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Dispersion in Laminar Flow Through
Tubes by Simultaneous Diffusion
and Convection

Professor,

Depariment of Mechanica! Englneering,
School of Engineering,
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The dispersion of a small quantity of a solute initially injected into a round tube in which
steady-state laminar flow exists is critically examined. It is shown that the mean solute
concentration profile is far from being symmetric at small dimensionless times after injec-
tion. The mean concentration and the axial location at the peak of the profile are present-
ed in detail as functions of time for flow with various Peclet numbers. It is suggested that
such results may be useful for determining either the molecular diffusion coefficient or
the mean flow velocity or both from experimental measurements. A previously established
criterion in terms of the Peclet number for determining the minimum dimensionless time
required for applying Taylor’s theory of dispersion is graphically illustrated. Although
the complete generalized dispersion equation of Gill’s model is exact, the truncated two-
term form of it with time-dependent coefficients is exact only asymptotically at large val-
ues of time; however, at small Peclet numbers, the two-term approximation is shown
graphically to be reasonably satisfactory over all values of time. The exact series solution
is compared with the solution of Tseng and Besant through the use of Fourier transform.

Introduction

The problem of dispersion of a miscible material is a round straight
tube in which fully developed laminar flow exists has been analytically
studied by many authors. Taylor [1], who initiated the study of this
problem, showed in an intuitive analysis that, for given prescribed
initial conditions, the cross-sectional mean concentration of the solute
after some time has elapsed spreads out longitudinally in a coordinate
moving with the mean flow velocity according to Fick’s second law
of diffusion with a constant .effective dispersion coefficient which,
subsequently improved by Aris [2], is completely determined by the
tube diameter, the flow velocity, and the molecular diffusion coeffi-
cient. Aris, and afterward Gill, et al. [3, 4], from a different appraoch,
has proved that Taylor’s analysis with the correct effective dispersion
coefficient is valid strictly asymptotically at large values of time. The
latter authors, through examples with initial solute inputs in the form
of a slug of finite axial extension, also specified the minimum values
of time beyond which Taylor’s analysis is considered to be useful. Such
specifications cannot be regarded as adequately general and therefore
the question on the time limit for applying Taylor’s theory of dis-
persion still remains to be answered.

In a previous paper [5], the criterion for the validity of Taylor’s
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analysis has been established on a more rigorous basis. It will be
graphically demonstrated that Taylor’s model of laminar dispersion
is valid for all practical purposes when Dt/a2 = 0.7, where D is the
molecular diffusion coefficient, a the radius of the tube, and t is the
Iength of time after introduction of the solute into the tube. The
molecular diffusion coefficients in gases at moderate pressures and
temperatures are of the order of 0.1 cm2/sec. If the dispersive flow
takes place in a tube of 0.1 cm in radius with an average flow velocity
of 10 cm/sec, the foregoing criterion yields a time ¢ ~ 0,07 sec and the
length of the tube required is in centimeters. Thus, for gaseous dis-
persion, Taylor’s theory can be used with complete confidence from
the experimental viewpoint. The ratio of the diffusion coefficients
in liquids to those in gases at normal conditions is 10~ or smaller. For
dispersion of liquids with the same flow velocity in the same size of
tube, Taylor’s theory then applies at a time ¢ ~ 700 sec and a tube in
excess of 70 meters in length becomes necessary. The theory of lam-
inar dispersion in tubes does not account for the effect of gravity on
the concentration distribution of the solute. Even though the excessive
requirement of tube length can be managed in experiments, it is highly
unlikely that analytical predictions can be made to meaningfully
compare with experimental results observed beyond such a long time
period unless gravity is properly included in the theoretical analysis.
What.is needed is a method of solution of the diffusion-convection
equation that is valid at small values of time. Nevertheless, Taylor
made experimental measurements successfully comparable with his
analysis on the dispersion of potassium permanganate solution in
water flowing in a tube with a radius as small as 0.025 em.

Lighthill [6] has given a solution specifically developed for short

JUNE 1981, VOL. 48 / 217
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durations of time after solute injection. The solution, obtained under
the assumption that longitudinal molecular diffusion can be ignored,
has a time limit no longer than that required by the solute in the flow
field to reach the flow boundary by molecular diffusion in the radial
direction. Indeed, the solution is only valid asymptotically at small
times when the concentration distribution is exclusively governed by
convective transport.

The approach of Gill, et al. [7, 8], and the present method are shown
to be equivalent in reference [9] where the dispersion coefficients
required in Gill’s general equations governing the mean transverse
mean concentration are evaluated systematically in an algebraic
manner on the basis of the present analysis. DeGance and Johns [10]
also rigorously justified Gill’s theory and approached the same
problem by expanding the local concentration in Hermite polynomials
in the axial coordinate. By truncating the general equation beyond
the second axial derivative, however, the resulting equation becomes
quite limited in utility. Booras and Krantz [11], on the ground that
for power-law non-Newtonian fluids the concentration distribution
due to pure convection can be highly unsymmetrical, seriously
questioned the general validity at small times of this truncated two-
term dispersion model. The present numerical calculation shows that
for dispersion in liquids, Gill’s two-term equation is applicable at large
times; it is an excellent approximation at times much smaller than
that required by Taylor’s analysis, however, when the effect due to
convective transport becomes comparable to that due to molecular

" diffusion.

At small times, distribution of the mean concentration does not
follow Fick’s law of diffusion. This problem has been brought up by
Aris [2] and studied by Chatwin [12] who, for the case of an initial
concentrated input distributed uniformly over the tube cross section,
presented a solution showing the asymmetrical nature of the mean
concentration profiles at later times. The solution, however, is in-
correct in detail except at large times when the concentration profile
becomes nearly symmetric about the point moving with the average
flow velocity. For an initial input in the form of a uniform slug, Hunt

[13] developed an approximate solution for the local solute concen- .

tration by using the first-order perturbation method through as-
ymptotic boundary matching with the unperturbed pure-convection
concentration profile. The solution was first thought to be a fair ap-
proximation at small times for flow with large Peclet numbers. It
turned out, however, that the technique of asymptotic matching in-
troduced too large an effect due to molecular diffusion on the con-
centration distribution of the solute [5]. Hunt’s solution, therefore,
can not be regarded as quantitatively valid in general at small
times.

In a recent paper, the present author provided a general method
of solution to the basic diffusion-convection equation without im-
posing any arbitrary assumptions [5]. Without the use of the ap-
proximation for the higher order coefficients of the Bessel functions
in the series expansion for the local concentration, the present method
of solution is equivalent to the eigenvalue and eigenvector approach
used by T'seng and Besant [14, 15]. A comparison of the two methods
is given in the Appendix of this paper. The method is mathematically
rigorous and computationally systematic. In reference [5], typical
mean concentration profiles predicted by the various theories for the
case of a concentrated initial input are compared, and the time limit
of Taylor’s analysis is established. This paper presents the detailed
calculations showing the eventual approach to normal distribution
of the solute concentration when the initial input is in a concentrated
form. It is to be noted that for this form of input the theory of Taylor
and of the two-term dispersion model of Gill, et al., invariably predict
a concentration distribution symmetric about the point moving with
the average flow velocity.

Basic Equation and Solution

The diffusion-convection equation for fully developed laminar flow
satisfied by the local solute concentration C(z, r, t) which is considered
to be symmetrical about the center line of the tube is

218 / VOL. 48, JUNE 1981

r? aC

oC OZC 1 o
—+U (1 — ( C)] (1)
ot 2z bz2 ror
Here D is the molecular diffusion coefficient, a the radius of the tube,
U the flow velocity at the center line, and z, r, and ¢ are the axial
distance, radial distance, and time, respectively. For flow in tubes with
no sorption at the walls, the boundary condition is
oC
—=0 at r=aq, (2)
or
and for a concentrated solute input of mass unity uniformly distrib-
uted over the cross section of the tube, the initial condition may be
written as

Ciz, r, 0) = 8(z)/ma? 3)
where 8(2) is the Dirac delta function.

Upon using the dimensionless variables

1
7=Dtla? E=rfa, {=-—(z—-05Ut), (4)
a Pe
where Pe = aU/D is the diffusion Peclet number, and the dimen-

sionless concentration

W((, & ) = madC (5)
we have the diffusion-convection equation in the form
)\ 1 2% oV 1 oV
e ST il N Iy
el a4 e e et TG
and the initial and boundary conditions ’
W(¢; £,0) = 6(5)/Pe, 7
o
— = o t £=1. 8
of at £= 8

The solution of equation (6) satisfying the boundary condition (8)
is formulated as’

V(£ 1) = i:own@, T)o(Bnt)/Io(Br), ®)

where Jo(x) is the Bessel function of zeroth order and 3,,, arranged
in increasing order of magnitude by starting with 8y = 0, are the
non-negative zeros of the first-order Bessel function J;(x).

The expansion representing. the local concentration given by
equation (9) is complete. An exact determination of the local con-
centration, however, requires the complete solution of the functions
¥n($, 7) to all orders determined from an infinite set of interrelating
differential equations which are obtained by substituting equation
(9) into equation (6) and ultimately eliminating from the resulting
equation the radial variable £ by integration through the use of the
orthogonal relations of Bessel functions. Such a procedure, although
exact in the sense of convergence in the mean, has proved to be rather
ineffective [16].

The present author showed in a recent paper [5] that, for any given
Pe and 7, if the conditions

Byir» 1, (10a)

and

Bn* 8/ 737

—_— - 2.
o] P AN <=5 =

of which the first is a necesséry and the second a sufficient condition,
are satisfied, then an approximate determination of the functions
¥r({, 7) can be obtained from the linear equations

(106)

> N-1

i'l = —ﬂn 2\//n 2 Cam——— ‘//m [— Onm + knm Ul 2 \bm

oT m=0 ag‘ )
n<N~-1, (11)

and
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N-1 2y

Vn=— mZO Com—— o’ n =N, (12)
where 8,m is the Kronecker delta,
Jo(BrE)Jof{Brm )
=2 —_— = 13
f ( ) Jo(Br)o{Bm) s
and
m @ = Z anczm/ﬁl (14)

At very large values of dimensionless time such that the conditions,
obtained by setting N = 1 in (10a) and (10b),

7> /8% (15a)

and

\/—’

exp (—f1%7) < |Jo([31)|

1
\/—
are satisfied, equation (11) for the determination of the function yo(¢;,
7), which is the mean concentration over the cross section of the tube,
becomes

2
é.lkg ’ +k (1)} _b_-_l//_(_) . (16)
dr  |Pe? o2
Noting that
4
cu=cp=——7 21, Qamn
B2
and thus
koo'V = IZ corco =16 3. 6,78, (18)
=1 =1

it is seen that the change of the mean concentration obeys Fick’s law
in a coordinate moving at a speed equal to the mean velocity of flow
with an effective constant dispersion coefficient

1

1’;‘; + 16 Z B¢
and the mean concentration becomes normal in distribution if the
initial concentration is symmetric about the origin. Equation (16) is
identical to that obtained by Taylor in his original analysis [1]. Al-
though condition (15b) may be overly restrictive at very small values
of dimensionless time (see Fig. 6), it represents the sufficient condition
under which Taylor’s equation may be used with complete confi-
dence.

For a delta function initial concentration input given by equation
(7), the initial conditions for the functions ¥, are

Yo(t, 0) = 6(5)/Pe,
Yn(§, 0) = nzl

The solutions of equations (11) can-be determined by employing the
methods of Fourier and Laplace transforms. These can be written
as

k(/n(g‘ T)=

(19)

(=1 N1 B,
o7 Po }go f (Z"J exp [a;7 +i(bj7 + w{)]dw,

(20)
where i = 4/—1, a; + ib; are the N distinct zeros, i.e., p = a;j + ib;

which are functions of the real variable w, of the N X N determi-
nant

n=0,1,...... ,N -1,

w?
= |(p + B2+ ;E) Omn + w2kmn ™ + iwepmn],
e

(21)
A’ =dA/dp, (22)

B, is the complementary minor of the (n + 1)th element in the first
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(15b)
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Fig. 1 Typlcal comparlson of transverse mean concentration profifes pre-
dicted by different methods for flow with large Peclet numbers, Pe = 10,000,
at 7 = 0.02, 0.2, and 0.8

row {m = 0) of determinant A, that is, the determinant formed from
A by striking out the first row and (n + 1)th column, and (B,/A"); is
the ratio of B, and A’ when both are evaluated at p = a; + ib;.

Discussion of Results
The zeros of determinant A defined by equation (21) can readily
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Fig. 2 Comparison of time-concentration curves predicted by different so-
lutions at z/a Pe = 0.02 for fiow with Pe = 10,000

be computed by using standard computer subroutines [5] and the
evaluation of the improper integrals given by equation (20) for the
determination of the functions ¥, (£, 7) can be accurately performed
through the method of fast Fourier transform [17]. Under the re-
quirement given by condition (10a), the effective orders of approxi-
mation used in the calculations are made at least equal to the order
N required to satisfy condition (10b) which under all cases gives a
value of N sufficiently good for practical purposes.

For the purpose of investigating the approach to normal distribu-
tion, the function Y(§, 7), which is the mean concentration obtained
by averaging the local concentration over the cross-sectional area of
the tube, is calculated in detail. Figs. 1, with Pe = 10,000, show typical
comparisons of the mean concentration profiles predicted by the
various methods at different dimensionless times for flow with large
Peclet numbers. Another comparison of these solutions is illustrated
in Fig. 2 which shows the mean concentration of the solute when re-
corded in the course of time at a fixed axial location z/a Pe = 0.02.
Lighthill’s solution, specifically developed for small times, is seen here
near the front of the profile indeed the result which would arise if
longitudinal molecular diffusion were ignored. The solution of Hunt,
on the other hand, shows too excessive a dispersion of the solute by
molecular diffusion. It has been shown by detailed numerical com-
parisons [5] that the solutions by Taylor, Chatwin, and the solution
of Gill’s truncated two-term equation are in general asymptotically
valid at large values of time. For flow with small Peclet numbers (Pe
~ 15, see Fig. 7), however, the results obtained by Gill’s solution are
reasonably satisfactory over the entire time domain. The present
result reveals that the concentration distribution at small times is
indeed far from being symmetric and a peak of the concentration
profile always shows up at an axial location somewhat downstream
of, and only asymptotically approaches the section moving with the
mean flow velocity. This result confirms Chatwin’s observation [12]
that, because of radial diffusion and interaction of the solute with the
wall, the concentration distribution at small times should invariably
be asymmetric while satisfying the requirement, for the case of an
initial solute input uniform over the cross section of the tube, that the
first moment of the meah concentration distribution is zero about the
origin in the moving axial coordinate [2]. For the purpose of checking
the correctness of the present method of solution, and thus the ac-
curacy of the calculated results, the first moment of the computed
concentration distribution has been evaluated by using the IMSL
subroutines DCSQDU and ICSICU which are based on the method
of cubic spline approximation [18, 19]; the result is essentially zero
and therefore is not presented here. The ratio of the amount of solute
in the region downstream to that in the region upstream of the mean

flow position .
R= [ vt/ [ poat

220 / VOL. 48, JUNE 1981
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Fig. 3. Curves showling the peak location of the transverse mean concen-

tration and the ratio R defined by equation (23) as functions of the dimen-
slonless time, Pe = 10,000

is plotted in Fig. 3 as a function of time for flow with Pe = 10,000.
Initially R = 1 for the concentrated input considered in this paper.
The variation of R as illustrated, hitting a peak value of almost 1.2,
clearly shows the importance of the detailed interplay between mo-
lecular diffusion and convective transport at small values of time.
Since the first moment of the mean concentration distribution is zero,
the mean concentration profile, therefore, eventually becomes sym-
metric about the plane moving with the mean flow velocity. Also
plotted in Fig. 3, for flow with the same Peclet number, is the distance
from the mean flow position, in unit of the tube radius a, of the peak
location of the concentration profile as a function of time. It is clearly
seen that the peak first moves rapidly downstream, reaches a maxi-
mum distance in the course of time, and then very slowly moves
toward the origin, as is expected due to the eventual approach to
symmetry of the concentration profile, in the moving reference frame.
Since the present analysis is exact, the consistency as shown in Fig,
3 between the variation of R and the change of the peak location shows
that the present calculational procedure is correct and accurate.

