Let us examine a particular case of loading involving two de­
creasing stresses applied to a material with a typical value of se = 0.4. 
According to the author's paper,1 when the two stresses are close to 
the ultimate tensile strength, say within 1.0-0.8, it is expected that 
the sum of the cycle-ratios at failure is greater than unity (upper-
convergence-point method); on the other hand, when the two stresses 
are in the neighborhood of the endurance limit, say, within 0.6-0.4, 
it is expected that this sum is smaller than unity (lower-conver­
gence-point procedure). Thus, in the middle range of stresses, i.e., 
0.8-0.6, would the linear damage rule be valid? If it is not the case, how 
may one determine the specific stresses which delimit the two zones? 
How can one consider the case where the two stresses are not in the 
same zone? 

4 Concerning the upper-convergence-point method, a similar 
concept has been proposed by Manson, et al. [6]. Fig. 2 of this dis­
cussion shows the method in [6] in comparison with the author's 
procedure for a typical case of loading (two decreasing stresses). The 
localization of the convergence points being of little importance for 
the purpose of the present discussion, the main difference between 
the two propositions is the starting point of the procedure to follow 
in order to obtain the remaining life (point A in Fig. 2). As a conse­
quence, the estimated sum of cycle-ratios at failure given by the 
procedure outlined in Fig. 2(a) is opposite that obtained from the 
technique described by Fig. 2(6); the latter sum is in good agreement 
with test results reported in [2, 3]. Is there experimental evidence to 
support the approach in Fig. 2(a)? 

5 Regarding the lower-convergence-point technique, what is the 
difference between the method advanced by Subramanyan [8] and 
the technique outlined by the author?1 

6 An example is given in the author's paper1 concerning the se­
quence of m stages of regularly increasing (or decreasing) stresses 
specified by two extreme levels S\ and sm. With m different stresses 
imposed (see the author's Fig. 5) there are (m — 1) stress intervals, 
i.e., 

A s = -
• s i 

1 

It is not clear why the denominator in the author's equation (31)1 

is m. 
7 It is not easy to see how the Palmgren-Miner rule is obtained 

as a special case (author's equations (26) and (27)) when <j>k = con­
stant. Then with </>k - constant (= B, say), equations (28) and (30) 
become 

4>h = Sk - se = B 

convergence point of isodamage lines 

o - N line 
(basic fatigue data) 

endurance l imi t of 
«., original and damaged 

material 

Applied cycles ( ] o g s c a ] e ) 

a) Hashin/Rotem method (two decreasing stresses) 
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b) Hanson, et al 's method (two decreasing stresses!. 

Fig. 2 Comparison between the two life-prediction methods proposed by 
Hashin and Manson, et al. (upper-convergence point) 

Jk_ = Jog(Nk/Ne)_ = 

0*-! log (Nk-i/Ne) 

Thus, for a given material, since se (or Ne) is a fixed value, Sk (orNk) 
should also be a fixed value for all stress levels considered in the se­
quence, according to the two foregoing equations. If there is no change 
in the stress levels, there is no cumulative damage in the usual sense 
requiring at least two distinct levels of solicitation. Note further that, 
in this case (no stress change), any fatigue damage theory yielding a 
normalized damage function (including stress-dependent cases) is 
equivalent to the linear damage rule on the basis of cycle-ratio cal­
culations [9]. 
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DISCUSSIONS 

Author's Closure 

I very much appreciate the discussers' interest and comments. May 
I say before attempting to answer that the present paper and its 
predecessor [10] should not be construed as an attempt to give a de­
finitive solution to the cumulative damage problem. Their purpose 
is to present a rational point of view based on the damage curve con­
cept and the equivalent loading postulate. Since the damage curves 
are not known, simple ad hoc forms have been assumed in order to 
obtain results. It is to be hoped and expected that better damage 
curves will be given in the future. The equivalent loading postulate 
is the key to lifetime analysis for any loading program, the damage 
curves being sufficient information for this purpose. Thus the main 
achievement, if any, is construction of a theory and not the actual 
results given. The chief shortcoming of the theory given is not in that 
damage curves are not sufficiently accurate or that the fatigue limit 
has been assumed constant, but in that scatter of data is not in­
cluded. 

Now to the comments of Professor Bui-Quoc considered sequen­
tially, but first a correction in reference to his opening sentence. 
Whether or not this cumulative damage theory is accepted, it has been 
shown, not suggested, that it incorporates the Palmgren-Miner rule 
as a special case. 

1 The basis for the assumption of constant fatigue limit is that 
no one knows its dependence on arbitrary cyclic loading histories. 
Discusser's references are concerned with fatigue limit dependence 
on simple loading histories. Such information is not sufficient for 
generalization of the theory to history-dependent fatigue limit. 

2 As has been said previously, the damage curves are not known. 
It is possible to construct damage curves of second order in log n which 
would converge into the static ultimate and fatigue limit. This com­
plicates the mathematics considerably. Linear damage curves (lines) 
which converge into the fatigue limit show trends observed in metals, 
i.e., 2re/AT>l for low-high two-stage loadings and the reverse for 
high-low loadings. Therefore they have been used (successfully) for 
metal fatigue data. Unidirectional fiber composites sometimes exhibit 
reverse trends but the evidence is not conclusive. The damage lines 
converging into static ultimate are thus of potential utility for such 
materials. 

3 Again, the damage lines used should not be considered defini­
tive. It has been shown in paper under discussion that for two-stage 
loading the sum of cycle ratios (PM coefficient) is larger than 1 for 
low-high and smaller than 1 for high-low when the slope of the damage 
curves is smaller than that of the S-N curve. Since such trends are 
generally observed in metals it seems reasonable to use this kind of 
damage curves for metals. The simplest such damage curves are 
straight lines converging into the fatigue limit. 