Collectively, for flow with Peclet numbers in the range of 5 < Pe
< 10,000, the distance between the point of solute injection and the
peak location of the mean concentration profile, measured in unit of .
0.5Ut, is plotted in Fig. 4 as a function of the dimensionless time. It
is clearly seen from this graph that for flow with low Peclet numbers
(Pe ~ 10), the peak location may be identified with the section moving
with the average flow velocity with little error. For flow with high
Peclet numbers, however, these two locations become significantly
different, especially at a dimensionless time smaller than that given
by equation (15b).

In experiments for flow with known tube radius a, if the peak lo-
cation 2 at a time ¢ is accurately detected, then the result shown in
Fig. 4 suggests a method for determining the molecular diffusion
coefficient with known flow velocity, and vice versa, without quan-
titatively measuring the concentration of the solute at the peak lo-
cation. For example, if U is known and from the experimental mea-
surement 2z/Ut = 1.5, then Pe 7 = 0.75a/z and a trial-and-error
method along the line 22/Ut = 1.5 in Fig. 4 will enable Pe and 7 to be
determined separately. The desired molecular diffusion coefficient
can then be calculated from either the value of 7 or the value of Pe so
obtained. To determine the flow velocity with known molecular dif-
fusion coefficient, a similar procedure may be applied along a constant
Dt /a?line with a value given by the measured time. The method be-
comes particularly simple for the time range in which the ratio 22/Ut
is practically independent of the Peclet number but a function of 7
only. In this case the curve labeled with Pe = 10,000 applies and thus
no trial-and-error is required for determining the pertinent physical
quantity. This case apparently is important for dispersion in liquids
where the Peclet number is usually quite large.
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Fig. 4 Locations of maximum mean concentration as functions of the di-
mensionless time for flow with various Peclet numbers

The product Pe 7y at the peak of the mean concentration profile
is plotted in Fig. 5 as a function of the dimensionless time 7 for various
values of the Peclet numbers. Also plotted in Fig. 5 for Pe = 5, 10, 15,
and Pe 2 10,000, are the peak values of Pe 7y predicted by Taylor’s
theory at locations moving with the mean flow velocity. It is clearly
seen from this comparison that, unless the value of the Peclet number
is very small, Taylor’s theory is strictly valid asymptotically at large
values of the dimensionless time.

The practical usefulness of the results given in Fig. 5 is similar to
that in Fig. 4 if the peak mean concentration y is measured at a
known value of time 7. When both yp and z/a at the peak are experi-
mentally determined at a recorded time, then, by applying a trial
procedure, Figs. 4 and 5 jointly can be used for the calculation of both
the flow velocity and the molecular diffusion coefficient D. The results
given by the curves for Pe = 10,000 should be useful for dispersion
in liquids with large Peclet numbers. _

In order to see how effective condition (15b) is in specifying the limit
of the dimensionless time above which Taylor’s theory becomes valid,
Fig. 6 compares the dimensionless time determined from condition
(15b) (treated as an equation) and that required for Taylor’s theory
to yield the specified percentages of the presently calculated mean
concentration at the peak locations of the presently determined mean
concentration profiles. For flow with very low Peclet numbers, it is
seen here that the time limit is somewhat overestimated. The reason
for this is that, when convective transort becomes comparable with
molecular diffusion in the process of modifying the solute concen-
tration, the axial concentration gradient persists to remain signifi-
cantly large for a relatively long period of time after solute injection
and the assumption used in the original derivation of inequality (15b)
that the axial concentration gradient be small [5] becomes overly
stringent under this condition. The overall comparison shows, how-
ever, condition {156), when viewed as an inequality, is a reasonably
effective criterion.

Taylor’s theory ignores the effect on the concentration distribution
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Fig. 8 Graphical illustration showing the effectiveness of inequality (15b)
as a sufficient condition for the validity of Taylor's theory; the specitied per-
centage Is equal to the ratio of the mean concentration given by Taylor’s so-
lution and that given by the present method, both evaluated at the peak lo-
cations of the presently calculated concentration profiles

due to molecular diffusion in the longitudinal direction. It assumes
that, in a coordinate moving with the mean flow velocity, change in
concentration due to convective transport (axial gradient assumed
to be radially independent) in the bulk of the tube is everywhere in-
stantaneously balanced by molecular diffusion in the radial direction
(see equation (19) in reference [1]). The assumption imposes too rapid
aradial diffusion, and as a result, the overall dispersion of the solute
in the tube is overestimated. Fig. 6 shows, however, Taylor’s as-
sumption is realistically valid at a dimensionless time 7 > 0.7 over the
entire range of Peclet numbers.

As mentioned previously the general equation of Gill, et al. [3, 7],
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Fig. 7 Comparison of resuits given by the two-term approximation of Gill,
et al., and that given by the present method for flow with specified Peclet
numbers. The dashed line gives the ratio of the peak mean concentration glven
by Gli’'s method to that of the presently determined concentration profiles;
the solid line gives the ratio of the mean concentrations when both are eval-
uated at the peak locatlon of the presently determined concentration pro-
flle.

is exact, but the truncated two-term approximation to the general
equation is much easier to use. Therefore, it is also of interest to
compare the present results with the solution of the two-term dis-
persion equation of Gill for the case with a concentrated initial input.
Such a comparison is made in the form of Fig. 7 where it is plotted,
for Pe = 15, 50, 100, and 1000, (a) the ratio of the peak mean con-
centration obtained by Gill’s method to that of the presently calcu-
lated concentration profiles, and (b) the ratio of the mean concen-
trations obtained by Gill’s and the present method when both are
evaluated at the presently determined peak locations. From this
comparison, though limited in the range of graphical display, it is seen
that the degree of genuineness predicted by Gill’s two-term model of
dispersion at small dimensionless times depends sharply on the value
of the diffusive Peclet numbers. For flow with large Peclet numbers
(e.g., Pe = 1000) Gill’s two-term model yields reasonable values for
the peak mean concentration even though the location of the peaks
is incorrectly locked up at the moving origin at all times. For flow with
small Peclet numbers (e.g., Pe = 15), Fig. 7 shows that both concen-
tration ratios are reasonably close to unity throughout the entire range
of time. The discrepancy for flow with large Peclet numbers appar-
ently comes from neglecting the higher:order terms in Gill’s gener-
alized dispersion equation for the change in the transverse mean
concentration. N

Conclusion .

The problem of laminar dispersion in round tubes, subject to axially
symmetric and square-integrable initial conditions, has been solved
analytically. The series expansion for the local concentration con-
verges in the mean and, therefore, by increasing the number of terms
in the series, the computed result can be made as accurate as is de-
sired. The number of terms required for a close representation of the
true concentration is effectively specified by inequalities (10a) and
(10b). AFORTRAN computer program has been completed which,
subject to either a concentrated or a slug initial solute input, can be
used to determine the concentration distribution in either Newtonian
or non-Newtonian fluids. The program can easily be extended to
handle nonuniform initial conditions.
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APPENDIX

Comparison With Method by Tseng and Besant [14, 15]

The technique used by Tseng and Besant for solving equation (6)
by starting with the parti(;ular solution (equation (4) in reference [14])
and then going through the evaluation of the eigenvalues and eigen-
vectors of the characteristic equation has essentially the same basis
as the present method without using the approximation specified by
equation (12).

The functions ¥, ({, 7) defined in the series expansion for the local
concentration given by equation (9) satisfy the equations [5]

Y _ 1 9%n 9 hd OYm
a1 Pe? o{? Bnn ,,Eoc""‘ 2t
n=0,1,2,....... (24)
Let ¢, be the Fourier transform of y,,, namely,
1 @
, T) = —— e=iofd¢, 25)
¢n(w T) ;—27‘_ j‘_w ‘l/n g‘ (

Then the Fourier transform of equation (24) is
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dgn
dr
which is a set of linear equations with constant coefficients para-

metrically dependent on the variable w, and therefore has a solution
of the form

wZ . @
== 1; bn = Bn’Pn —i0 T Cam®m, (26)
€ m=0

w? . '
én = €xp [— (ﬁf' Brn2+ )\) 1']. (27)

Substituting equation (27) into equation (26) yields the system of
algebraic equations

T (wepm = Abpm)bm = 0, n=012....... (28)
m=0
The eigenvalue Ag, A1, Ag, . . ... can therefore be determined from the
characteristic equation
liwenm = Abpm] =0 (29)

and the solution to equation (26) associated with eigenvalue A, can
be written as
w?
$nm = €Xp l— (—— +Ba2+ xm) 7}. (30)
Pe?
By linearly combining all the ¢nm’s, the general solution to equation

(24) can be obtained by applying the inverse Fourier transform,
namely,

Yals, 7) = \/_m > " fom
exp [_ (.".uf. + 8,2+ )\m) T+ iw{] dw. (31)
Pe?

For any prescribed initial distribution ¥, (¢, 0), the axial deriva-
tives
Va®(, 0) =

(82)

Yr($,0), k=0,1,2,......... ,

—F
can be evaluated to all orders. Use of equation (32) in equatlon (31)
gives

VB¢, 0) =7_2— z (zw )kfm,,e‘“' tda'. (33)

Journal of Applied Mechanics

Multiply equation (33) by exp (—iw{)/+/ 27 and integrate over { to
get
1 o A o

— B)(§, O)eiold{ = (jw)* ) (34)

o= e ¢ T fam
which can be used to determine f,,, as functions of w. Such a proce-
dure for the determination of f.m, however, can be completely by-
passed if Laplace transform is applied to equation (26).

Substitution of equation (31) into equation (9) gives the local

concentration in the form

Joln§)
¥ X9 iy -)n—
(g‘ E T) \/_ ;0 mz-o( ) Jo(ﬂn

f fam €xp [-— (— + 8,2+ )\m) T+iw{ldw, (35)
- Pe?

which is formally the same as equation (7) in reference [14] or equation
(21) in reference [15]; the only difference is that Tseng and Besant
chose to express the functions f,n, in terms of the eigenvectors of
equation (28). The aforementioned formulation is made in an axial
coordinate moving with the mean flow velocity and therefore the
content of the present characteristic equation (29) is not identical to
that given by Tseng and Besant. Had the comparison been made in
the fixed coordinate and the term (3,2 been included as part of the
eigenvalue A, then the two characteristic equations would have agreed
in all algebraic detail.

Tseng and Besant presented their calculated transverse mean
concentration distributions at dimensionless times 7 < 2.5 X 10~7 with
a Peclet number Pe = 10 000 for a concentrated initial input (Fig. 10
in reference [15]). At such small times the departure of the actual
concentration distribution from that due to pure convection should
be small. The transverse average thus should be roughly constant
within the range | {]/r < 0.5 and zero elsewhere [1]. Instead, Fig. 10
in reference [15] showed that the mean concentration peaks at { = 0
and decreases steadily as the distance from the mean position ({ =
0) increases. The method of solution used by these authors, as has
been shown previously, is equivalent to that used in the present paper.
Figs. 1 at 7 = 0.02 shows that the front portion of the profile should
be flat, especially if the time is smaller. Such discrepancy in the cal-
culated results, perhaps, serves to indicate that their computational
accuracy for the evaluation of the eigenvalues and eigenvectors should
be reexamined.
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Droplet Dynamics in Creeping Flows

The accelerated motion of a liquid droplet is investigated analytically. The equation of
motion is developed through an analysis of the internal and external fluid motions. Re-
sponse to step changes in applied force and external fluid velocity are determined. Oscil-
lating forces and velocities are treated and frequency response characteristics found. In

F. A. Morrison, JI‘.‘ the appropriate limits, the results reduce to the known behavior of bubbles or rigid parti-
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Introduction

The relative motion between a droplet and the surrounding fluid
is of interest for a variety of reasons. Heat and mass transfer, fuel
burning rates, coagulation, and dissipation are enhanced by the dis-
parate motions produced by fluid acceleration. We seek here to de-
scribe this motion when a spherical droplet moves at low Reynolds
number through the fluid about it. In contrast with the steadily
moving droplet, sufficiently large surface tension is required to
maintain the spherical form of an accelerating droplet.

By analyzing the coupled motions within and about the droplet,
a unified theory is produced which reduces to descriptions of bubble
or rigid particle motions in the appropriate limits. We are concerned
here with describing the effect of the viscous internal response on
motion in stationary or accelerating fluids, in response to steady or
fluctuating forces.

Much earlier work has examined the responses of either rigid or
inviscid spheres in creeping fluids. While the motions of bubbles and
solid spheres differ significantly, little attention has been devoted to
a rigorous analysis of the accelerating fluid sphere whose viscosity lies
between these extremes. Sy and Lightfoot [1] examined the response
of a spherical liquid drop to a step application of a constant force. As
discussed later, their model differs from that presented here. Droplet
response to accelerating flow is of particular interest; no previous
investigations have accounted for the effects of internal circula-
tion.

The Transient Velocity Distribution
We consider the rectilinear transient motion of a spherical droplet
immersed in a second fluid. The fluids are incompressible and New-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS, and presented at the 1981 Joint ASME/ASCE
Applied Mechanics, Fluids Engineering, and Bioengineering Conference,
University of Colorado, Boulder, Colo., June 22-27, 1981.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until September 1, 1981. Readers who need more
time to prepare a Discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division,
January, 1980; final revision, December, 1980. Paper No. 81-APM-29.

224 / VOL. 48, JUNE 1981

tonian with constant, but different, viscosities. The equation of motion
of the droplet is developed by analyzing the coupled fluid motion
within and about the droplet. At the small Reynolds numbers treated
here, the convective acceleration is neglected in both fluids but local
acceleration is retained.

This axisymmetric motion is governed by

192
E2|E2———]|ye=0 1
( ot Ve ey
in the external fluid and
10
EZ(EZ__..__) . =0 9
o o0 vi (2)

in the droplet. ¢ is the Stokes stream function, ¢ is the time, and v is
the kinematic viscosity. The subscripts denote the fluid. E2 is the
Stokes stream function operator.,

In spherical (r, 8, \) coordinates, this operator is

_iz sinf o[ 1 b}

Tort 2 offsinfof

r is the distance from the droplet center and 8, the polar angle. The
local velocity components in these coordinates are

-1 oy 1 oy
r = - = - 4
v r2sin @ of ve @

rsin@ or

At this point, our analysis already differs from the earlier work of
Sy and Lightfoot [1]. In their treatment of transient creeping flow
about fluid spheres, the same equation is used for both fluids, no
distinction being made between kinematic viscosities. They distin-
guish between viscosities only later in the application of a boundary
condition. Consequently, our relations reduce to theirs only in a few
limits.

We will first examine the flow when the frame of the fluid far from
the droplet is an inertial frame. In this frame, the stream function
approaches a constant as the fluid velocity far from the droplet van-
ishes.

E? (3)

Ye—>0 as r—o (5)

The boundary conditions at the droplet surface are also expressed
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as seen by an observer in this frame. The droplet moves with a relative
velocity u. Neither fluid crosses the moving spherical droplet surface.
In each case, the relative normal velocity vanishes there, yielding

: 2gin2 0
¢E+u—(—1——§1—n—-=0 at r=a (6)
and
2 gin2 f
;+M—§L=O at r=a (7)

The droplet surface, r equal to a, is not a stream surface in this
frame.

The tangential velocities of the two fluids are equal at the interface.
In terms of the stream function

at r=a 8)
or or (

The tangential stresses generated by fluid motion balance at the in-
terface,

Ogre = Ogri at r=a. 9)

The final condition is the boundedness of interior fluid velocities at
the origin.

The motions, within and about the droplet, are coupled and must
be found together. In certain physical limits, the motions uncouple.
As the interior viscosity increases without bound, the interior becomes
rigid. As the interior viscosity vanishes (the bubble limit), the inter-
facial tangential stress vanishes. In this case, the exterior motion may
again be found without reference to the interior flow [2].

The transient coupled motions are perhaps most readily found
through use of a Laplace transform with respect to time. Denoting
a transformed quantity with a bar, we have

¥o) = 710 exp (=st) a. (10)

Solutions of equations (1) and (2) are found by using an angular
dependence indicated by equations (6) and (7) and factoring the re-
sulting fourth-order ordinary differential equation in r into two sec-
ond-order differential equations. The resulting equations are

d2 2\ -
(;‘ - ;2“) Y1=0 (11)
and
dz 2 s\-
(Er;-—;g—;) Y2=0 (12)
The general solution then is a sum of
Yi=[Ar2+Br-1sin?6 (13)

IR
ooy o

The constants in both fluids result from the boundary and boun-
dedness conditions. For the exterior fluid, equation (5) yields,

A, =C, =0 (15)
while boundedness at the origin requires
B; =0 (16)
and
Ci =D (17)

The remaining coefficients are more compactly expressyed by first
defining the viscosity ratio

Journal of Applied Mechanics

Y= .u'e/”'i (18)

and other dimensionless quantities. 7y goes to 0 in the rigid limit and
« in the bubble limit.

A= [(2—37—’)«1 \/E)(3~3a\/z+a2-s~)
Ve Vi Vi,

+a2— (l—a\/’—g)} exp(a\/—s—)-— (2—37—7a\/z)

Vi Vi Vi Ve,

X(3+3a \/E+a2i)+azi(1+a\/g)]
v; v; v; Vi
X exp (—a \/E) (19)
v;
and

S=1-4 1+a\/-)[ 3+3a\/:_—a2~—)exp( \/E)
Z+a2i-)exp(—a\/7)]/A (20)

+(3+3a

In the fluid about the droplet,

Be=—%Ea3[1+32(1+a\/—5;)/(a2i)] (21)
and
3 a3 \/E (zi)
D, = zu Eexp(a Ve)/a ” (22)

while the coefficients

wectepompreyf3 -yl
ey ol B]

3
Ci=D;=——Ea3'y(1+a\/E)/A
2 Ve

describe motion within the droplet.

When v increases without bound, the exterior stream function in
the gas bubble limit [2] is recovered. The velocity distribution about
a rigid sphere is produced when + vanishes.

As the droplet velocity approaches a steady value, the stream
function approaches the value given by the final limit theorem, the
Hadamard [3}-Rybczynski [4] stream function.

and

(24)

Motion in a Stationary Fluid
The accelerating droplet experiences an unsteady force exerted by
the surrounding fluid. This force on a spherical body in the axisym-
metric creeping flow is [5], independent of the interfacial boundary
conditions,
- T O
f:—wpeasf ( wel+ zpez)smﬁdﬂ (25)
0 or
pe is the density of the exterior fluid. In terms of the coefficients of
the exterior stream function, this force becomes

f=— é7rpe s [—Be + 2D, (1 +a \/i) exp (—a \/i)] (26)
3 Ve Ve

"This force, together with any externally applied force F on the droplet,

produce acceleration of the droplet
F+F=m;su (27

The droplet mass is m;. Correspondingly, we have m, as the displaced
mass. Combining equations (27) and (26), the externally applied force
is related to the droplet velocity by
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Fig. 1 Step change in the applied force on a neutrally buoyant droplet

— m
F= (mi+——€) ST + 67 e aﬁ(1+a\/_s—:)2 (28)
2 Ve

Only the factor, 2, defined by equation (20), distinguishes this relation
from its rigid sphere counterpart.

When the internal viscosity increases without bound, we invert to
find the force on an accelerating rigid sphere
Ve t du/dr

t-‘r

d T (29)

— me\ du

F (m,+ 2)d + 67
The relation is well known [86, 7]. The mtegral expression, usually
designated the Basset term, originated with Boussinesq [8].

When the internal viscosity and mass vanish, we recover the Mor-
rison and Stewart [2] expression for accelerating creeping response
of a bubble.

a4 a t dF/dT medu_l_4
=——+ 4 uc.au
3var, Jo Vi—r 2 de K

(30)

. 3me \/T ¢ dufdr o me td?u/dr? |

r
\/t—r 6V Y. YO ViE—17

The general expression (28) obtained here would have no simple in-

terpretation if inverted. Instead, we examine the response to a set of

basic inputs. For this purpose, the following dimensionless parameters

are introduced.

Using a relaxation time
(mi + me/ 2)

o= (31)
6w uca

we define a dimensionless time

T=tla (32)
and
S = s (33)
The density ratio is described by
a Im, |12
= R B (34)
B vV ave [2m,- + m,

which takes on the values 0, /3, and 3 when the droplet mass is, re-
spectively, much greater than, equal to, and much less than the dis-
placed mass.

Expressing equation (28) in dimensionless form, we first can invert
numerically [9] to find the response to a step change F in the applied
force. Some results for a neutrally buoyant droplet are shown in Fig.
1 and illustrate the effect of droplet viscosity on the response. The
velocity is expressed as a fraction of the final steady velocity ug. The
final velocity is
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Fig. 2 Oscillating applied force on a neutrally buoyant droplet
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Fig. 3 Oscillating applied force on a neutrally buoyant droplet

(1 + y)F/6mpca(l + 2v/3).

The initial droplet response is revealed by expanding the transformed
velocity in negative powers of the Laplace parameter, then inverting.
The result is

1+ 2v/3 46v/v(0 - BA/2
ufue = T~
1+7 3v7w (v8 + VO — BH/2)
in dimensionless form. The initial acceleration is simply the ratio of
the applied force to the apparent mass.
The approach to steady state is shown using the Bromwich [10]
expansion in positive powers of v/S. For long times,

(L+2v/3) 1
(1+vy) /#T

In dimensional form, the dominant term in the approach to steady
state had no viscosity ratio dependence.

The sinusoidal steady-state response to an oscillating force is
readily obtained using the Fourier transform

i= fw u exp (—iwt) dt

324+, (35)

ulug=1-4 (36)

(37

where i denotes v/—1 and w is the frequency. The Fourier transformed
relation is simply equation (28) with iw in place of s. Results are
conveniently presented as a function of the dimensionless fre-

quency
Q = a2w/9v, (38)

Figs. 2 and 3 show the steady-state response to an oscillating force.
The magnitude of the response monotonically decreases as the fre-
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Oscillating fluid about a lighter droplet

quency increases. The droplet lags behind the force, the phase angle
approaching negative 90° for large frequency. This same behavior is
seen at all mass ratios and viscosity ratios.

Motion in an Accelerating Fluid

The response to an accelerating external fluid is very different in
character. This response can be found by a straightforward procedure.
Let v be the external fluid velocity far from the droplet. Then & in the
coefficients of equation (26) is replaced by the relative velocity @ —
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Fig. 9 Oscillating fluid about a heavier droplet

U. The externally applied force F is, in this case, the force m,, sU re-
sulting from the pressure gradient in the surrounding fluid. With these
changes, we have in place of equation (28),
MeSU = mysti + mes(@ — 0)/2 + 6mpea(@ ~ ) (1 +av/s/ve)2
(39)

A different format is used to display response to an accelerating fluid.
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Whereas the response to a specified force is qualitatively similar for
all mass ratios, the response to an accelerating fluid differs signifi-
cantly. The neutrally buoyant droplet moves exactly with an accel-
erating surrounding fluid. Lighter and heavier droplets move relative
to the fluid.

Fig. 4 shows the response of a light droplet to a step change in fluid
velocity. The droplet immediately assumes a velocity equal to 82/3
of the fluid velocity, then uniformly decelerates to the velocity of the
surrounding fluid. The heavier droplet, whose response appears in
Fig. 5, also has a step change to 32/3 of the external fluid velocity. In
this instance, that change is less than the change of the surrounding
fluid so the droplet continues to accelerate. In both cases, increased
droplet viscosity produces a more rapid response.

Figs. 6 and 7 show the steady-state motion of a light droplet in an
oscillating fluid. Lighter droplets (8 > 1/3) have velocity magnitudes
greater than the surrounding fluid and phase angles leading that fluid.
For low frequencies, the velocity ratio is one and the phase angle zero.
The phase angle reaches a peak at an intermediate frequency whose
value depends on the viscosity ratio. At high frequencies, the phase
angle again approaches zero and the magnitude ratio approaches
B%/3.

Heavier droplets differ by lagging the surrounding fluid and by
having magnitude ratios less than unity decreasing to 32/3 with in-
creasing frequency. See Figs. 8 and 9.

In both cases, the velocity difference and the peak phase angle
change increase as droplet viscosity decreases. The location of the
peak phase angle varies only slightly with viscosity ratic, occurring
at higher frequencies for more viscous droplets.

228 / VOL. 48, JUNE 1981

Discussion

Droplet viscosity and density through their influence on fluid
motion about the droplets, significantly influence accelerated droplet
motion. The response to a variety of inputs has been examined and
the effects of viscosity and density discussed. The general character
of the response for any mass or viscosity ratio can be elicited from the
curves presented.
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The Study of Sluice Gate and
Sharp-Crested Weir Through
Hodograph Transformations !

The problems of sluice gate and sharp crested weir were studied through hodograph trans-
formations. Numerical calculations of the stream function in terms of hodograph vari-
ables were carried out after the hodographs were transformed into rectangles. Results

were compared with the available experimental data and other resuits of calculations.
Favorable agreement in all cases substantiated the fact that the method of hodograph
transformation is effective in dealing with these problems strongly influenced by gravita-

tion.

Introduction

Hydrodynamic free surface flow problems under the influence of
the gravitational field have not been thoroughly examined. Due to
their more difficult and complicated nature, solutions for problems
of sluice gates and sharp-crested weirs have not been well established.
The basic difficulty in solving these problems lies in the fact that the
unknown free surface is no longer a boundary of constant speed as a
result of gravitation. Thus the determination of the free surface as
a part of the solution of these problems always involves a nonlinear
coupling relationship along the boundary through the Bernoulli’s
principle.

Approximate methods were developed earlier by Marchi {2}, Mel-
konian [3], Gurevich [4], and Benjamin {5] for the problem of sluice
gate by neglecting the existence of the upstream free surface. These
methods usually consisted of successive applications of conformal
transformation, after adopting an approximate analytic expression
for the velocity variation along the free surface in the hodograph
plane. Other analytical work on the problems of jet streams under the
influence of gravitation was carried out by Keller and Weitz [6], Clarke
[7], and later Keller and Geer [8]. Upon selecting the thin jet thickness
as a small parameter which is inversely proportional to the Froude
number of the approaching flow, solutions based on asymtotic ex-
pansions were obtained by Clarke for the problem of free overfall
which are, respectively, valid for upstream and downstream flow re-

1 This work is based on a PhD thesis by the first author {1}.

2 Present Address, Research Associate, Department of Mechanical Engi-
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1980; final revision, November, 1980. Paper No. 81-APM-23.
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gions. The primary restriction of these methods is that the asymptotic

‘expansion is accurate only for small gravitational effects.

The sharp-crested weir is commonly employed as a device for flow
measurement, and is also of fundamental importance as its free sur-
face profile provides the basis for the design of spillways. An early
results for the sharp-crested weir with infinite weir height was ob-
tained by McNown, Hsu, and Yih [9] through relaxational calcula-
tions. Recently, a finite-element method and its generalization were
applied to the flow over a spillway by Ikegawa and Washizu [10] and
to flow problems with a free surface under gravity by Varoglu and
Finn [11].

The method of hodograph transformation has not been extensively
explored for engineering purposes, since the final physical configu-
ration corresponding to an indirect solution is often not of practical
interest. However, it was recently found that this type of problem
dominated by the influence of gravitation can be effectively dealt with
through hodograph transformations. The problem of an imcom-
pressible fluid discharging from a horizontal channel [12] and the
problem of a free overfall [13] have been worked out satisfactorily.
It was recognized that even with the strong influence of the gravita-
tional field, the stream function can be determined in the transformed
hodograph plane through numerical calculations.

It is the intention of this paper to demonostrate the usefulness of
this approach to obtain solutions for the sluice gate and the sharp-
crested weir. Results of these calculations would provide useful in-
formation for the design of hydraulic devices. Comparisons between
the present results of calculations and available experimental data
would also substantiate the merits of the method of hodograph
transformation.

Theoretical Considerations

Sluice Gate. Referring to Fig. 1(a) where the configuration of
a sluice gate is depicted, it is required, for a given uniform upstream
approaching flow condition and gate angle «, to solve the flow field
throughout the region including the corresponding gate opening Yp
and the free surface boundaries. It is well known that the action of the
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Fig. 1 The sluice gate and its hodograph

sluice gate would bring forth a flow transition from an upstream
uniform subcritical flow to a downstream uniform supercritical flow.
The influence of the gate obstruction extends to far upstream and
downstream positions, and uniform flows with a hydrostatic pressure
distribution are only possible at these locations.

From conservational principles, it can be shown that the flow depth
ratio Yg, already normalized by Y, satisfies a cubic algebraic equa-
tion given by

Frat

Frs2
YE3—(1 +—52"~)(YE2)+ =0

with )
Frp=Va/\/gYa,

and the correct solution for Yg is given by
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— G

1 1+ 1+8/Frs®
Ve 4/Frq?

where Vg is already normalized by V4.
For any point along the free surface, the velocity ratio is related tq
its elevation Y through the Bernoulli’s principle expressed as

2
=4/1 -
v +FrA2(1 y) (2)

Obviously, the elevation of the stagnation point B is given by
Frp?

YE = (1)

Yg=1+ (2a)

It has been established [14] from the basic principles that the
governing stream function for the incompressible potential flow shal]
satisfy, in the hodograph variables, the equation given by

00
VR + v, + —"—b—z =0 3)
[a4
where Y, v, 8 are already normalized by the upstream flow quantities
and (~a), respectively, so the values of \ and 8 vary from zero to unity,
It has also been derived that the dimensionless coordinates in the

physical plane satisfy the pair of differential equations given by

dy = (cos (—ab) Yo— sin (—af) %J d
av? v
- (oz cos (—ab) ¥, + M \//(,J df (4)
dy = (sin (—2010) o+ cos (—ab) %) do
av v
- (a sin (~af) ¥, — cos (~af) %) dg (5

The corresponding hodograph of this problem is shown in Fig. 1(b),
where the functions V() and 0;(v) pertaining to the free surfaces in
the v, f-plane are yet unknown. One possible approach of trans-
forming the hodograph into rectangles is to subdivide the hodograph
into two parts along a horizontal line through the points A and C as
shown in Fig. 1(b) and each part of the hodograph may be subse-
quently transformed into rectangles.

One now introduces the transformations for the upper part of the
domain according to

_uv-—1
01 = U/(H)_—————I
Bi=40 6)
and for the lower part of the domain according to
qz=v
0 —0;(v)
B2 = 1—_—0:?)—) (7

The hodograph in the ¢, §-plane now assumes the shape of a square
as shown in Figs. 2(a) and 2(b). Under these transformations, equa-
tions (3)-(5) would change, respectively, into

v {[ql(v/ -1)+ 1]2+ [ quwy ]2]
M -2 leetoy - 1)
2q1vf’ 1
— V¥ ‘m] + ;\Mnm
qilop— 1)+ 1 12072 = v (vy — 1)}
+ = 8
Il/ql[ vp—1 a?(vf — 1)? o ®
dx = Aluy — 1) dqy + (Aq1 v/ + B) dBy )]
and
dY = C(us — 1) dq; + (Cqy v + D) dfy (10)

for the upper domain, where vy’ (6) and vs”(f) denote the first and

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



A C
o----—- iy I'—> B
2a.
q.
A
N N | A c

2b.

Fig. 2 The hodograph in the g, §-plane

second derivatives: of the function vs(6), against its argument, re-
spectively,

- cos (—afy) _ quyf )
algi(vr — 1) + 1]2 (‘//ﬁl vf—1 Vo
sin (~af1) Yy,

- 11
lg1(of = 1) + 1][vr ~ 1] a
p=—0cos(=aB) ~__ sin(afy) ( _quy’ )
v~ 1 qilor—1)+1 Vo U/"l\l/(“
(12)
C= sin (—aB1) ( _quy’ )
algi(vy— 1) +1]2 Vo v —1 Var
cos (—af) ¥y,
13
lqi(vf = 1) + 1][vy — 1] a3
—a sin (~af) cos (—af) ( q1uf’ )
D= —
vr—1 a qgilop— 1 +1 Ve vr—1 Va
(14)
and
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st

LB 1) g ([i’f: (01/); o) + 29/’2]} =0 (15)
dx =[E+ F0;/(1 - B2)] dg2 + F(1 — /) dB (16)
dY =[G+ H 07/(1 — B2)] dga + HQ — 6y) dBs an

for the lower domain, where 6/ (v) and 8" (v) denote the first and
second derivatives of the function 0(v), against its argument re-
spectively, and

E

- cos {—a[ﬂf + (1 - 0/)62]} 1P _ sin {"O[[Hf + (1 - 0[)62]}
g22a(l — 6p) P qz

X [War + Vg, o e, __1)] (18)
1-0f
F=~—acosi-alfy + (1 - 6pfl} [‘qu +¥g '6}/1062 ; :
i
_ sin{~affy + (1 - b) Bo]}
ga(l — 0/) ‘//ﬂz (19)
G = sin I—a[gf + (1 — 0)Bsl} Vo + cos {—a[f; + (1 — 0/)B:]}
q2%a(1 — 0f) g2
0y (B -
X Wge + ¥p, AC Y 1)] (20
1-9;
H = =axsin f-dd; + 1 = 008l [y + v, LD
(1 —8)
4o {—elfr+ (1~ 0[)132]}%2 1)

qa2(1 = 6y)

Sharp-Crested Weir. The configuration of a sharp-crested weir
is depicted in Fig. 3, where an initially uniform flow with a hydrostatic
pressure distribution approaches a weir. The lower streamline stag-
nates at the point B and leaves the weir tangentially afterwards,
reaching its maximum elevation at the crest D and forming a free
streamline. The top streamline drops continuously toward the weir
as a result of acceleration. It should be noted, however, that for a given
set of upstream flow conditions, there is only one set of the height Y,
and the angle « of the weir.