When approaching the s-axis the damage curves must ultimately 
change slope and converge into the static ultimate. How and where 
this takes place is not known. Near the static ultimate there must be 
a region where the slope of the damage curves becomes larger than 
that of the S-N curve thus reversing previously described trend. 
However, this portion of the S-N curve is not well known because of 
the considerable scatter due to failure occurring after a small number 
of cycles. 

4 The relation between discusser's (Bui-Quoc) Fig. 2 and our 
method is not clear to me, since we would use damage lines converging 
into the fatigue limit which is not the case in the figure. Our predic­
tions are in good agreement with data obtained by Manson, et al., as 
shown in our paper. 

5 I am grateful for the reference to this paper of which I was not 
aware. This author has also used straight damage lines converging into 
fatigue limit thus arriving at some of our results without, however, 
attempting to give underlying reasons or to develop a general 
theory. 

6 May I be forgiven for this misprint. 
7 When the <j>k are all constant and equal, all exponents in (26) 

are equal to one and the PM rule is obtained. When the 4>k are given 
by either of (27)-(29) they are obviously not constant. 

Dr. Ben Amoz' approach and comments are interesting but are not 
related to the present work in obvious fashion. Our theory does not 
assume that all metals have fatigue limits as indeed it is not confined 
to metals. The only material information which enters into the theory 
is damage curves for two stage loadings and the absence of a fatigue 
limit will require damage curves which take this into account. Fur­
thermore, the information contained in the Coffin-Manson fatigue 
law or any other such relation does not enter into the theory. It is 
perhaps of interest to mention that the present theory has been suc­
cessfully applied to two-stage strain cycling, [11]. For such cycling a 
fatigue limit is not experimentally detectable but that does not mean 
that it does not exist. In the paper mentioned the fatigue limit was 
estimated on the basis of persistent slip band considerations. 
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The Flow of a Non-
Newtonian Fluid 
Past Projections and 
Depressions1 

Vivian O'Brien.2 The boundary integral approach to study 
two-dimensional second-order fluid pressure fields is a welcome ad­
dition to more conventional finite-difference or finite-element 
methods. But the paper "The Flow of a Non-Newtonian Fluid Past 
Projections and Depressions"1 seems to be only the introductory 
chapter. Undoubtedly, as the authors say, the method is applicable 
to more arbitrary geometries than rectangular depressions, but un­
fortunately such results were not described. Schubert's conformal 
mapping of an unbounded Couette shear flow past circular arc pro­
jections or depressions was cited, with the statement that conformal 
transformations "cannot be used" for internal shear flow over more 
arbitrary shapes. On the contrary, we have used conformal mappings 
to model pulsatile axisymmetric viscous flow over smoothly varying 
projections [1, 2]. The same analytic mapping functions can be used 
for corresponding two-dimensional configurations, with a uniform 
velocity boundary condition on the flat plane for Couette shear flow. 
Moreover, various numerical mappings can be applied to any shape, 
and the resulting transformed equations solved by finite-difference 
methods [3]. 

Lest the reader come away with some incomplete ideas regarding 
the present Newtonian results presented in footnote 1 for creeping 
Couette flow over rectangular slots, it would have been instructive 
to compare the calculations to earlier Stokes solutions (none cited). 
For example, it had been shown that circulation patterns in the slots 
depend on two geometric ratios, d/w and D/d [4], where d and w are, 
respectively, the depth and width of the slot depression and D is the 
channel depth. Not only can there be one large vortex spanning the 
slot or two vortices side-by-side,1 but for fixed D/d as d/w ~* 0 the two 
vortices get isolated in the corners and as d/w - • «> a vertical line of 
central vortices of alternate sign appears. The heights of these vortex 

1 By A. Mir-Mohamad-Sadegh and K. R. Rajagopal and published in the 
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arbitrary shapes. On the contrary, we have used conformal mappings 
to model pulsatile axisymmetric viscous flow over smoothly varying 
projections [1, 2]. The same analytic mapping functions can be used 
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velocity boundary condition on the flat plane for Couette shear flow. 
Moreover, various numerical mappings can be applied to any shape, 
and the resulting transformed equations solved by finite-difference 
methods [3]. 

Lest the reader come away with some incomplete ideas regarding 
the present Newtonian results presented in footnote 1 for creeping 
Couette flow over rectangular slots, it would have been instructive 
to compare the calculations to earlier Stokes solutions (none cited). 
For example, it had been shown that circulation patterns in the slots 
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patterns depend on Did and also on the shear flow velocity profile 
[4]. Poiseuille flow produces a slightly different circulation pattern 
from a Couette flow in the same geometry and thus also a different 
second-order fluid pressure effect [5]. 

The nonlinear influence of the Reynolds number is not mentioned 
in the paper, l but applies to many experimental situations. Townsend 
[6] has included the nonlinear convective term for second-order 
Poiseuille flow over slots. Perhaps the authors will demonstrate that 
the boundary integral method can be extended to these cases. 
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DISCUSSIONS /ERRATUM 

ERRATUM 
Erratum on "Free Vibration of a Beam Supported by Unsymmet­

rical Spring Hinges," by R. C. Hibbeler, and published as a Brief Note 
in the June, 1975, issue of the ASME JOURNAL OF ApPLIED ME­
CHANICS, Vol. 42, pp. 501-502. 