The corresponding hodograph of this problem is shown in Fig. 3(b)
where the velocity and the streamline angle have been normalized
already by v4 and (—c), respectively. With the given approaching flow
conditions, uf(6), vi(9), and v, () are all unknown. It is obvious that
the idea of subdividing the hodograph is needed to solve this problem.
A simple scheme is to divide the hodograph along the vertical line AD.
It was learned later [1] that it would be necessary to cut along a hori-
zontal line AC’ so that the point A became a grid point after the
transformation to avoid “haunting” pattern during iteration of the
weir height. The hodograph now consists of three parts; each of them
can be transformed into a rectangle for the benefit of computation.

A transformation for the right part of the domain is introduced
according to

w=1/v (22)
and
__w—wl) _o
DO —w@ T ap’ (23)

where w, (#) and w; () are the corresponding images of the upper and
lower free streamlines in the w, 8-plane (Fig. 4(z)). The hodograph
in the g1, 81, plane now has the shape of the square as shown in Fig.
4(b), and equations (3)-(5) would change, respectively, into
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for + g1y — wz)]z+ (g1 = Doy’ — qro,’}2

v
q191 (wu _ wl)z 7r
——(wu - wl)
2
8(g; — Doy’ — 81w’} |, 4
+ \[’ﬂlln { o = + - ‘l/ﬂlm
™ (wu - wl) ™
wr + gilwy, — w) | 8ley ~ wy')
+ ¥q, [ e Py “—~ g1~ 1w/ — qrw’]
| o 7w, — wi)?

=D - qwu”]’ =0 (24)
7wy — wi)

dx = Alwy — w1) dg1 + {Afw’ — qulw,’” — w/] + B} df1 (25)
dy = Clw, — w;) dgy + {Clw’ — g1{w,’ — )] + D} dB1 (26)

where w)’, w;”, w,’, and w,” denote the first and second derivatives
of functions w;(8) and w, () and
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Fig. 4 The hodograph in the w,0 and g4, 84-planes

g[wz + q1{w, — w;)}? cos (— gﬁl)
B= Yo

Wy — Wy

~ [wr + g1(w, — wi)] sin (— gfh)-

X [wﬁl gl — o) “”’)} 28)
Wy ~ Wy
i
~sin|{——g )
o ( 2™t l‘//‘91 Y w’ + qilwy’ — wz’)]
T Wy — Wy
2
w
[wi + q1lwy ~ w1)] cos (~E 61) VYar

+ (29)

Wy — Wy

fowr + g1(w, — )] sin (— gﬁl)

A= '—‘*——'——{\bﬂx —¥aq

o’ + qilw.” — wz’)} _
/2

Wy oy
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g[“” + q1(wy — @))% sin ‘—-;[,61)

D=
Wy ™ Wi
T
X Y, + [wr + g1{w, = wy)] cos (— 561)
w’ + gi{w,” — W)
- v ote e .
Wy — Wy
Upon introducing the transformation for the left-upper part of the
hodograph according to
o - U[(B)
qe=_— ~¢
1 —ve(6)
2 = 0 (31)

it becomes, in the g2, B2-plane, also a square as shown in Fig. 5(a). The
governing equations would also change, respectively, into

S

2(qa—1)vf] . 1
+ LA + —
V6202 { a(1—uv) o2 V62

(32)
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v 2(ga—1uf? (g2 Dy’ _ (32)
* Ve, [qz * 1~v  o2(1l—uvp)?2  o2(1-— Uf)] (Cont.)
dx = E(1 —vs)dga+ [E(1 ~ g2) v + F] dBs (33)
dy =G(1 — l)f) dgg + [G(l ~ qz)uf’ + H] dfs (34)

where vy (6) and vs” (§) denotes the first and second derivatives of the
function vs(8), and

_ cos (—afq)
alvs + ga(1 ~ vp)]?

1-v
sin (—aﬁz) \pqz
— 35
o+ s~ ol o] O

sin (— affy)

— 1) v
[31/52 + (g )fo \l/q'z]

_ Tocos (—afBs)

F 1-vf q2—vf+qz(1"uf)
— 1 s
xpm+gﬁ—~£i¢@]<%)
1—uf
___sin(—afy) { (g2 = vy ]
a[vf + gl — l)f)]2 \l’ﬂz + 1— ¢q2

cos (~af¥s) g,
fus + gafl = up][1 - vy]
cos (—afs)
v + g2l = vy)

X {\[/ﬁz + L@:‘%{f" ‘pqz] (38)

(37)

_ —asin (—afs)

= 1-v q2

1 —
No transformation is needed for the'left-lower part of the hodo-
graph. Equations (8)-(5}, the original hodograph equations, can be
directly employed for the calculation of the stream function.

Methods of Calculations and Results

It is obvious that values of the stream function are completely
specified on the boundaries of all the hodographs except along the
lines of division which are intentionally introduced to facilitate
transformation. Although the stream function is unknown along these
boundaries, it is the common boundary to the two adjacent domains
and must have the same value of the stream function. In fact these
values are to be determined through the condition that the normal
derivatives of the stream function in the original hodograph plane
should be continuous. Taking Fig. 1(b) for the sluice gate as an ex-

ample, one may impose this condition as
upper jower
oy

ov (39)

ov
and these partial derivatives may be represented by their corre-
sponding one-sided finite-difference expressions. It may be easily
shown [1], that the value of the stream function Y. on the boundary
can be found from

e = (4p = Ya) Avg + (g ~ Y )Avy
¢ 3(Av1 + Avg)

where Avy and Avg are the corresponding numerical grid spacings for
the upper and lower domains, and ¥4, Y. must be obtained from in-
terpolation for this particular situation. Similar schemes are followed
for all the other common boundaries of the adjacent hodographs.

_ Toinitiate the numerical calculations, values of the stream function
along these common boundaries must be known, and these values may
be obtained from a crude interpolation. These values will be revised
and updated according to the foregoing scheme in the midst of cal-

{40)

-culations. Methods of calculations for the sluice gate and the sharp-

crested weir are separately discussed as follows:

1 For the sluice gate, with a given upstream flow condition and
an arbitrary gate opening, functions vs(f) and 6,(v) are initially un-
known, and their initial values are estimated through simple poly-
nomial functions. The stream function within the square domains of
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Fig. 7 Values of §,(v) at successive iterations

Fig. 2 may be determined from equations (8) and (15) through the
Successive-Over-Relaxation scheme (SOR). Once its value at every
grid point within the domain does not vary more than an arbitrarily
selected small number (e.g., 10™4), the derivatives of g, ¥g,, Vg, and
¥q, may be evaluated along the boundaries AB and DE, and their
profiles in the physical plane may be traced through numerically in-
tegrating equations (9), (10), (16), and (17). These profiles of the free
streamline would yield a revised form for v¢(f) according to equation
(2) for the flow downstream of the sluice gate, and a revised form for
0¢(v) for the flow upstream of the sluice gate according to

tan~! e
dx

0 (v) = ——— (41)
-

where dx was obtained from equation (16) and d Y, was obtained di-
rectly from Bernoulli’s principle through
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dY. = —qa Fra2dqy (42)

The foregoing process of calculations may be repeated until v(0)
and 8¢(v) employed for the calculations agree with that produced from
tracing within an arbitrarily small margin (e.g., 1 X 1073) at every grid
point along the free streamline. For flows with low Froude number
Fry, iteration of vy(f) and 8;(v) is a rapidly convergent process. Figs.
6 and 7 clearly illustrate this feature. For Fry greater than 0.37, some -
difficulty in convergence of 0¢(v) function has been observed. The
tendency of divergence of (v} function, especially for high values
of Fr4, will be discussed later.

So far, these calculations are carried out with an arbitrary gate

- opening, and the asymptotic height Yz obtained from the free surface

tracing would in general not agree with the results from equation (1).
It is natural to expect that the gate opening Yp should be adjusted
until the correct asymptotic height Yz is obtained. Again determi-
nation of Yp must be based on iterations and it is a rapidly converging
process. Only three iterations are usually required to determine its
value within an accuracy of 1073. Figs. 8-10 present the established
final profiles of the free surfaces for the cases of Frg = 0.3 with a =
60°, 90°, and 120°, Fig. 11 shows the pressure distribution in the vi-
cinity of the gate for the case Fra = 0.3, a = 90°, It is interesting to
observe that drastic modification of the hydrostatic pressure distri-
bution occurs only within a relatively small region. Fig. 12 presents
the established gate opening. Fig. 13 presents the obtained
0¢(v)-values for Fr4 = 0.1 at different « angles. For small « angles or
larger Fr4-values, sharp variations of §4(v) near the stagnation point
have been observed. Under this situation, evaluation of ;' (v) and
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8¢ (v) through numerical differentiation may not be accurate, which
would directly influence the stream function calculations and the
convergence of §(v). Smoothing process of 8¢ (v) and 64" (v) was in-
troduced to effect convergence by taking average values of 8 and 6"
between two adjacent grid points successively. However, for Fry
greater than 0.6, it becomes impossible to obtain a stable solution even
with repeated application of this smoothing process. Thus, within the
range of Fr,4 between 0.37 and 0.6, results were obtained with mini-
mum number of applications of this smoothing process to 6 (v) and
0¢” (v) for convergence purpose. Fig. 14 presents the free jet profiles
for Fra = 0.4264 along with previous results by Southwell and Vaisey
[15]. It is appropriate to remark that in all calculations required to
solve these problems on the basis of hodograph transformation, the
unknown functions such as f¢(v) and v¢(6) must be determined
through iterations. While these functions including their first and
secondary derivatives are imbedded in the main differential equation
of the stream function, it is clear that the exact solution of the problem
would produce matching and convergence of these functions and their
derivatives up to any order under the present method of treatment.
Since the secondary derivatives are the highest order of differentiation
of these functions directly involved in these calculations, four levels
of convergence requirement may be imposed; namely, convergence
to (i) the secondary derivative, (i) the first derivative, (iif) the
function itself, and (iv) the integrated profile {e.g., the free surface
of the present problem) produced from these functions. It is obvious
that due to the error of numerical differentiation, imposition of con-

JUNE 1981, VOL. 48 / 235

Downloaded Oi May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



027

0-26

025

024 : . -

-0

00

Fig. 15 Values of v¢(0) tor a sharp-crested weir at various iterations

O[Re. - r '
F=05
w® | \ \/Q) 8256
08r \‘ \\\\/® b
“\(/\\
N 3
\ ¥ \
Q6r \a‘\ \/\\/@ 1
\

@
0-4;:;_7* ) \\ 1
CD \\\\ '\~I~: \\

®/ . \\/ / ‘\‘\S\;\:\\.\

S BERC AN NN\
@ N \\\ \\\\\

@ \\\\ \\\ “‘\

00 - . RS
00 05 -0

Fig. 16 w,(#) and w,(0) at various iterations

236 / VOL. 48, JUNE 1981

------- .. T Fp =02
N \\ — = 45°(%:0'56)
> Sl N —@:90°(%:052)
'Sl TN \\ N —o 2135 (%:045)
N : *  Experiment by
33NN \ ' Kandaswamy 8 Rouse
Xy 10 4%\\ Y \ \‘ (1957)
\\ \\ \ \‘
\\\ \\\ \‘ \‘
AU
\‘ \\‘ \‘ \.
\ \ \ \
\‘ \ \ -
0o
Y

50 :
Co 25 0

Fig. 18 Pressure distributions for a sharp-crested weir

vergence of the secondary derivative may not lead to any solution to
the problem, and the convergence of function itself seems to be the
reasonable but nevertheless arbitrary choice. It may be anticipated
that in some of these calculations, convergence of certain integrated
profiles can be accepted as satisfactory. Southwell and Vaisey’s results
as shown in Fig. 14 are obviously based on such a criterion.

2 Calculations of the sharp-crested weirs follows essentially a
similar scheme. For a given upstream flow condition, and an arbi-
trarily selected weir height Y., vs(8), w,(6), wi(0) were initially as-
sumed as simple polynomial functions. The stream function within
the subdivided domains may be determined from Equations (3), (24),
and (32) through the SOR scheme. Once the value of the stream
function is stabilized for every grid-point, the profiles of the free
streamlines in the physical plane may be traced by integrating nu-
merically the equations (4), (5), (25), (26), (33), and (34). The corre-
sponding height of the weir may also be determined through these
tracing procedures.

The new profiles of the free streamline and the weir height would
yield revised forms of vs(0), w;(8), and w, (f) through equations (2)
and (22). This process is repeated until functions vf(6), w; (), and
wy () introduced for the calculations also match with those from
streamline tracing within a margin of 10~3 for every grid point. As
shown in Figs. 15 and 186, this is clearly a rapidly convergent process.
Note that variation of vy in Fig. 15 on the vertical axis is a result of the
adjustment of the weir height. Fig. 17 shows the profiles of the flow
at different o values at Frs = 0.2. Fig. 18 shows the pressure distri-
bution across the flow. Fig. 19, presents the weir height against Fra
for the purpose of comparison.

With a relaxation factor of 1.7, and a 20 X 20 uniform grid, one
typical case of the sluice gate takes 5 sec on the cyber 175 computing
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gystem, while 12 sec are needed for the computation of a sharp-crested
weir, as a result of more subdivisions of its hodograph.

Comparison of Results, Discussion

When a sluice gate is lowered into a stream of an open horizontal
channel flow, the effects of its obstruction would extend to far up-
stream and downstream distances. The upstream free surface rises
in the neighborhood of the obstruction and a stagnation point B occurs
at a height Yp above the channel bed. From the experimental results
of Binnie [16], such a rise of level on the sluice gate was not observed.
Instead whether the sluice gate is vertical or inclined, in front of it,
a sharply defined zone of eddy was found. On the surface it appeared
that flow moves in the direction opposite to the main stream indi-
cating a rolling up motion. Downstream of the gate, the free surface
should drop sharply and level off subsequently at the mathematically
infinite but physically finite distance from the gate. In reality, the
minimum height of the free surface is affected by the growth of the
boundary layer along the bed and the entrainment of the air along the
free surface. Accurate comparison of the free surface profiles with the
experimental data becomes an enormous task where detailed exper-
imental information must be obtained. Additional considerations of
the viscous effect along the bed has been carried out [1] and will not
be discussed here.

Southwell and Vaisey [15] obtained the solution of this problem
through the relaxation calculations for the case of Fra = 0.4264,
Present calculations are compared with their results in Fig. 14, The
difference of free surface profiles between the two calculations is legs
than one percent including the estimated gate opening height. Fig.
12 presents the gate openings for various approaching values of Fr4
in comparison with the experimental data by Gibson [17] and Addison
[18]. The limiting expression of the gate opening when Fr4 approaches
zero, was obtained by Binnie [16}. This straight-line relationship,
(Yp/Yp = 1.157 Fry), is also plotted as a dotted line and is seen to hold
well up to relatively large values of Fr4. The present results agree with
the experimental data over the wide range of Fr4 and is located, in
general somewhat above Binnie’s straight-line relationship.

A considerable amount of effort went into the study of the effect
of the free surface upstream of the gate. For all the convergent results
obtained, it may be observed that the influence of existence of the
upstream free surface is indeed small. In that sense, a previous results
[12] obtained for an enclosed channel flow with Cp, = 0 should pro-
vide a crude approximate for the flow field downstream of the sluice
gate.