The boundary condition, equation (3), should include a minus sign, 
i.e., 

a a2 

K2 ax y(l, t) = -EI ax 2y(l, t) 

Consequently, the frequency equation, equation (7), is then 

2(knl)2 tan knl tanh knl + (Kll + K2~ (knl) (tan knl 
EI Ell 

(3) 

_ tanh knl) - (Kll) (K21) (1 _ 1 ) = 0 (7) 
EI EI cos knl cosh knl 

Table 1 is not affected significantly; however, a corrected version 
can be obtained from the author (P.O. Box 40141, Lafayette, La. 
70504). 

The author wishes to thank Messrs. G. Prathap and D. Nigogi who 
brought this matter to his attention. 
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Dynamical Systems and Evolution Equations: Theory and Ap­
plications. By J. A. Walker. Plenum Publishing Corp. New York. 
1980. Pages viii-236. Price $29.50. 

REVIEWED by T. K. CAUGHEY1 

This is the first book to give a systematic account of the consider­
able progress which has been made in extending the geometrical 
methods, developed for ordinary differential equations, to systems 
whose evolutionary equations are partial, delay or functional differ­
ential equations. The difficulty with such systems is that their state 
spaces are infinite dimensional and not ideally compact, unlike or­
dinary differential equations where state spaces are finite dimen­
sional. 

The book is organized into five chapters. The first chapter discusses 
the general ideas and illustrates the techniques for finite dimensional 
systems. Chapters II, III, and IV extend the introductory treatment 
of Chapter I to a general metric space framework. Chapter II sum­
marizes much of the mathematics needed for this extension, Chapter 
III discusses abstract evolution equations in Banach spaces and 
Chapter IV describes some of the more useful ideas of topological 
dynamics. The extension of Liapunov's direct method for investi­
gating stability and asymptotic behavior by the invariance principle 
is studied in some detail. Attention is focused throughout the book 
on dynamical systems (the autonomous case) while processes (the 
nonautonomous case) are mentioned only briefly. Chapter V contains 
some recent applications of the theory to physical systems ranging 
from supersonic panel flutter to the stability of a nuclear reactor. 

Interferometry by Holography. By U. I. Ostrovsky, M. M. Butosov, 
and G. V. Ostrovskaya. Springer-Verlag, Berlin, Heidelberg, New 
York. 1980. Pages 330. Price $35.90. 

REVIEWED by F. P. CHIANG2 

In the late sixties and early seventies there had been a saying to the 
effect that the only useful application of laser is in holography and 
the only useful application of holography is in holographic interfer­
ometry. To a certain extent the statement is still true today. Nu­
merous articles and books have been written on the subject of holo­
graphic interferometry. However, most of them assume the reader 
to have a good knowledge of optics and many even assume the fa­
miliarity of communication theory. This is so, because most of the 
authors are electrical engineers in whose field modern optics has been 
residing for the past two decades. (Indeed, it is the recognition of the 
formal analogy between optics and communication theory that has 
prompted the rapid development of modern optics.) As a result me­
chanical engineers, material scientists, biologists, etc., who have little 
or no training in optics are handicapped in their quest to enter the 
field. It is with these people in mind that the authors have set out to 

1 Professor, Mail Code 104-44, California Institute of Technology, Pasadena, 
Calif. 91125. 

2 Senior Visiting Fellow, Physics and Chemistry of Solids, Cavendish Lab­
oratory, Cambridge University, England (on sabbatical leave from SUNY, Stony 
Brook.) 

450 / VOL. 48, JUNE 1981 

write the book. In my opinion they have largely succeeded in their goal 
of bringing the subject matter closer to the uninitiated. 

The book is divided into five chapters. The first (with 83 pages) 
deals with the general principles of light interference, classical in­
terferometry, holography and holographic interferometry. The in­
clusion of classical interferometry is rather unique and quite useful 
because classical and holographic interferometric methods are closely 
related. The sections on holography and holographic interferometry 
are clearly written without the unnecessary mathematical jargon. The 
second chapter entitled "experimental techniques" (50 pages) gives 
a good account of the hardwares needed for performing holographic 
interferometry. Items discussed range from lasers, recording materials, 
and vibration tables to pinhole filters, beam splitters, and hologram 
fasteners. The next three chapters are on applications. The most 
comprehensive is the one on the "investigation of phase inhomo-
geneities" (Chapters 3, 86 pages) which reflects the authors personal 
experiences in the field. Detailed descriptions of various methods are 
given including many examples in the studies of plasma and gas dy­
namics. The next chapter (58 pages) is on the measurement of (de­
formation induced) displacements, generation of surface contours, 
and detection of flaws. The part of deformation measurement is 
perhaps the weakest of the entire book. Only general principle of 
deducing displacement vector from a deformed three-dimensional 
object is outlined. No discussion is given to the calculation of stress 
or strain; and the only quantitative example is that of a cantilever 
beam. The final chapter (25 pages) is on the "studies of vibration," 
which is perhaps the most important engineering application of ho­
lographic interferometry and is well presented in the chapter. 

The book also has some other minor blemishes: there are quite a 
few typographical errors, the English could stand some improvement, 
etc., but on the whole, it is a valuable addition to the literature. I 
recommend it to anyone who is interested in the applications of ho­
lographic interferometry. 

Rheology. Edited by G. Astarita, G. Marrucci, and L. Nicholais. 
Proceedings of the Eighth International Congress of Rheology. 
Naples, Italy. 1980. Plenum Publishing Corp., New York. Vol. 
1, pp. xvi-421; Vol. 2, pp. xxv-677; Vol. 3, pp. xxiii-785. Price Vol. 
1, $45; Vol. 2, $69.50; Vol. 3, $69.50. 

REVIEWED BY R. M. CHRISTENSEN3 

The Proceedings of this congress provide a useful and very broad 
cross section of contemporary work in rheology. The subjects span 
solid, fluid behavior, macroscopic, molecular scales of consideration, 
and experimental theoretical, and processing lines of investigation. 