For the sharp-crested weir, the free surface profiles for Fra = 0.2
are compared in Fig. 17 with the experimental data by Kandaswamy
and Rouse [19]. Remarkably good agreement between them is ob-
served. Similarly, good agreement between their data and calculated
results for Fra = 0.7 has also been observed {1] and is not reported
here. Fig. 19 shows the comparison of the weir height with the data
from USBR {20] and Kandaswamy and Rouse, whose data on weir
height is extracted from their presentation of the discharge coefficient.
Present results generally agree very well with the experimental data
over a wide range of Fra (0.06 < Fr = 0.989. When Fry is less than
0.06 computed weir-height begins to deviate from the experimental
data. As a result of a relatively large contraction of the free streamline
in this case, the profile of v, () in Fig. 3(b) increases so rapidly that
accurate matching along the cut may not be possible. According to
the experimental results of Kandaswamy and Rouse, the height of
weir is decreasing rapidly near the critical initial condition and
eventually the flow approaches a free overfall. Present calculations
always consider the existence of a stagnation point and thus do not
produce this limiting configuration as a free overfall. This was the
subject of an early investigation [13]. It has been mentioned therein
that a subcritical approaching flow in a free overfall is not likely to
occur for steady inviscid flow. It is shown in the Appendix that its
nonexistence is also supported from the numerical calculations.

On the basis of all evidence presented so far, it is obvious that the
method of hodograph transformation is very effective in dealing with
problems when they are strongly influenced by gravitation. Although
this method invariably involves with the determination of the hodo-
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graph boundary function, such as v(6) or 0;(v), and its derivatives,
through iterations, the experience obtained up to the present indicates
that the secondary derivatives of these functions are always small.
The only situation that a divergent trend has been observed in com-
putations so far is the /(v) associated with the free surface ahead of
the sluice gate under the conditions of relatively large subcritical Fr4
values. It should be noted that since the free surface streamline must
stagnate at the gate, the influence of this compression process spreads
further upstream as Fr4 assumes larger values and the corresponding
gate opening also increases. On the other hand, it is known that as the
approaching flow reaches the critical flow condition, the only possible
solution is that the gate opening should be unity, so that there is no
stagnant process and the flow is uniform everywhere-the trivial so-
lution. If the present flow pattern with the stagnant process can be
extended to high subcritical Fr4-values the steady inviscid flow would
exhibit a discontinuous solution pattern at or near the critical ap-
proaching Flow. This is probably the reason why convergent solutions
cannot be reached for cases of large subcritical Fr-values. How far
one may obtain convergent solutions depends upon individual’s art
of smoothing out the irregular variations of the derivative functions
and the criterion imposed to define a convergent solution. It is be-
lieved that the range of Frs may be extended to higher values than
reported here, if one imposes agreement of the upstream free surface
profiles between successive iterations. It is also proper to remark that
no experimental data in the literature for Fr4-values larger than 0.6
have been found.

It has been recently learned that this method is equally effective
in dealing with flow geometries with curved solid boundaries.
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APPENDIX

On the Evidence of the Nonexistence of Subcritical
Approaching Flow for a Free Overfall

For an inviscid flow over a free overfall as shown in Fig. 20(a), it was
shown [13] that the corresponding hodograph can be transformed into
a square as shown in Fig. 20(b) and the governing stream function can
be determined through SOR calculations. After its value throughout
the domain is stabilized (e = 10~%), the location of the top free
streamline AFC with respect to the lower free streamline BEC can
be determined by performing a numerical integration of the coordi-
nates along the path BEF in the hodograph plane. This integration
also provides a check of the accuracy of numerical calculations of the
stream function. By extending this integration back to the point A
in the hodograph, the total change of the vertical location from B to
A in the physical plane should be unity. Indeed, such a check has been
carried out and the error (deviation away from unity) is shown in Fig
21. For supercritical and critical approaching flows, the errors seem
to be tolerable. However, a drastic increase in error occurs as soon as
the approaching flow becomes subcritical.

It is well known that for the flow with a given stagnation pressure,
critical approaching flow condition yields a maximum possible rate
of flow. While the gravity provides the only motivating force for the
flow of a overfall, in the absence of any restriction, such as frictional
force or partial obstruction, the flow would continuously adjust until
a critical approaching flow is reached. Thus a steady inviscid flow of
a free overfall with a suberitical approaching flow seems to be non-
existent. It is of course rewarding to see that the numerical calcula-
tions produce unacceptable errors under these conditions, and are
thus compatible with the physical situation. It is nevertheless inter-
esting to observe from the point of view of numerical calculations that
the error starts to accumulate in such a fashion as soon as Fr becomes
subcritical, especially after the stream function value has been sta-
bilized throughout the region.
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Creeping Viscous Flow Around a
Heat-Generating Solid Sphere
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Denmark

The velocity field for creeping viscous flow around a solid sphere due to a spherically sym-
metric thermal field is determined and a simple thermal generalization of Stokes’ formula
is obtained. The velocity field due to an instantaneous heat source at the center of the
sphere is obtained in closed form and an application to the storage of heat-generating nu-

clear waste s discussed.

1 Introduction

A solid heat-generating sphere surrounded by an infinite viscous
fluid will create convective flow due to the thermal expansion and the
induced buoyancy of the surrounding fluid. In addition the sphere
itself may be subject to a buoyancy force due to a density difference
between the sphere and the surrounding medium. A solution is pre-
sented under the assumption of creeping flow. In the limiting case of
zero heat generation the well-known result of Stokes is recovered.

First, the field equations are stated and the approximations iden-
tified. Then the flow corresponding to a step function variation of the
density is derived, and the resulting force on the sphere evaluated.
This solution is integrated to yield the flow due to a continuous
temperature distribution, and the flow induced by the temperature
field from an instantaneous point heat source is considered in some
detail.

One of the main results is the equilibrium velocity of the sphere.
This velocity is of interest in connection with storage of nuclear waste
in salt, and its magnitude and time-dependence are evaluated for a
specific set of parameters.

2 The Field Equations
When only small changes from the reference density po at tem-
perature T’y occur, the density is

p e [1—a(T = To)lpo (1)

where « is the volumetric expansion coefficient.

The assumption of creeping flow (inertial terms neglected) can now
be used in connection with the Boussinesq approximation (fluid-
density changes ignored except in the buoyancy term) to obtain the
continuity equation
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ov;/ox; =0 (2)
and the equation of motion
o%; op
—— — == — (T - To)pagi = 0 3
sror o~ (T~ Tohe 3)

where v; is the velocity vector, u the dynamic viscosity, p the pressure,
and g; the acceleration of gravity.

In the present case of spherically symmetric geometry, where the
equations have been linearized through the assumption of creeping
flow, the Boussinesq approximation amounts to neglecting the radial
flow induced by thermal expansion. Due to the spherical symmetry
of this flow it does not contribute to the resulting force on the sphere,
and it will therefore not be discussed further here.

3 Flow for Step Variation of the Density

The problem under consideration has been reduced to finding a
solution to (2) and (3) in the infinite domain outside a sphere of radius
ao corresponding to a spherically symmetric temperature field gen-
erated by heat sources inside the sphere. The general solution is found
as an integral of a particular solution corresponding to a temperature
discontinuity AT at a spherical surface of radius a, Fig. 1.

Let a Cartesian coordinate system {x;}, { = 1, 2, 3, be fixed at the
center of the solid sphere with radius a¢ and the x;-axis pointing
downwards, whereby g; = (g, 0, 0). The field equations to be solved
are the continuity equation (2),

%; op
——— ——— —apoATg; =0, ag<r<a 4
K ox;0x; Ox; PoB & 0 @
and
o%y; )
p——e e Lo <y ®)
0x;0x; . Ox;

where r2 = x;x;.
The boundary conditions are no slipping at r = a,,
vila) =0, i=1,2,3 (6)

and v; approaching a constant velocity (U, 0, 0) at infinity,
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v; = o U, r—w ()]

A positive value of U/ implies that the solid sphere moves upward
relative to the material at infinity. At r = a, continuity conditions are
imposed on the velocity and the stress vector,

vi(a+) = vi(a—) (8
gijlat)x; = oii(a—)x; ()]

It is noted that (8) does not restrict exchange of material between
the two domains of different temperature. This exchange does not
change the temperature field, because the convective terms have been
assumed small in the final solution.

The solution is easily constructed by use of particular solutions
given by Lamb, [1, Section 337], for domains inside and outside a
spherical boundary. For ag < r < a, contributions from both types of
solution must be represented.

A’r®  Ar? o)
.
30u 6u dx; \rd

A'r? 24
+ 61[(‘—"“‘+B/+"'~), ao<r <a (10)
6u 3ur
The radial flow takes the simple form
A A 2B
v (x;) "(—L+B’ ————-)(x—l), ap<r<a (11)
10u ur  r3fir
and the stress vector on a spherical surface is
, 34’ 6uB] o
’(x;)——po(x‘) [( ) ri+ Ar — -2 ]——(ﬂ)
r | ox; \rd
Kr A
+ 51,‘ (”—r—“), a0<r <a (12)
3 r?
Here K has been introduced as
K = ap AT (13)
Outside the discontinuity the solution is of the form
C o 2C
vi(xj) = — —r—D)—*(ﬂ)+5n(U+—-), a<r (14)
6u ox; \rd 3ur
The radial flow is
C 2D
’(x,)—(U+—-————)(xl) a<r (15)
wr  r3f\r
and the stress vector on a spherical surface
6uD\ o
oi(xj) = —Po( ) (Cr ——#—)—-(xl) 51, s a<r (16)
r r ] ox;\rd r2
The conditions (6)—(9) can all be satisfied leading to
2
A= g K ($¥))
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Ka?

=U-=— 1
» (18)
3
=— 5 Upao + — Ka()(3a2 —aj) (19)
1 Kad
B=—-Uaf+—(5a%— 3a} 20
7 Voot g, 0%~ Ba0) (20)
3 1. R
C=—EUua0~g(2a3—3aoa2+a'o) (21)
1 K
D = —-Ua} — — (2a° — 5ada? + 3a} 22
4 Jao 60“(11 o aj) (22)
Po=Dpo (23)

The resulting force on the solid sphere r < ag is found by integrating
(12) over the surface r = ag. Due to symmetry it is clear that only the
x1 component will be different from zero. Only the factor to 81; con-

tributes.
P = 6ruaoU — 2rKag(a? ~ ag?) (24)

If U is considered as the equilibrium velocity, the result may be
written in the form

U=

[P+ 2rapegATaola? — ae?)] (25)

67 uag

where P is the buoyancy of the solid sphere. For AT =0 ora = qq
Stokes' result is recovered.

4 Continuous Temperature Fields
The equilibrium velocity U due to a continuous temperature dis-
tribution follows from (25) by integration.

daT
U= [P - 2w apogag f (a2~ ad) —— (a) da] (26)
6mwuag da
After integration by parts the result is
1 «
U= [P + 2mapogac f aT(a)da] 27)
6mwuag ag

The influence of the temperature field is an increased buoyancy
proportional with the first moment of the temperature. Thus a finite
equilibrium velocity requires T'(a)a? — 0 for a — « and thereby ex-
cludes consideration of the steady-state temperature field.

It is convenient to represent the heat flux from the sphere by su-
perposition of the fluxes from a continuous distribution of instanta-
neous point heat sources at r = 0 in an infinite medium with homo-
geneous thermal properties. The instantaneous release of the amount
of heat ¢ at the time t = 0 at r = 0 leads to the temperature field, [2,
p. 256},

T(a,t) = 4q (27I-Kt)—3/2€—a2/4nt (28) -

Poc

where k = k/pgc, ¢ is the specific heat and & is the thermal conduc-
tivity. Substitution of (28) in (27) yields the equilibrium velocity

I {py 298 90 _adian
TUaQ (4 wKl

Ut) =

(29)

It is interesting to compare the time development of the heat gen-
erated velocity, U, with the temperature, T, and heat flux, h, atr =
ao. In terms of the dimensionless time

4kt
=— (30)
ag
the expressions are”
1 w )
Utr) = 98 —1r2p-11r (31)
3732 cpag
Tlag, 7) = ST (32)
%2 pocal
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Fig.2 Time-dependence of heat flux and temperature at r = ag and thermally
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—5/22—1/r (33)

h(ao, T)=—000 gk
w32 pocad

The time- dependent factors are shown in Fig. 2. It is seen that the
release of heat from the domain r < ag is concentrated within the time
interval 0 < 7 5 1.5, while the heat generated velocity prevails for a
much longer time. When calculating the velocity it may therefore be
an acceptable approximation to represent the heat generation inside
the solid sphere by a point source.

The flow field due to a continuous temperature field is found by
integration of the step function solution from Section 3. It is conve-
nient to separate the part of the flow which is proportional to U. This
part of the solution is proportional to Stokes’ solution but with the
velocity U given by (27).

In terms of the dimensionless coordinates §&; = x;/ag and 7 = r/ag
this part of the solution is

) = U [ (Z_I)aa(

The remaining part of the flow field is found by integrating
(17)—(20) from r to infinity and (21), (22) from agy to r. The result
is

) + 51, 1} (34)

T_wé”_z_z * aT(@)d
v (xj) p (r2—ag)ao -£o aT(a)da
r 0 [x1 2 lag =
+ j;o (r2a?— a4)T(a)da] —a;:' (;;) + 6y; g [T j;o aT(a)da

© 1 r 9 ]]
- 1 T(a)dalt (35
j: aT(a)da -~ j;oa (a)dal} (35)

When the temperature field (28) is used in (35) the result can be
expressed in terms of elementary functions and the error function,
erf ().

ol (g) =

1 a8 ”_Tllze-m + prif2e—ntlr
(27)32 cpaq

‘ N 1 _ o (&
+ 22 -2 —~1/2y — —-1/2)) | —— 122
g (3 n 5 T) (erft (p77V2) —erf (1 ))] o (7)3)

1/2

- 611 im — (erf (n7~V2) — erf (‘r‘l/"))] (36)

The radial velocity from (34) and (36) is proportional with cos § =
£1/7 but is otherwise only a function of 5 and 7. It is therefore a simple
matter to determine the stream function Y(£;, 7), which is —(27)~!
times the flux through the spherical cap 7 = (£:£;)1/2, 0 < 8 < arccos
(£1/7). The result follows immediately from (36) by replacing the
factor cos 8 with

s (b1/n)
—r2 fmms " cos @sin8di = —%r2sin2 g 37
0
in the radial velocity.
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Fig. 3 Streamlines for instantaneous point heat source

Table 1 Sample parameters

Density po = 2150 kg/m3
Thermal expansion o =1210"%K
Specific heat ¢ =900 J/kgK
Thermal conductivity k = 4.5 W/mK
Viscosity = 5.0.10'4 Ns/m?
Canister density pc = 4100 kg/m?
Radius ag = 0.6656 m
Heat-generation rate go = 3.5 kW

3 2
W ) = - {U(ﬂ—z”—?’ul—

+ l_aqg [11 / T e~V — ne—nz/f)
T euao |n 27

2

&7 _ _ af ,
(erf (n7=12) — erf (v 1/2))” Py sin? § (38)

Ve

The stream function corresponding to a situation with the sphere

moving with velocity —U(7) and the medium at rest at infinity follows
from (38) by addition of the stream function

Y&, 1) =

Fig. 3 shows the normalized stream function for r = 0.5, 2.0, 200.
The figure clearly shows the concentration of the velocity field around
the sphere, while the velocity of the sphere is increasing, i.e., 7 <
2.0.

L U(r)adn?sin2 0 (39)

5 Nuclear Waste Example

As an example the formula (27) is used to evaluate the velocity of
a heat-generating nuclear waste canister deposited in rock salt. This
problem has been treated by Dawson and Tillerson [3] using finite-
element calculations in a finite geometry. A set of typical parameters
is given in Table 1.

The heat generation is assumed to be of the form

t
q(T) = qo exp (— In 2 ——) =goexp|—In2 L) (40)
T2 T1/2
where
4T
T2 = ——Ka;/ 2 =1.99-104 (1)
0

corresponds to a half-life T'y/2 = 30 years for the parameters of Table
1. In view of this large time scale the approximation with a point
source is quite adequate for the evaluation of the equilibrium velocity,
and the result follows by integration of (29).