It is not possible to give a concise Survey of the contents, it is simply 
too extensive. Rather, a small sampling of the papers may better serve 
to provide an indication of the contents. The keynote lecture of the 
congress was delivered by C. Truesdell, entitled "Sketch for a History 
of Constitutive Relations." In a lively and interesting account, the use 

3 Lawrence Livermore Laboratory, P.O. Box 808, L-338, Livermore, Calif. 
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B O O K R E V I E W S 

of the term constitutive relations is traced and the significance of it 
is assessed. The invited lectures covered a variety of subjects. For 
example, K. Walters and H. A. Barnes discuss the anomalous effects 
that are caused by lack of recognition of extensional flow behavior in 
some types of viscometers. In fact, if there is one subject that is re­
ceiving the major emphasis in current rheological studies it is that of 
extensional flows for polymer melts. The activity in this area is well 
represented in the Proceedings. An informative survey of various 
aspects of extensional flow is covered by C. J. S. Petrie and J. M. 
Dealy. T. Raible and J. Meissner present experimental results, on 
extensional flows, that focuses on the critically important subject of 
the existence or nonexistence of a stable steady state, at high rates 
of elongation. 

In other typical areas, H. Janeschitz-Kriegl surveys flow birefrin­
gence and R. B. Bird discusses bead-spring-rod models of the kinetic 
theories for polymer solutions. M. J. Crochet and M. Bezy discuss 
numerical solutions for the die entry flow problem, while R. I. Tanner 
applies a finite-element approach to the die exit problem, including 
the consequent swelling. S. T. J. Peng developes a model for the an-
isotropy of thermal expansion in materials under states of large de­
formation. 

Overall, the Proceedings of this congress are highly recommended 
to interested workers in mechanics. These three volumes provide a 
convenient and useful entry to much of the current work in rhe-
ology. 

Creep Analysis. By H. Kraus. John Wiley & Sons. 1980. Pages 
xvii-250. Price $28.75. 

REVIEWED BY D. L. MARRIOTT4 

In the past decade a number of major advances have been made in 
creep analysis, mostly concerned with cyclic loading and with damage 
accumulation. Although this progress has been widely reported in 
scientific papers, little has been done to keep up with the current state 
of the art with a textbook. Several collections of papers have been 
published in book form, but these lack the continuity of a single author 
text. For these reasons Professor Kraus's book is both relevant and 
opportune. 

Professor Kraus deliberately confines his treatment of creep to 
phenomenological or empirical material descriptions and concentrates 
on computational methods of interest to the design analyst. 

All the recognized and understood creep phenomena such as steady 
state, transient creep, primary, secondary and tertiary phases, variable 
and multiaxial behavior are discussed adequately. In addition, recent 
progress in description of material and component behavior under 
variable loading is reviewed very competently. There are sections on 
creep ratchetting and creep fatigue interaction which form excellent 
introductions to these two highly topical subjects. 

The main thrust of the book is toward analysis of component be­
havior. Professor Kraus is an acknowledged authority in the field of 
finite-element analysis. Not surprisingly the application of finite el­
ements to creep problems is well done. It is obviously impossible to 
give a full treatment of finite-element analysis as a section of a book 
on creep but the basic principles are well laid out, several examples 
of analysis of complex structures are given, and there is useful advice 
for the newcomer on the availability of standard computer codes. 

A large proportion of the book is given over to approximate methods 
of analysis such as bounding methods, and reference stress applica­
tions—the latter particularly with reference to creep rupture. The 
field of approximate analysis has a long history of application to creep 
problems. There was some opinion in the 1960's that the advent of 

4 Visiting Associate Professor, Department of Mechanical and Industrial 
Engineering, University of Illinois at Urbana-Champaign, Urbana, 111. 
61801. 

finite-element methods would render all this effort redundant. It is 
interesting therefore that use of such methods is still advocated, partly 
because of the high cost of exact analysis, but also because of the in­
sight into the basic structural action which is less easy to obtain by 
numerical methods. Professor Kraus's book is the first textbook to 
give a full treatment of the developments in approximate analysis 
which have occurred in the past 5 years. 

One area, not always very well dealt with in textbooks, is the rela­
tionship between research, analysis, and design codes. Professor Kraus 
gives a very clear picture of recent ASME Code developments. He 
devotes a full section to a discussion of ASME Code Case 1592—the 
most authoritative guide available at present for high temperature 
design. This section is invaluable to the newcomer to the subject. 

This book is written as an introductory text for an advanced subject. 
It does not claim to examine the most advanced developments in creep 
but is aimed more at setting down in easily understandable form, those 
aspects of the subject which can be used to solve current engineering 
problems. Its main appeal would be to structural analysts in industry, 
and as a textbook for graduate or senior undergraduate specialist 
courses. Given this objective the book is well written with clear ex­
planations and amply supplied with worked and unworked examples. 
There is no doubt that this text is a welcome contribution to the lit­
erature and should become a standard introductory text. 

Dislocations in Solids: Dislocations in Metallurgy. Vol. 4. Edited 
by F. R. N. Nabarro. North-Holland. 1979. Pages viii-464. Price 
$87.75. 

REVIEWED: T. MURA6 

This is the fourth of five volumes devoted to the behavior of dislo­
cations and their influence on the properties of solids. It contains 
seven papers concerned with the phenomenon of slip in crystal, the 
predominant mechanism of the process of plastic deformation, and 
other processes such as precipitation and fracture. The author, title 
of paper, and summary of contents of each of these papers are listed 
as follows: 

R. W. Balluffi and A. V. Granato. "Dislocations, Vacancies and 
Interstitials," pp. 1-133. At the present time, the authors say, there 
is still a serious lack of reliable and quantitative information on the 
interaction of vacancies and interstitials with dislocations. This is 
because the basic properties of the point defects themselves are not 
yet well enough established. 

As a necessary preliminary, the authors begin with a brief account 
of present knowledge of the lattice properties of the vacancies and 
interstitials. Then, their interactions with dislocations and the manner 
in which they probably diffuse to and along dislocations are discussed. 
In the regime of low point-defect concentrations, the types of basic 
information on the dislocation climb, the temperature dependence 
of the yield stress for locked dislocations, and the striking effects in 
superconductors are obtained from internal friction (ultrasonic at­
tenuation or damping) measurements. 

The interaction between the hydrostatic component of the elastic 
stress field of the dislocation and the dilation due to the defect, elec­
trical interactions in ionic crystals, and the localized vibrational mode 
interactions are discussed. Calculations of the configuration and 
binding energies of vacancies and interstitials in the cores of dislo­
cations are introduced. No direct measurements have yet been made 
of the diffusion rates of either vacancies or interstitials along dislo­
cations. However, several theoretical models and indirect experiments 
are proposed. Granato and Liicke consider a dislocation line with two 
types of pinning points (strong and weak pinning points) and calculate 
the damping and modulus changes for all frequencies. 
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F. Larche. "Nucleation and Precipitation on Dislocations," 
pp. 134-153. Dislocations can act as catalysts for nucleation of anew 
phase in solids. The misfit strain of a precipitate is accommodated 
by the strain field of the dislocation, reducing the activation energy 
necessary to the formation of a nucleus. The difference between co­
herent and incoherent interfaces is not clearly mentioned in the text 
from the mechanical point of view. 

P. Haasen. "Solution Hardening in f.c.c. Metals," pp. 154-189. 
The f.c.c. metals have low values of the Peierls-Nabarro force while 
b.c.c. metals have its high values. The dislocation theory of solution 
hardening depends strongly on the crystal structure. Haasen writes 
for f.c.c. metals in this chapter and H. Suzuki writes for b.c.c. metals 
in the following chapter. 

The elementary interactions between a single foreign atom and a 
dislocation on a nearby slip plane, the force to derive a dislocation 
through a solid solution at T = 0, temperature and inertia effects, and 
experimental results are treated in a very organized way. 

H. Suzuki. "Solid Solution Hardening in Body-Centered Cubic 
Alloys," pp. 190-217. This chapter is very original in the sense that 
most of the materials in the text are the author's work. Nevertheless, 
the author gives fair credits to other researchers' papers. The author 
uses a new statistical method by which he calculates the average ve­
locity of the motion of a kink overcoming a random distribution of 
barriers caused by solute atoms. The statistics involve finding k solute 
atoms in N total number of atoms entering the dislocation core and 
finding possible motion of a kink. His theoretical prediction for lower 
yield stresses of iron alloys is compared with Takeuchi's experimental 
results. 

V. Gerold. "Precipitation Hardening," pp. 218-260. For 
shearable particles the author discusses the origins of the interactions 
between dislocations and particles through chemical, elastical, atomic 
ordering, and stacking fault considerations. However, our knowledge 
about the subject is still vague. The theories predicting the macro­
scopic yield stress from the interactions mentioned previously are not 
satisfactory when a number of dislocation-particle geometrical en-
countings are conceivable. 

The Orowan process of the dislocation line tension for nonshearable 
particles is treated reasonably well in the text. However, the author's 
treatment on the dispersion hardening due to Orowan loops contains 
some ambiguities on the image stress, the average stress in the matrix 
and that in the inclusions. The author should have read and cited as 
references the celebrated papers of K. Tanaka and T. Mori, Acta. 
Met., Vol. 18,1970, pp. 931-941 and of T. Mori and K. Tanaka, Acta. 
Met., Vol. 21,1973, pp. 571-574. They correctly defined these quan­
tities and obtained them rigorously. 

Recent progress in the temperature-dependent relaxation mech­
anism is also not properly mentioned in the text. The author should 
have studied the review paper by L. M. Brown, Proceedings, 5th In­
ternational Conference Strength Metals Alloys, 1979, p. 1551. 

S. J. Basinski and Z. S. Basinski. "Plastic Deformation and 
Work Hardening," pp. 261-362. According to Cottrell, this subject 
was the first problem to be attempted by the dislocation theory of slip 
and may well prove to be the last to be solved. The authors completely 
agree with Cottrell and state that the reason lies, at least partly, in 
the very large number of parameters which, even in the simplest case 
of tensile deformation of a single crystal, include such variables as 
crystal orientation and purity. Since many review articles representing 
many points of view have been published over the years and the 
available experimental evidence has been documented in reasonable 
detail, the authors say, special consideration is given to areas where 
relatively recent work has in some way changed the perspective. In 
view of the extensive body of literature on plastic deformation, the 
frame of reference established here is tensile deformation of pure f.c.c. 
crystals, primarily Cu deformed in single glide. The article contains 
surface effects, transmission electron microscopy of Ge foil and of 
neutron irradiated Cu, latent hardening and quantitative secondary 
slip data, and thermal glide. Well-organized and substantial discus­
sions follow each subject. Only very few mathematical equations ap­
pear in the whole text. 