2 a?
Ulr) = =% (py— po)
9 u

aqoposdo

T
—1/2p=1/s -
2wk sT1/2¢ exp (

' In 2) ds  (42)
Ti/2
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Numerical evaluation is facilitated by using the fact that due to the
large value of 71/, the interval of integration may be divided into two
parts, an interval 0 < s < 7, where the last factor is nearly constant,
and the remaining interval 7, <s <7 where e~V/* o 1. The first in-
tegral can then be evaluated in closed form by use of formula 3.461-5
from [4], and the second is simplified.

fﬂs_we’l/sds
Jo
+ ff s~2exp (i— In 2) dsl
™ T1/2
1
= 2exp (——T—-ln 2) [\/?,k e~ — \/;erfc( )
V7,

T1/2
T 2
+ f\/_ exp (ﬂ—lnz) dp} (43)

.
I ~ exp ——;1—/2]n2

T1/2

The integral including the factor (1273/2)~1 is shown in Fig. 4 for 71/
given by (41) and 7, = 100. For these parameters the relative error
involved in the approximation (43) is less than 0.005.

Fig. 4 shows both the thermal and the buoyancy contribution in the
unit pm/s (10712 m/s) and the time scale in years. The actual velocity
is the difference between the two full curves. After a few years the
thermally induced upward velocity will dominate for about 185 years.
The maximum upward velocity is 3.36 pm/s = 0.106 m/1000 years.
Although this velocity may be somewhat overestimated due to the
infinite geometry, it is well below the steady-state velocity 26.5 pm/s
obtained by Dawson and Tillerson {3] using finite elements.

The sensitivity of the velocity to the time scale of the heat genera-
tion is illustrated by the two dashed curves corresponding to T'1/2 =
40 years and the heat generation either with the same initial rate of
production (the upper curve) or the same total production (the lower

curve).
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A theoretical investigation into the linear, spatial instability of the developing flow in a
rigid circular pipe, incorporating the effects of nonparallelism of the main flow, has been

. made at several axial locations. The velocity profile in the developing flow region is ob-
tained by a finite-difference method assuming uniform flow at the entry to the pipe. For
the stability analysis, the continuity and momentum equations have been integrated sep-
arately using fourth-order Runge-Kutta integration scheme and applying selectively the
Gram-Schmidt orthonormalization procedure to circumvent the parasitic error-growth
problem. It is found that the critical frequency, obtained from different growth rates, de-
creases first sharply and then gradually with increasing X, where X = x/aR = X/R; x
being the streamwise distance measured from the pipe inlet, a being the radius of the pipe,
and R the Reynolds number based on a and average velocity of flow. However, the critical
Reynolds number versus X curves pass through a minima. The minimum critical Reynolds
number corresponding to g¢(X, 0), the growth rate of stream function at the pipe axis,
to gg(X), the growth rate of energy density, and to the parallel flow theory are 9700 at X

- = 0.00325, 11,000 at X = 0.0035, and 11,700 at X = 0.0035, respectively. It is found that
the actual developing flow remains unstable over a larger inlet length of the pipe than its
parallel-flow approximate. The first instability of the flow on the basis of g4(X, 0), gg(X)
and the parallel flow theory, is found to occur in the range 30 < X < 36,35 < X < 43,and
36 < X < 45, respectively. The critical Reynolds numbers obtained on the basis of gy(X,
0) are closest to the experimental values.

Department of Mechanical Engineering,
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Introduction
It is well known that the fully developed flow in a rigid circular pipe
is theoretically found to be stable to all infinitesimal disturbances

perimental results of Sarpkaya [10]. However, the critical Reynolds
numbers for the Hornbeck profile, though much smaller than those

[1-3], and the experimentally observed instability of the Hagen-
Poiseuille flow is attributed either to the finite amplitude of the dis-
turbances [4] or to the instability of the boundary layer inside the pipe
in the developing flow region [5, 6]. While Tatsumi [5] and Huang and
Chen [6] considered the temporal stability of the developing flow in
a pipe, Gupta and Garg [7] have recently compared the spatial sta-
bility results for velocity profiles obtained from the methods of
Hornbeck (8] and Sparrow, et al. [9], and have found that stability
results for the velocity profile obtained from the Hornbeck method,
hereafter referred to as the Hornbeck profile, are closer to the ex-

1 Presently, Reader, Department of Mechanical Engineering, University of
Jodhpur, Jodhpur, India.
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for the Sparrow, et al., profile, are higher than the corresponding
values obtained experimentally at all axial locations. This difference
may be attributed to the fact that Gupta and Garg [7] assumed the
flow to be parallel which is really not true in the developing flow re-
gion.

It may be noted that while Sparrow, et al., linearized the inertia
terms in the Navier-Stokes equations for the developing flow in a
pipe, Hornbeck carried out a finite-difference solution of the
boundary-layer equations for the developing flow. Besides yielding
amore accurate velocity distribution [11, 12], the latter is also at least
one order of magnitude faster (computationally) than the former.

For the developing flow in a pipe, Shen, et al. [13], did consider the
effect of the radial component of velocity on the otherwise parallel-
flow temporal stability analysis of the Sparrow, et al., profile and
found that the minimum critical Reynolds number dropped to 19,670
from the value of 19,900 for the parallel-flow theory. In comparison
to this, Gupta and Garg found a minimum critical Reynolds number
of 11,700 for the Hornbeck profile. Since Shen, et al., did not consider
all nonparallel effects, e.g., the effects of streamwise variation of the
wave number, eigenfunction, and growth rate, it is not surprising that
they found only small differences from the parallel-flow stability
characteristics. The flow in the developing region is essentially one
of boundary-layer type, and we know that for the boundary-layer flow

JUNE 1981, VOL. 48 / 243



over a flat plate, the parallel-flow theory predicts a critical Reynolds
number that is about 30 percent larger than the experimentally
measured value [14, 15]. Shen [16] has shown, theoretically, that the
effect of nonparallelism of the flow is, in general, to widen the unstable
region and to reduce the critical Reynolds number. Therefore, we
investigate here the stability of the developing flow in a rigid circular
pipe while retaining its true nonparallel character. The analysis fol-
lows that of Saric and Nayfeh [17] but some details are given since
cylindrical geometry is involved here.

Analysis

We consider the flow of an incompressible, viscous fluid in the inlet
region of a rigid, circular pipe of radius a and define the following
nondimensional variables:

t
yo¥ potia
a a
i 1 Uyt
=L, v== p=L gt W
Ua Ug pul v

where y is the radial distance measured from the axis of the pipe, &
and 7 are the streamwise and radial components of velocity at any
point (x, ¥) in the flow field and at any time ¢, u, is the average velocity
of the flow, j is the pressure at any section x, and p and » are, re-
spectively, the density and kinematic viscosity of the fluid. Spielberg
and Timan [18] have shown that Squire’s theorem [19] is not appli-
cable in the case of axisymmetric flows. However, the following
analysis is carried out for an axisymmetric disturbance since the re-
sults of Huang and Chen [6] show that very near the entry section (up
to X =~ 0.0038) the developing flow is more unstable to axisymmetric
disturbances. This happens because the main flow in this region is
of the boundary-layer type for which Squire’s theorem does hold.
Therefore, an axisymmetric, infinitesimally small disturbance with
nondimensional velocity components u(X, Y, T) and v(X, Y, T') and
dimensionless pressure p(X, Y, T') is superimposed on the main flow.
Substituting for the resultant flow in the Navier-Stokes equations,
using continuity and momentum equations for the main flow and
neglecting the nonlinear terms in u and v, we get the following single
equation:

o] o oH OH 1 Q o2y
oLy, yon, OH, OH_1[o% 30u, ]
oT X oy “ax "oy Rlpy? YaY 2X?

(2)
where
1/{o Q oU
n——(—u— ] and H__(__O_V)
YWY X Yoy 23X

It is well known that for the developing flow in a pipe U(X, Y) and
V(X, Y) are slowly varying functions of X. To express this slow
variation we introduce another independent variable X; along X-
direction such that

X1 = EX, (3)

where ¢ is a small dimensionless parameter which characterizes the
nonparallelism of the flow; its value depends upon the geometry and
Reynolds number of the flow. For truly parallel flow ¢ is zero. The
dependence of € on the Reynolds number for any given geometry of
the flow may be obtained from the order of terms expressing the
boundary-layer effect on the velocity field [17, 20]. From the series
expression for the velocity at the center line of the pipe [21], we note
that € = R~1/2. The other reason in support of this choice is that in
the initial entry length, where the effect of nonparallelism of the flow
is most expected, the flow is more or less of the bounday-layer type
and for boundary-layer flow, e = R=1/2[17, 22]. Though € and R are
related, we may treat them as independent in the expansions that
follow. By doing this we are, in fact, solving the problem on ¢-R plane
instead of on a single curve and thus the real solution is contained in
the family of fictitious extensions over all ¢ and K.
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The disturbance stream function can be taken as

V(X1 Y, T) = [¢o(X1, ¥) + ed1(Xy, Y) +.. ]e¥, (4)

where

of

—=ko(X1), —=—-w,

3X o(X1) oT
with w real. Here w is the dimensionless frequency of the disturbance,
the real part of kg is the wave number and its imaginary part is the
spatial growth rate. Substituting equation (4) into equation (2), and
equating coefficients of like powers of ¢ we obtain
Order €%

23 3
k2D2+ko—§D3+ D2+( . -——)D

L{¢o) = [ v? vy vs

—iR {(koU —w) (D2 —k§- g) - koYD(DU/Y)” bo=0, (5)

with the boundary conditions [8]
po=Deo=0 at Y=0 and Y=1.
Order ¢

R|B, 21 B, ‘—(quﬁo"quﬁo)

L{¢n) = X, oX

+{B ——D + B4D?2
( ado $o 4 (ﬁo)dX1

+ Bsdo + BgD o + B1D 2o + VD3¢>0] » (6)
with the boundary conditions

¢p1=D¢p1=0 at Y=0 and Y=1,

where
DU 4ik3
By = 2kow — 3kEU — D2U + —Y‘ —‘R—,
dikg
By=U-—2,
? R
B3 =w - 3Uk0 + 6Lk%/R,
By = - 2i/R, { M
2
By = —kEV,
5= k0

1 4V
= —D2Y - =DV - RIV+—,
Bs 14 V= k3V+—

By = —EV, and D =02/dY.
Y

The eigenvalue problem defined by (5) is the familiar Orr-Som-
merfeld problem for the parallel flow. In equation (6), which gives
first-order corrections over the parallel flow theory, we note that the
first two terms on the right-hand side represent the effects of the axial
variation of the amplitude of the stream function for the disturbance,
the third accounts for the axial variation of the wave number and of
the spatial growth rate, and the remaining four terms represent the
effects of the radial velocity component of the main flow; the last being
the only effect considered by Shen, et al. [13].

For given values of w, R, and U(X, Y), the solution of the eigen-
value problem (5) may be expressed as

do(X1, Y) = A(X)B(Y; X 1), (8)
where § is the eigenfunction, and the amplitude function A(X;) is

given by

dA
—=iki(X1)A4,
X, ik1(X1)

where
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ik1 = ba(X)/b1(X1),

bi(Xy) = —.j;l[Blﬁ-f-Bz (Dzﬁ—%Dﬁ)]ﬁ*dY,

1 B 1
bg(X1)=j; [(Bl~7§+D2U+ ;DU)ﬂ*

B
+ (2DU + —1;2) DB* + Bzmﬁ*] ba}fl dy
1 1 dko
+ j; ”335 + B4 (DZﬁ - ;Dﬁ)}&—l

+ Bsf + BgDB + B1D?8 + VD%]B*dY, 9)

where 8*(Y; X1) is the adjoint eigenfunction corresponding to the
eigenvalue kg. The solution of equation (9) is

A(Xy) = Agexp [i fR1(X1)dX4], (10)

where Ag is an arbitrary constant of integration.
Equations for evaluation of 38/0X, and dko/dX; (required for
finding by(X)) are

op
L|—| = A1+ A2 (dko/dX}), 11
(aXJ 1+ As (dko/dXy) (11a)
with the boundary conditions
as 2B )
—=D|—]=0 at Y=0,1, 11b
X1 (aX1 a ¢ )
where
. 3DV 3V
A1 = iRkg HDBV 7Y + ;g-l- ngV) I

1
- (D"’B - ;DB)(DV+¥)],
Az = dko (DZB - kI8 - %DB) + iR [U (Dzﬁ - %}Dﬁ)
+ /3(2k0w —3URE-D2U+ %DU)] v (1le)
and

;_)’:‘1= - [ awgray / [ augray. (12)

Knowing dko/dXy from (12), 98/0X; can be evaluated from the in-
tegration of equation (11). )

We note from this analysis that the effects of nonparallelism of the
flow are to make the eigenvalue ko a function of X, to produce a
correction ek1(X1) to ko and to make the mode shape f vary in the
axial direction.

Computational Procedure
For the reasons given in Antia [23], we solved the following three
equations:

7
Db+ =+ ikoT =0,
U Y IRolU
Dz _
D2L7+—$—Aﬁ—R5DU—ik0P=O,
DP + AU + ikoD = 0, (13)

where
A=k} +iR(kU — ), P = R,
with the boundary conditions
D=Du=0 at Y=0,
Z=0=0 at Y=1,

instead of the equation (5) for the eigenvalue &o. These eduations are
obtained by taking the infinitesimal disturbance as
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Fig. 1 Velocity profiles at several axial locatlons

fu, v, p] = [E(Y), D(Y), B(Y)] exp {i(koX — wT)] (14)

and assuming the flow to be parallel.

The main flow velocity field (Fig. 1) was found using the Hornbeck
method and equations (13) were integrated using the fourth-order
Runge-Kutta method. The eigenvalue, ko, was found in an iterative
procedure using Muller’s method [24] for fast convergence. With ko,
B and its derivatives known, a procedure similar to the foregoing one
was used to solve the adjoint equations

D*
D% + = + iho* = 0,

DZg* + Dar _ AT* + ikoP* — kg (DE* + E) =0,
Y Y
DP* — Av* + Ra*DU = 0, (15)
with the boundary conditions
Du*=7%*=0 at Y=0,
u*=70%*=0 at Y =1 (no-slip condition). (16)

Since the eigenvalue for the main and adjoint problems is the same,
no iteration is necessary while solving equations (15) and (16).

With ko, 8, and 8* known, dko/dX is calculated by using fifth-
order composite Newton-Cotes quadrature formula [25] for finding
the integrals in equation (12) numerically. The values of 96/0X are
then given by the integration of equation (11a). It may be noted that
the integrands in equation (12) vanish at Y = 0.

From the solution of equations (13), ko(X1), B(Y; X1) and its Y
derivatives were also obtained for a given w and R at three axial lo-
cations X — 86X, X, and X + 0X; 6X taken as 10-5. Using central
differences, 6ko/6 Xy and 6(3/6X1 were then obtained. It was found
that the values of 6ko/6X; and dko/d X were in agreement within
computational accuracy; also 98/0X and 63/6X were in agreement
at every point in the domain.

Calculations were performed on a DEC 1090 computer that carries
17 digits in double precision mode. Step size for the Runge-Kutta
method was taken as 0.0025 and selective application of the Gram-
Schmidt orthonormalization technique was used to keep the solution
vectors linearly independent during numerical integration; details
being available in Garg [26].

Growth Rates and Modified Wave Number

Shen [16] has suggested use of the growth rate based on the energy
density E for determining the neutral stability characteristics of the
nonparallel flows. This growth rate is given by

1 dE € dc
X)=2E150 = — (ko + ey + ——, 17
ge(X) 5 X (ko + €k1); 2 oX, (17
where
11
e= f. S1DBI?+ lkol? |B121aY, (18)
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E=1 {7 2nv@@+ohay, (19)
2 Jo

and subscript { denotes the imaginary part of the complex quantity.
It is well known [20] that for a nonparallel flow the growth rates are
functions of both the streamwise and radial coordinates. Also, the
different flow quantities have different growth rates and, therefore,
will have different neutral curves. Apparently, one may choose any
of the growth rates for the purpose of finding the critical Reynolds
number and other stability characteristics but if the experimental data
for comparison are available, one must obviously use the growth rate
of the same flow quantity as that which was observed. The only ex-
perimental work on the stability analysis of the developing flow in
rigid circular pipe is due to Sarpkaya [10]. Though he mentions that
the streamwise component of the disturbance velocity was measured
at different radii, he neither reported its magnitude nor the radii at
which measurements were made. Since these details could not be
obtained [27], it was decided to compute several growth rates. Neutral
curves were found on the basis of gg and values of g, and g, at the
pipe axis since gy and g, are functions of Y also. Here, gy is the growth
rate for disturbance stream function and g, is that for the streamwise
component of velocity. It can be easily seen that at the pipe axis, g, (X,
0) = gy(X, 0). Further, since the velocity field was obtained at a given
X instead of X, all growth rates have been obtained for a given X
value and, therefore, they are, hereafter, referred to as function of X.
The modified wave number for any disturbance property @ is ob-
tained from

wave number = d[arg (Q)]/2X, (20)

where arg (Q) represents the phase of Q. One, therefore, gets different
wave numbers for different disturbance properties. The modified
wave numbers are, however, little different from the parallel-flow-
wave number ko, Therefore, the modified wave numbers, though
computed, are not reported here.

Results

Growth rates based on u, ¥, and E were obtained at X = 0.0005,
0.001,-0.002, 0.0035, 0.005, and 0.007. Fig. 2 shows the growth rate
based on y as a function of Y for different combinations of X, R, and
w. It is observed that in the region near the pipe wall the dependence
of gy on Y is quite strong, the maximum growth rate occurs at the pipe
axis, and while g, decreases gradually and uniformly with Y up to the
boundary-layer edge for all combinations of X, R, and w, its variation
beyond the boundary-layer edge depends upon the value of X and
upon the position of the (w — R) point relative to the neutral curve
on the w — R plot. If the selected combination lies close to the neutral
curve, gy decreases suddenly near the boundary-layer edge and then
increases near the pipe wall; the magnitude of the depression de-
creases as X increases or as one goes into the stable region away from
the neutral curve. Maximum depression in the growth rate curve at
any X and R is found to occur at frequencies midway between those
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corresponding to the upper and lower branches of the neutral curve.
The location of this depression shifts with R and w at a fixed X.
Figs. 3-5 show the variation of g4(X, 0) and gg(X) withw at X =
0.0005, 0.0035, and 0.007, respectively, for different Reynolds num-
bers. Similar curves were obtained at other values of X. It is observed
that for any w at a given X and R, g¢(X, 0) is greater than gg and is
positive for the widest range of frequencies. One can also obtain from
these figures the neutral curves for the different flow quantities. Fig.
6 shows these neutral'curves, at different X, based on (i) g‘p()_( , 0);
(i) ge(X); (iii) the parallel-flow theory (i.e., when the imaginary
part of kg is zero). It is observed that the neutral curves are different
for different flow quantities. In comparison to the results for the
parallel-flow theory, the nonparallel effects make the flow unstable
at lower Reynolds number and for a wider range of frequencies. The
actual amount of such an effect depends on the choice of the growth
rate used for determining the neutral curve. The growth rate gw(X",

.0) gives the minimum critical Reynolds number at all X.,

Fig. 7 shows the variation of the critical frequency, w,, and the
critical Reynolds number, R,, as obtained on the basis of g¢()_(, 0), gk,
and the parallel-flow theory against X. It is observed that the critical
frequency, obtained from the different growth rates, decreases first
sharply and then gradually with increasing X in the entry region; w,
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obtained from gy (X, 0) being maximum and that from the parallel-
flow theory being minimum. However the R, versus X curves pass
through a minima. The minimum eritical Reynolds number corre-
sponding to g,(X, 0), gg(X), and to the parallel-flow theory are 9700
at X = 0.00325, 11,000 at X = 0.0035, and 11,700 at X = 0.0035, re-
spectively. In comparison to the results based on g‘p()?, 0) and gg(X),
the parallel flow theory overpredicts the critical Reynolds number
by 29.8 percent and 3.7 percent, respectively, at X = 0.0005, by 20.0
percent and 6.4 percent, respectively, at X = 0.0035, and by 26.5
percent and 12.0 percent, respectively, at X = 0.007. This implies that
the R, versus X curves obtained on the basis of nonparallel theory
are flatter than those corresponding to the parallel-flow theory; R,
does increase beyond X = 0.0035 but not so sharply as for the paral-
lel-flow theory. Physically, it means that the developing flow is un-
stable over a larger inlet length of the pipe. The first instability of the
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on gg; -, based on parallel-flow theory; © experimental data [10] for R,

flow, on the basis of g4(X, 0), g, and the parallel-flow theory, is found
to oceur in the range 30 < X < 35,35 < X < 43,and 36 £ X <45,
respectively.

Also shown on Fig. 7 are the critical Reynolds numbers obtained
experimentally by Sarpkaya [10] for axisymmetric disturbances. The
first instability was experimentally observed to occur in the range 45
< X < 75. We note that R, versus X curve obtained on the basis of
£y(X, 0) is closest to these data; the experimentally obtained critical
Reynolds numbers being lower than those obtained from the non-
parallel theory. As Sarpkaya himself noted, his critical Reynolds
number may be low due to the superposition of some nonaxisymmetric
disturbances on the axisymmetric disturbance as well as due to a
higher initial disturbance level than that warranted by the linear
theory used here. Moreover, the radii at which the streamwise com-
ponent of the disturbance velocity was measured by him is not known.
There is, therefore, the need for a more carefully conducted experi-
mental study before any meaningful comparison can be made with
the theoretical results presented here.

Conclusions

Nonparallel effects on the.stability of developing flow in a pipe have
been studied at several axial locations. The results are found to be
quite different from those obtained from the parallel flow theory.

It has been found that the critical frequency, obtained from dif-
ferent growth rates, decreases first sharply and then gradually with
increasing X. However, the critical Reynolds number versus X curves
pass through a minima. The minimum critical Reynolds number
corresponding to g‘/,(Y, 0), ge(X), and the parallel-flow theory are
9700 at X = 0.00325, 11,000 at X = 0.0035, and 11,700 at X = 0.0035,
respectively. In comparison to the results based on g,(X, 0) and
ge(X), the parallel-flow theory overpredicts the critical Reynolds
number by 29.8 percent and 3.7 percent, respectively, at X = 0.0005,
by.20.0 percent and 6.4 percent, respectively, at X = 0.0035, and by
26.5 percent and 12.0 percent, respectively, at X = 0.007. The R,
versus X curves obtained on the basis of nonparallel theory are flatter
than those obtained from the parallel-flow theory and, therefore, the
actual flow remains unstable over a larger inlet length of the pipe than
its parallel-flow approximate. The first instability of the flow, on the
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basis of g4(X, 0), g£(X), and the parallel-flow theory, is found to occur
inthe range 30 < X < 35,35 < X < 43,and 36 < X < 45, respectively.
The R, versus X curve obtained on the basis of g4(X, 0) is closest to
the experimental data of Sarpkaya [10].
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Rotating Compressible Flow
Over the Edge of a Finite Disk

Numerical and asymptotic solutions of the similarity equations governing the laminar

Faculty of Mechanlical Engineering,
Technion—Israel Institute of Technology,
Halfa, Israel

‘ compressible rotating flow near the edge of a finite disk are presented for a wide range of
the Prandtl and Eckert numbers and the disk-to-external flow ratios of azimuthal veloci-
ty and temperature. By appropriate transformations, the compressible flow is reduced

to a formulation similar to that of the incompressible flow. Wall heating and dissipation
effects are shown to be equivalent to an increment of the velocity of the disk in the sense
opposite to that of the outer flow. In the limit of small velocity or temperature difference
between the disk and the outer flow, the solutions show how an Ekman layer is started at

the edge.

Introduction

The boundary-layer equations governing the incompressible,
laminar, rotating flow over a finite disk can be reduced near the disk
edge to a set of similarity equations which determine the initial growth
of the boundary layer [1, 2]. The conditions under which such simi-
larity solutions fail to exist for a disk rotating in the opposite sense
to that of the external flow were considered by Bodonyi and Stew-
artson [3]. Numerical solutions of these equations were used in studies
of the boundary-layer development on a finite disk in a rotating fluid
[4-6]. For the compressible isothermal flow the solution was shown
by the present authors [7] to be quite similar to that of the incom-
pressible flow. However, neither the heat transfer in incompressible
flow, nor the fully compressible flow have been examined in any sys-
tematic way. In particular, it is important to know the conditions
under which initial (edge) similarity solutions do exist, especially in
view of the nonexistence of solutions of the terminal (axis) similarity
of the energy equation for an infinite rotating disk [8, 9] when the axial
velocity component is directed away from the disk. Even in such cases
the edge similarity solution is needed for starting the solution (not
necessarily of boundary-layer type) for the flow and temperature field
over the whole disk.

In this paper we consider the generalization of the initial similarity
problem for the fully compressible, laminar flow with heat transfer
for the whole range of the governing parameters, namely, the Prandtl
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and Eckert numbers, o, & and the disk to outer flow ratios of the azi-
muthal velocity V,, and temperature T,. Numerical solutions of this
two-point boundary-value problem are presented together with as-
ymptotic analytical solutions for high, low, and unity Prandtl num-
bers, Eckert numbers of order one, and velocity ratios from zero to
almost unity (small perturbation). We consider first the uncoupled
flow and energy equations describing heat transfer in an incom-
pressible flow. In this context particular attention is paid to the
small-perturbation flow of a disk rotating slightly slower than the
outer flow, The solution of this case shows that the boundary layer
thickness and the radial mass flow depend upon the Rossby number
to § power. This initial boundary-layer flow should eventually develop
into the Ekman layer as it moves radially inwards toward the axis. The
solution of the energy equation for the incompressible flow exhibits
the trends of the classical boundary-layer theory for high, unity, and
low Prandtl numbers. The heat-transfer coefficient is proportional
to the Rossby number to } power, thus illustrating the analogy be-
tween momentum and heat transfer. Further, the fully compressible
flow (coupled equations) is considered and the influence of dissipation
and wall heating is analyzed for different values of the Prandtl
number. For most of these cases the compressible flow can be reduced
by suitable transformations to that of an equivalent incompressible
flow, thus showing clearly the influence of compressibility on the flow
field and heat transfer. Wall heating and dissipation effects are shown
to be analogous to a negative increment of the disk rotation in the

. equivalent incompressible flow. Due to an increase in temperature

the density is decreased near the disk surface and the effect of the
externally imposed pressure gradient is enhanced, resulting in an
acceleration of the fluid radially inward. The solutions presented here
can be used in the study of heat and mass transfer in shrouded disk
systems for both compressible and incompressible flows.

Governing Equations
The boundary layer equations for rotating, steady, axisymmetric,
laminar, compressible flow over a finite disk of radius @ are
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The bar denotes dimensional variables. In these equations 7 and
Z are cylindrical coordinates in a stationary frame with the origin at
the center of the disk. The radial, axial, and azimuthal velocity com-
ponents are iz, it and V, respectively; B, p, and T denote pressure,
density, and temperature. We assume an ideal gas with gas constant
R, constant heat capacity &,, Prandtl number ¢, and dynamic vis-
cosity g « T. _

The angular velocity of the disk ., and its temperature T, are
prescribed. The boundary conditions at the disk surface are thus

F=0 T=0=0 V=V,=Q,f, T=T, (7
Far from the disk the fluid is isothermal at temperature Ty and ro-
tating with a constant angular velocity Ql,

917;

Z—w T=@=0 V=V= T=T (8)

Thus the pressure in the outer flow is given by 9p/oF = P10t =
p1V}/F. We now use a Dorodnitsyn-Howarth transformation of the
axial coordinate

. s
Y= j; * (3/pu)dz = j; (Ty/Tydz )
and introduce a stream function ¥ such that
1500 1
g1 1% (10)
rp da TaY

Thus (1)-(4) may be written as

@3(13@)-@1(19& _r
FaY oF\FoYl FoFoY\FoYl F
TV? 22 1 &
=—_—T‘+171-—-(~—‘[’) (11
T, F oY2\7 2y
1200V 1ogoV 1o oV
:%—_—:—‘f'—+r%V=Fr— (12)
FOYOF FOordY r2dY Y2
12007 1007 1) T o |
FoY oF FoFoY r2 bchTl !
u1a2T v

- bY2+Cp bY(r oY) ( W] 19

where 7 = ui/p. We note that the radial pressure gradient term on the
right side of (12) is enhanced by the factor T/T'; representing a change
in density due to temperature variations. Finally, we introduce an edge
similarity transformation of Stewartson type [2], and dimensionless
variables

0= ‘_i)” YEUs E=1-7/a (14)
v

¥ = a2(Quin) 2634y ()

V=a0:V(y) = a1l ~v(n)] (15)

T =Tl + t(n)}

In the following we shall use both V—the azimuthal velocity ratio and
v—the azimuthal velocity difference, where V = 1 — v. In terms of
these variables the momentum and energy balances become

250 / VOL. 48, JUNE 1981

VWY A =14t - V2 (16)
-¥V =0 (1)
— 3oyt + agV2=0 (18)

where’ = d/dy, and o = Q%@ 2/e,T1 — (v — 1)M2 is the Eckert number,
closely related to the Mach number M. The boundary conditions
are

YO)=y(0)=0; VIO)=V,=1=vy; t0)=ty=Ty~1
V(w) = V(=) =1, t(=) =0 (19)
where Ty = T./T1 and V,, = V,,/a (1.

The momentum equations (16) and (17) are quite similar to those
of the incompressible case [6], the only difference being in the pressure
gradient term 1 + ¢ in the radial equation (16) which reduces to unity
for an incompressible flow. This term couples the energy equation
with the momentum equations. Thus compressibility effects are due
to changes in density caused by temperature variations across the
boundary layer, driven by wall heating or cooling (when t,, = 0) or
by dissipation (when « > 0) through the energy balance which con-
sists of heat diffusion, convection, and dissipation. Note that tem-
perature changes due to pressure work do not appear in the edge
similarity transformed equations. Thus the isothermal compressible
flow defined by zero dissipation with no wall heating (t,, = a = 0) is
identical with the incompressible flow field in this transformation.

Tn equations (16)—(19) the four governing parameters are: the
disk-to-external flow velocity ratio Vi, (or the difference v, = 1= V),
the temperature difference £,,, the Eckert number ¢, and the Prandtl
number o. Some significant values of these parameters and their
physical meaning are given as follows:

Velocity Ratio:  V, <0,  disk rotating in opposite sense to the
outer fluid, not considered here in
detail;

=0, stationary disk;

~1—¢, e <« 1, small perturbation (velocity);

>1, outward radial flow, no initial simi-
larity.

Temperature tw <0, wall cooling

Excess:
b =¢ |¢] <« 1; small perturbation
(thermal);
=0, disk at the same temperature as the
outer fluid.
>0, wall heating.
Dissipation: a =0, no dissipation;
=€, ¢ <« 1, small perturbation (dissipa-
tive);
= 0(1), moderate dissipation;
Prandti o<« 1, thick thermallayer;
Number: R
=1, equal thermal and viscous boundary-
layer thickness;
> 1,  thin thermal layer.

The most interesting results of the solution, beside velocity and
temperature profiles, are the momentum and heat fluxes at the solid
boundary and mass flux in the boundary layer, which are related to
Y7 (0), V’(0), Y(«), and ¢’(0). The effect of compressibility on these
quantities and on the very existence of the edge similarity solutions
are of both theoretical and practical interest in the solution of
shrouded disk problems.
A double integration of (16), following [6], shows that

§ 2 oo ° ’ v 21— ?_ ’ -
Sw()#j; dnj; [V L=t+=y2dn=0 (20

and from (17) we see that V is monotonic. For zero dissipation o =
0, (18) shows that the temperature is monotonic also and in this case
there are no solutions of the boundary-value problem when V% > 1
+ ty. This condition should be compared with the equivalent condi-
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tion for the incompressible case, i.e., V,, > 1. We note that in the
compressible case with zero dissipation, a solution is possible even
if the azimuthal velocity of the disk is higher than that of the outer
flow, provided the disk is sufficiently heated (¢,, > 1)!

In the following we first briefly review the incompressible flow and
present solutions of the heat transfer problem, dealing separately with
wall heating and dissipation effects. Then, the fully compressible flow
is solved for small and finite perturbations and different values of o,
using classical methods [10, 11] of boundary-layer theory. All nu-
merical solutions were obtained by an optimization algorithm for
boundary-value problems.