E. Smith. "Dislocations and Cracks," pp. 363-448. This chapter 

by E. Smith could be an excellent textbook on fracture physics for last 
year students in undergraduate or first year students in gradient 
studies. The article is well written with an interdisciplinary approach 
combining materials science and mechanics. Unfortunately, however, 
a few important subjects (e.g., stress-intensity factors in anisotropic 
materials, growing cracks in elastic-plastic materials) are ignored in 
the text. Barnett and Asaro, Journal of Mechanics and Physics of 
Solids, Vol. 20,1972, pp. 353-366; for instance, used the dislocation 
model to a slit-like elastic crack in anisotropic materials and found 
that the stress-intensity factor is independent of the elastic moduli. 
The article could be richer in contents if the author further introduced 
the work on the growing crack by Wnuk, Proceedings, International 
Conference on Dynamic Crack Propagation, Lehigh University, 1972, 
pp. 273-280, Rice and Sorensen, Journal of Mechanics and Physics 
of Solids, Vol. 26, 1976, pp. 163-186; Kfouri, Journal of Mechanics 
and Physics of Solids, Vol. 27,1979, pp. 135-150, among others. 

Dislocations in Solids: Other Effects of Dislocations: Disclina-
tions. Vol. 5. Edited by F. R. N. Nabarro. North-Holland, New 
York and The Netherlands. 1980. Pages viii-421. Price $78. 

REVIEWED BY T. MURA6 

This is the last of five volumes devoted to the behavior of disloca­
tions and their influence on the properties of solids. It contains seven 
review papers which fall into two groups. The first group treats the 
influence of ordinary translational dislocations and the second group 
treats the theory and properties of rotational dislocations (disclina-
tions). The author, title of paper, and summary of contents of each 
of these papers are listed as follows: 

C. J. Humphreys. "Image of Dislocations," pp. 1-56. This 
chapter concentrates on the most important techniques for the 
imaging of dislocations and in particular upon significant recent de­
velopments which have not yet been reviewed in other publications. 
Early developments, up to 1964, have been covered in the book of 
Amelinckx (The Direct Observation of Dislocations, Academic Press, 
New York, 1964). 

The article contains a simple quantitative physical explanation of 
the method and the theory for describing a particular imaging tech­
nique, the theory and principles of electron propagaion in crystals, 
the many-beam dynamical theory of electron diffraction, high-voltage 
electron microscopy, X-ray for bulk specimens, and recent develop­
ments in field-iron and optical microscopy. 

B. Mutaftschiev. "Crystal Growth and Dislocations," pp. 
57-126. Half of the chapter is devoted to the theory of crystal growth. 
The second part of the chapter is limited to examples of growth 
morphology by a dislocation mechanism. The third part deals with 
the generation of dislocations during crystal growth. 

Within a few months of the presentation of Frank's theory (1949) 
for the behavior during growth of flat faces containing dislocations, 
the first experimental support appeared. L. J. Griffin (1950) found 
systems of steps corresponding exactly to the prediction of the theory 
by observation of the surface of natural beryl crystals by phase con­
trast optical microscopy. Now, however, the author says, some of the 
conclusions or interpretations on the crystal growth through dislo­
cations obtained in the last decade are not as sure as they first ap­
peared. For example, the existence of spirals with a step-height much 
larger than monomolecular shows that the nonsplitting of a step could 
not be a proof for its elementary height. 

R. Labusch and W. Schroter. "Electrical Properties of Dis­
locations in Semiconductors," pp. 127-191. The occupation sta­
tistics and the calculation of the electrostatic potential around a 
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charged dislocation resulting in relations between the occupation 
ration / (fraction of dislocation states occupied by electrons) and 
temperature or between the Fermi level and / are outlined and some 
important aspects in the application of these relations to experimental 
results are discussed. The problem of deriving the carrier density and 
/ from Hall effect data is also discussed. Theoretical calculations of 
the free carrier mobility in deformed semiconductors are compared 
with experiments. 

F. R. N. Nabarro and A. T. Quintanilha. "Dislocations in Su­
perconductors," pp. 192-242. In 1968, Kojima and Suzuki, con­
ducting tensile tests at a constant rate of strain on the Type I super­
conductor lead and on the Type II superconductor niobium at 4.2 K, 
found that the flow stress increased when superconductivity was 
destroyed by a magnetic field. The electron drag on the moving dis­
locations was absent in the superconducting state and restored by the 
magnetic field. 

The first part of this chapter discusses the change in the mobility 
of ordinary dislocations of the crystal lattice of a metal when the metal 
becomes superconducting. 

The second part of this chapter is not very closely Telated to the first 
part. It is concerned with the magnetization of a superconductor of 
Type II, which occurs by the motion of a lattice of flux lines through 
the crystal. During this process, the authors postulate, the dislocations 
of the crystal lattice remain fixed, and act as moderatley effective 
obstacles to the motion of the flux-line lattice. The nature and effect 
of dislocations in the lattice of flux lines in a Type II superconductor 
are analyzed in the last section. 

M. Kleman. "The General Theory of Disclinations," pp. 
243-297. The concept of disclinations (rotational dislocations) has 
recently found wide application in liquid crystals. Disclinations are 
the topoligical concepts which help in a description of broken sym-

Thermal Stresses in Severe Environments. Edited by D. P. H. 
Hasselman and R. A. Heller. Plenum Press, New York and 
London. 1980. Pages X-737. Price $75. 

REVIEWED BY J. L. NOWINSKI7 

The book contains the Proceedings of the International Conference 
on Thermal Stresses in Materials and Structures held at Virginia 
Polytechnic Institute and State University in Blacksburg, Va., in 1980. 
The 33 contributions, most of them by the well-known experts in the 
field, may roughly be divided into five groups. First of these (8 papers) 
concerns thermal fields in specific materials such as polymeric and 
crystalline solids from the atomistic viewpoint; body (cylinder) with 
temperature-dependent properties; nonlinear composite propellants; 
ceramic composites; semiabsorbing materials under intense radiation; 
layered structures; heat-absorbing glasses; glass seals under thermal 
shock. The second group (5 papers) involves problems of prediction 
in thermoviscoplasticity; creep in jamb frames, as well as three vis-
coelastic analyses: of interaction effects in filled polymers, of allowable 
strength under variable thermal loads, and of Monte-Carlo simulation. 
Fracture and associated phenomena are the topics of the third group 
of 8 papers that include: examination of elastic-brittle materials; 
statistical fracture analysis; evaluation of failure probability in an­
isotropic structures; study of part through cracks subjected to thermal 
shock; investigation of effects of spatial variation of thermal con­
ductivity; of crack healing; thermally induced stress singularities; and 
of instability of parallel cracks and its influence on rock geothermal 
energy. To the fourth group, involving dynamic and quasi-dynamic 
phenomena, one can include 5 papers discussing: finite wave speeds; 
transient and permanent thermal stresses; thermal shock of refrac­
tories; thermal shock resistance of ceramics; and, finally, thermoelastic 
buckling of plates. The fifth group, rather diversified in contents, 

7 H. Fletcher Brown Professor Emeritus, Department of Mechanical and 
Aerospace Engineering, University of Delaware, Newark, Del. 19711. 

metries of directional media (mesomorphic phases, surface crystals, 
spin lattices, etc.). 

The first part of the text is devoted for explanation on the topology 
and geometry of disclinations. From this geometrical consideration, 
one can say that disclinations act as dislocation sources and sinks. 
Next, the energy of a disclination line in a nematic crystal is presented. 
Singular solutions which minimze the energy, assuming that the so­
lutions are planar, show some geometries discussed in the first part 
of the text. The last part of the article describes about disclinations 
in cholesterics. Although the author writes another chapter on dis­
locations in the same volume, the article seems to need some intro­
duction for readers to explain how disclinations are related to the 
physical properties of the directional media. 

Y. Bouligand. "Defects and Textures in Liquid Crystals," pp. 
299-347. This chapter deals with the direct observation of defects 
in mesmorphic media and their geometrical and topological aspects. 
The lamellated structure of smectics, myelinics, and cholesterics with 
a small helical pitch leads to textures which will be studied in terms 
of the geometry of parallel surfaces. The textures of nematics and 
weakly twisted cholesterics lead to problems of topology in director 
fields. Readers will be impressed by many beautiful and interesting 
figures and pictures. 

M. Kleman. "Dislocations, Disclinations and Magnetism," pp. 
349-402. The distribution of the magnetization around a dislocation 
or disclination becomes important when one wants to correlate the 
saturation law under large applied magnetic field to the defect content 
of the medium. The article starts with the basic concepts in domain 
theory and follows by the magnetoelasticity in terms of dislocation 
and disclination theories, the singularities which appear in spin lat­
tices, and the interactions of lattice dislocations with the magnetic 
structure of a ferromagnetic crystal. 

takes care of 7 papers: a general survey of the present state of the field 
and conceivable future trends; analysis of thermomechanical pa­
rameters due to fire; life predication of heat exchangers; thermal 
stresses in linings of combustion engines; analysis of stresses in loft 
densometer mounting lug assembly; propagation of propellant sep­
arations in rocket motor grains; and estimate of storage life of some 
projectiles. The volume is highly recommended to those who want an 
up-to-date look at the research in the field. 

New Approaches to Nonlinear Problems in Dynamics. Edited 
by Philip J. Holmes. SIAM, Philadelphia, Pa. 1980. Cloth. Pages 
xii and 529. Price $42.50. 

REVIEWED BY P. K. C. WANG8 

Recently, the study of nonlinear dynamical systems, in particular, 
bifurcation phenomena and systems with chaotic or complex behavior, 
has become a highly active area of research in mathematics and var­
ious branches of science and engineering. Most of the engineering 
studies are based on physical experimentation, stimulation, and 
analysis using conventional approaches such as perturbation and 
averaging methods. On the other hand, recent mathematical devel­
opments in this area make extensive use of concepts and results in 
topology and differential geometry such as the theory of differentiable 
manifolds which are unfamilar to most engineers. An exchange of 
information, ideas, and viewpoints between the mathematicians and 
engineers could be mutually beneficial and helpful in enriching the 
research in this area. In this spirit, a conference under the title of this 

8 Professor, Department of System Science, University of California, Los 
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charged dislocation resulting in relations between the occupation 
ration / (fraction of dislocation states occupied by electrons) and 
temperature or between the Fermi level and / are outlined and some 
important aspects in the application of these relations to experimental 
results are discussed. The problem of deriving the carrier density and 
/ from Hall effect data is also discussed. Theoretical calculations of 
the free carrier mobility in deformed semiconductors are compared 
with experiments. 

F. R. N. Nabarro and A. T. Quintanilha. "Dislocations in Su­
perconductors," pp. 192-242. In 1968, Kojima and Suzuki, con­
ducting tensile tests at a constant rate of strain on the Type I super­
conductor lead and on the Type II superconductor niobium at 4.2 K, 
found that the flow stress increased when superconductivity was 
destroyed by a magnetic field. The electron drag on the moving dis­
locations was absent in the superconducting state and restored by the 
magnetic field. 

The first part of this chapter discusses the change in the mobility 
of ordinary dislocations of the crystal lattice of a metal when the metal 
becomes superconducting. 

The second part of this chapter is not very closely Telated to the first 
part. It is concerned with the magnetization of a superconductor of 
Type II, which occurs by the motion of a lattice of flux lines through 
the crystal. During this process, the authors postulate, the dislocations 
of the crystal lattice remain fixed, and act as moderatley effective 
obstacles to the motion of the flux-line lattice. The nature and effect 
of dislocations in the lattice of flux lines in a Type II superconductor 
are analyzed in the last section. 

M. Kleman. "The General Theory of Disclinations," pp. 
243-297. The concept of disclinations (rotational dislocations) has 
recently found wide application in liquid crystals. Disclinations are 
the topoligical concepts which help in a description of broken sym-
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Hasselman and R. A. Heller. Plenum Press, New York and 
London. 1980. Pages X-737. Price $75. 
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The book contains the Proceedings of the International Conference 
on Thermal Stresses in Materials and Structures held at Virginia 
Polytechnic Institute and State University in Blacksburg, Va., in 1980. 
The 33 contributions, most of them by the well-known experts in the 
field, may roughly be divided into five groups. First of these (8 papers) 
concerns thermal fields in specific materials such as polymeric and 
crystalline solids from the atomistic viewpoint; body (cylinder) with 
temperature-dependent properties; nonlinear composite propellants; 
ceramic composites; semiabsorbing materials under intense radiation; 
layered structures; heat-absorbing glasses; glass seals under thermal 
shock. The second group (5 papers) involves problems of prediction 
in thermoviscoplasticity; creep in jamb frames, as well as three vis-
coelastic analyses: of interaction effects in filled polymers, of allowable 
strength under variable thermal loads, and of Monte-Carlo simulation. 
Fracture and associated phenomena are the topics of the third group 
of 8 papers that include: examination of elastic-brittle materials; 
statistical fracture analysis; evaluation of failure probability in an­
isotropic structures; study of part through cracks subjected to thermal 
shock; investigation of effects of spatial variation of thermal con­
ductivity; of crack healing; thermally induced stress singularities; and 
of instability of parallel cracks and its influence on rock geothermal 
energy. To the fourth group, involving dynamic and quasi-dynamic 
phenomena, one can include 5 papers discussing: finite wave speeds; 
transient and permanent thermal stresses; thermal shock of refrac­
tories; thermal shock resistance of ceramics; and, finally, thermoelastic 
buckling of plates. The fifth group, rather diversified in contents, 
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metries of directional media (mesomorphic phases, surface crystals, 
spin lattices, etc.). 

The first part of the text is devoted for explanation on the topology 
and geometry of disclinations. From this geometrical consideration, 
one can say that disclinations act as dislocation sources and sinks. 
Next, the energy of a disclination line in a nematic crystal is presented. 
Singular solutions which minimze the energy, assuming that the so­
lutions are planar, show some geometries discussed in the first part 
of the text. The last part of the article describes about disclinations 
in cholesterics. Although the author writes another chapter on dis­
locations in the same volume, the article seems to need some intro­
duction for readers to explain how disclinations are related to the 
physical properties of the directional media. 

Y. Bouligand. "Defects and Textures in Liquid Crystals," pp. 
299-347. This chapter deals with the direct observation of defects 
in mesmorphic media and their geometrical and topological aspects. 
The lamellated structure of smectics, myelinics, and cholesterics with 
a small helical pitch leads to textures which will be studied in terms 
of the geometry of parallel surfaces. The textures of nematics and 
weakly twisted cholesterics lead to problems of topology in director 
fields. Readers will be impressed by many beautiful and interesting 
figures and pictures. 

M. Kleman. "Dislocations, Disclinations and Magnetism," pp. 
349-402. The distribution of the magnetization around a dislocation 
or disclination becomes important when one wants to correlate the 
saturation law under large applied magnetic field to the defect content 
of the medium. The article starts with the basic concepts in domain 
theory and follows by the magnetoelasticity in terms of dislocation 
and disclination theories, the singularities which appear in spin lat­
tices, and the interactions of lattice dislocations with the magnetic 
structure of a ferromagnetic crystal. 

takes care of 7 papers: a general survey of the present state of the field 
and conceivable future trends; analysis of thermomechanical pa­
rameters due to fire; life predication of heat exchangers; thermal 
stresses in linings of combustion engines; analysis of stresses in loft 
densometer mounting lug assembly; propagation of propellant sep­
arations in rocket motor grains; and estimate of storage life of some 
projectiles. The volume is highly recommended to those who want an 
up-to-date look at the research in the field. 
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Recently, the study of nonlinear dynamical systems, in particular, 
bifurcation phenomena and systems with chaotic or complex behavior, 
has become a highly active area of research in mathematics and var­
ious branches of science and engineering. Most of the engineering 
studies are based on physical experimentation, stimulation, and 
analysis using conventional approaches such as perturbation and 
averaging methods. On the other hand, recent mathematical devel­
opments in this area make extensive use of concepts and results in 
topology and differential geometry such as the theory of differentiable 
manifolds which are unfamilar to most engineers. An exchange of 
information, ideas, and viewpoints between the mathematicians and 
engineers could be mutually beneficial and helpful in enriching the 
research in this area. In this spirit, a conference under the title of this 
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ERRATUM 
Erratum for "On the Stokes Flow of Viscous Fluids Through Corru­
gated Pipes," by N. Phan-Thien, and published in the December, 
1980, issue of the AS ME JOURNAL OF ApPLIED MECHANICS, Vol. 
47, pp. 961-963. 

Delete the sentence containing the equation ol/;/or = ° in the In­
troduction. Although the boundary condition ol/;/or = 0, as used by 
Manton [6]1 and other authors, differs on the surface from the 
boundary condition (3) reported in the original Note in some terms 
of first and second -order, both are correct for axisymmetric flows and 
lead to the same expression for the pressure drop enhancement. 

The author regrets any inconvenience caused by the implication 
that the boundary conditions stated by Manton (6) are incorrect. 

1 Number. in square bracket refers to the reference listed in the original 
Note. 
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