Incompressible Flow

The momentum equations (16), (without the compressibility term
t) and (17) are uncoupled from the energy equation (18). Solutions
of these equations for different values of V,, = 1 — vy, both positive
and negative, which were published before [2-6], were reproduced as
a check of the numerical method. The transformation:

Y=o F@); v=v,G@); 0 =va"*H @1
in (16), (17), and (19), yields
F7 —3FF” + L F? = 2G —v,G?2 (' =d/d%) (22)
G"—3§FG' =0 (23)
GO =1, G(x)=0
(24)

F0) =F(0)=0; F{=)=0

In the small perturbation limit (v,, — 0), this transformation re-
moves vy, from the equation (22) and from the whole system. The
numerical solution for this case yields

vw > 0: F(=) =—-1.759; G'(0) = — 0.4769; F”(0) = —1.527

This describes the initial growth of the boundary layer which will
develop eventually into the classical Ekman layer for a slower disk
as we move radially inward. We note that the initial similarity solution
is still nonlinear (as opposed to the Ekman solution) and that v, plays
the role of a Rossby number. In general, the dependence of stress

components and mass flux on vy, is
P(0) = F7 (04 v'(0) = G’ (0% Y(w) = F(w)olf

Thus the mass flux is of the order of the Rossby number vy, to the
power.
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Fig. 2 Heat transfer in incompressible flow over a stationary disk (V,, = 0);
— Numerical solution of the complete system (16)-(19); - - - - Asymptotic
solutions

Numerical results of the system (22)—(24) are shown in Fig. 1.
(Stewartson’s stationary disk is represented by

F(») = ~1.6916, G'(0) = —0.43985, F”(0) = —1.0681).

v = 1:

These results, presented in [6] in terms of unscaled variables equiv-
alent to our y, v, 7, were recomputed here and are presented in terms
of the v, ——scaled variables F, G, #. Note that in the present scaling
F(«) and G’(0) are nearly independent of v,, and all three variables
fall on almost straight lines.

Heat Transfer in Incompressible Flow. The energy equation
(18) is linear and its solution can be written as

t = twbs(n) + aba(n) (25)

Here 05, 84 represent wall heating and dissipation contributions. The
separation of the equations for fj, and 84 and their formal solutions
in terms of integrals of y are straightforward. Numerical results for
a wide range of ¢ are shown in Fig. 2, together with asymptotic solu-
tions for limiting values of o as listed in the following.

Wall Heating Effects. ¢ = 1. The azimuthal momentum and
energy equations are identical in this case and the temperature is
linearly dependent on the azimuthal velocity

o= 0,0 =22 = g0yl

Vw Uy

(26)

and the dependence of 83,(0) on v, is closely related to that of
v’(0)—see Fig. 1.

o — 0. The thermal layer is much thicker 0(¢!) than the viscous
layer, therefore we can assume Y ~ (=) and the solution is

b = exp [ow(=)nl; 040 = §o¥() = Jovlf*F(x)

o — . The thermal layer is much thinner 0(¢~/3) than the vis-
cous one, therefore we can assume ¥ ~ £”(0)n? and the solution is
now

@n

o/

2T'(4/3)

1 1 ,
bp=1-P (E; "8 "\0”(0)773)? r(0) = [ ()]

Vi [F”(0)]*/3 (28)

21"(4/3)
Here P(a,x) is the incomplete Gamma function {12].

From (26)-(28) and Fig. 1 it is seen that 6(0) is roughly propor-
tional to v /4 for all values of ¢ because G’(0), F{(w), and [F(0)]/3 are
weakly dependent on v,. Note the momentum and heat transfer
analogy in this case. The asymptotic behavior for both high and low
o is shown by dashed lines in Fig. 2.

Effects of Viscous Dissipation. ¢ = 1. The solution is

84 = do(vw ~v) = BZG1 - G);

84(0) = —d,0'(0) = —R 4G (0) (29)
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The dependence of §4(0) on vy, is closely related to that of v’(0)—see
Fig. 1. Due to the fact that G’(0) is a weak function of vy, 075(0) is
roughly proportional to v2/*; this result should be compared with that
of (26) which shows that 6},(0) « vl/*,

¢ — 0. In this case two regions must be considered: an inner layer
7 = 0(1) in which convection is negligible and an outer layer 7 = 0(o™1)
in which dissipation is negligible. Thus

00 =0 [ dprr= ¥t [ aicram (30)

For a stationary disk a numerical integration yields v, = 1: 6,(0) =
0.322 g.

o — o, Again two layers are matched to obtain the solution. The
outer layer % = 0(1) is characterized by negligible heat conduction.
Matching the layers we obtain:

6u0) = |- 2w 0] 1S

1_(4
=-3 I‘(g)a”auﬂ,“ [F7(0)1/3G"2(0) (31)
The main factor of the functional dependence of 87(0) on vy, from (29),
(30), and (31) is v¥4. The asymptotic behaviour of 6,(0) for both high
and low ¢ is shown by dashed lines in Fig. 2 for stationary disk (v,, =
1).

Compressible Flow Field

We consider now the coupled system of equations (16)-(19). We
present numerical and analytical solutions for o = 1, 0, = obtained
by reducing the problems to incompressible flows using suitable
transformations. Special attention is paid to small perturbation
cases.

o = 1. Small Perturbation ty, vy < 1. The centrifugal term—uv?
in (16) and the dissipation term aov’? in (18) are negligible (the latter
provided « is not too large). Due to the fact that the energy and azi-
muthal equations are identical in this case, one can use a generalized
(temperature plus azimuthal velocity) variable of the form

X=v+k 82)
This satisfies
v_t_X
vy tw Xu

Combining the energy and azimuthal mementum equations we ob-
tain

V- Rt = 2X (33)
X" —%X =0 (34)

Y0) =y/(0) =0; X(0) = Xo = vw + Btw
Y(=)=0; X(»)=0 (35)

The problem is thus reduced to that of an equivalent incompressible
flow over a disk rotating with an azimuthal velocity difference (relative
to the outer flow) larger than that of the original disk by an amount
3, 18, Dueq = Xiw = Uw + Bt (0 Viyeq = 1 — X,»). The physics be-
hind this compressibility effect due to wall heating is quite clear. Wall
heating (t,, > 0) will cause an increase in temperature and a decrease
in density near the disk surface. Thus the centrifugal force is reduced
near the disk surface and the driving force of the boundary-layer flow,
i.e., the difference between the externally imposed pressure gradient
and the centrifugal force is increased relative to the incompressible
case. In other words wall heating is equivalent to a reduction in the
velocity of the disk in a way quite similar to the corresponding Ekman
layer [8]. Cooling the disk has of course the opposite effect.
A transformation similar to (21), with X, replacing v,,, i.e.,

\[/ = XleF(’ﬁ), X= XwG(‘;']), n= )(;;1/4,77
reduces the system (33)—(35) to the form of (22)-(24). This enables

(36)
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us to use the solution of (22)-(24) obtained for the incompressible flow
with small v, and shows that wall heating will increase the radial magg
flux and the boundary-layer thickness by the factor (1 + 4(¢w/vy,))1/4.
Moreover, the stress components and the heat transfer at the wall are
increased by compressibility, as shown by

Y (0) = X¥'F7(0); v'(0) = Xif*0,G'(0); £(0) = Xi/*uG’(0)
(37)

This solution shows how a compressible Ekman layer is started at the
edge. The condition under which the small perturbation solution failg
to exist is found easily from the equivalent incompressible flow field
which states that there is no similarity solution if the velocity of the
disk exceeds unity, i.e., the velocity difference is less or equal to zero,
In terms of physical variables this means that for

Xp=vp+3ty <0 or Ty=<2V,—1 (38)

no solution of the edge similarity type is possible. The physical sig-
nificance of (38) is that cooling (¢, < 0) has an effect similar to in-
creasing the velocity of the disk. Therefore, above a limiting value of
cooling, t,, = ~ 2v,,, the radial mass flux is reversed as for the flow over
a faster disk. For v,, = 0, i.e., a disk rotating with the same velocity
as the fluid, a boundary-layer flow is induced by thermal driving only
if t,, > 0.

Finite ty, vy. No Dissipation, o = 0. With the generalized variable
X defined in (32) and the transformation (36) the problem is again
reduced to the solution of the incompressible flow (22)-(24) with v,
replaced in (22) by vy,eq = V2/Xw = vy (1 + 3(t,,/v,)) L. Thus, in ad-
dition to the compressibility effect defined by the transformation (32)
which was explained before, we find also a decrease of the centrifugal
term in the radial momentum balance. In terms of the corresponding
incompressible case, it is equivalent to an increase of the azimuthal
velocity of the disk—an effect opposing the first one described by
(36).

Thus nonlinearity tends to decrease the main compressibility effect
due to wall heating. The existence condition (38) is still valid. It is
interesting to note that for wall cooling (¢, < 0) the velocity of the
equivalent disk in incompressible flow is reduced (v q increased)
and eventually it may become negative (Dy,eq > 1), .., the equivalent
disk is rotating in opposite sense to the original one! Clearly, the
rotation in the physical space does not change. Let us illustrate the
solution by means of a numerical example: We consider a stationary
disk v, = 1 heated to a temperature 50 percent higher than that of
the external fluid, i.e., £, = 0.5. In this case the velocity difference of
the disk in the equivalent incompressible flow is vy,eq = 0.8 (Vi eq =
0.2) and the generalized variable at the wall is X, = 1.25. The nu-
merical values of interest are

Y(=) = —1.8036, Y”(0) = —1.3763,

v’(0) = —0.4738, t’(0) = —0.2368.

These values (confirmed by a fully numerical computation) should
be compared with those given in the foregoing for an incompressible
flow over a stationary disk. It is clear that the first effect is stronger
than the second; thus the overall effect of compressibility and wall
heating is to increase mass, heat, and momentum transport in the
boundary layer. It is possible to solve in a similar way the general case
with dissipation.

Finite t,, v, With Dissipation. The generalized variable now takes
the form

X =v+ 3t +iav? (39)

and the relation between temperature and azimuthal velocity is

tw
t="p+ sow(vy — )
Uy

(40)

The transformation (36) with X,, = v,, + 3t + o’ will reduce also
this problem to the solution of an equivalent incompressible flow of
the type (22)-(24). The velocity of the equivalent disk is now
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The influence of dissipation is equivalent to an additional wall
heating, i.e., an increase of the wall temperature by the amount fav?,
For a — 0 this solution reduces to that of wall heating without dissi-
pation. For highly dissipative systems or when the wall heating is
negligible vy, oq may exceed unity, i.e., the “equivalent disk” is rotating
in an opposite sense to that of the physical problem. Let us consider
a numerical example: a stationary disk (v, = 1) without wall heating
(tw = 0) and unit Eckert number (@ = 1). The equivalent disk velocity
IS NOW vy, oq = 1.2, i.6., the equivalent disk is rotating in the opposite
sense with Vyy ¢q = —0.2. Using the numerical results of Bodonyi and
Stewartson [6] for opposite rotating incompressible flow we obtain

Y(w) = —1.7728; Y"(0) = —1.1115;

v’(0) = —0.4558; t’(0) = 0.2279

These values were checked by a fully numerical computation of
(16)—(19). This example illustrates that the equivalence between
thermal and shear driving in this rotating flow can be extended to the
“opposite rotation” range. In other words a sufficiently high heating
(due to dissipation in this case) will be equivalent, from the point of
view of the second (nonlinear) compressibility effect, to applying an
additional counter-rotation to the disk.

Numerical results are presented in Fig. 3 for &« = 0 and 2 as plots
of the mass, momentum, and heat-transfer coefficients versus wall
temperature £,,. From these graphs it is seen that the effect of cooling
or heating the disk to 50 percent and 150 percent of the fluid tem-
perature, respectively, is almost linear for all transport coefficients,
and from other numerical results (not shown) the same is true for
dissipation effects up to a = 2. The heat-transfer coefficient is the
most affected by compressibility and the tangential stress is only
slightly changed by wall heating and dissipation.

The existence conditions for the general case with ¢ = 1, obtained
from the equivalent incompressible flow, is vy, eq > 0. Thus, for vy eq
<90,i.e.,

Journal of Applied Mechanics

X = vy + 3ty + 3av, <0

there will be no boundary-layer solution of edge similarity type. For
a disk rotating with the same velocity as the external fluid (v, = 0)
a boundary-layer flow exists if the disk is heated. Another limitation
to be considered—again from the equivalence with the incompressible
flow—is that found by Bodonyi and Stewartson in [6] for an opposite
sense of rotation of the disk, which states that for v, 2 3.066 (V,, <
—2.066) there will be no similarity solution. Applying it to the general
case we obtain the existence condition

1+ i .
< 3.066

Uweq =

1+ éﬂ + tavy
U
which states that the solution exists when the disk is cooled up to a
certain limit, depending upon its velocity and Eckert number
value.

o — 0. We have two layers: an inner, viscous, layer n = 0(1) and
an outer, thermal layer 5 = 0(¢~1). Within the inner layer temperature
changes are 0(g) and therefore negligible in the momentum equations.
The solution of the inner layer must satisfy the boundary conditions
aty = 0.

In the outer layer we define a new coordinate 1y = o7 to obtain the
equations which constitute a geostrophic momentum balance and a
thermal conduction—convection balance.

20 —v%+t=0; Y =constant

t"—Ht'=0 (42)

with the boundary conditions at 5o — «. Matching with the inner
layer yields the boundary conditions at g = 0 for the outer layer and
those at 7 — e for the inner one. These conditions for the inner layer

read
P(=) =0; vle)=1=(1+ )%

Note that the azimuthal velocity has an overshoot at the edge of the
inner layer. The inner solution can now be found by reducing the
problem to an equivalent incompressible flow (34)—(37):

\[/.= 1+ tw)1/4vzlu/,§.qF(i7); v=1- [1 - Uw,qu(‘;])](l + tw)l/2

t(=) =ty +0(s) (43)

7 =1+ t,) Vo 1 (44)

Vw,eq = I-(1—-wv)1+ tw)_1/2 or Vw,eq = VwT;UZ (45)

Compressibility effects on the flow field in this case come mainly from
wall heating because dissipation effects are 0(s) and their influence
is limited to heat transfer at the wall. Increasing wall temperature is
equivalent to a decrease of the velocity of the disk and correspondingly
an increase of the mass and momentum transport in the boundary
layer. Cooling (¢, < 0, T, < 1) has an opposite effect, i.e., it is
equivalent to an increase of the velocity of the disk.

The existence conditions are found from the equivalent incom-
pressible flow which requires that v,,eq > 0, i.e.,

1—=vp <A +t)2 or V,<TY2

(Although (17) does not hold in this case for the equivalent flow and
the azimuthal velocity is not monotonic, the existence condition is
still valid.) The solution of the energy equation is quite similar to that
of the incompressible case. The temperature is obtained by matching
inner and outer values of the function (%) and its derivative at 7 —
o, 79 — 0. The final result for the heat transfer at the wall is

£(0) = §0 (1 + tu) VAV /4P (=)tu
—ao(1+ t,)5 40, f T d5GRG)  (46)
0
The first term on the right-hand side of (46) is contributed by wall
heating and the second by dissipation. Thus the inner layer is almost

isothermal (at wall temperature) in this case, the main compressibility
factor being the wall heating, while dissipation affects only the heat
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transfer at the disk surface. The outer layer is characterized by a
geostrophic (momentum) balance and its main function is to adjust
the azimuthal velocity overshoot at the edge of the inner layer and
the temperature difference between the disk and outer fluid.

o — o, Wall Heating, No Dissipation. The solution is quite
similar to that of the incompressible case. In the outer layer n = 0(1)
the energy equation is reduced to ¢’ = 0 with the boundary condition
t(=) = 0 i.e., the outer layer is isothermal which means, in our case,
incompressible. The temperature variations take place within the
inner layer 7 = 0(¢—1/3). Using the inner layer variable ; = ¢'/3 and
the definition (25) of 65, the incompressible flow and its solution (28)
are recovered. Formally, the flow variables are obtained from an ex-
pansion in negative powers of ¢, viz.,

Y =0""31(n) + o Walm) +. .. (47)
v=uvy+ o Yuy(y) ... (48)

The solution of the first-order flow equations is
Yi=370m%  vi=v'0)n (49)

and the solution of the leading order energy equation is identical with
that of the incompressible case. In conclusion, for large Prandtl
number, compressibility effects due to wall heating are not felt in the
first-order solution due to the fact that the outer (momentum) layer
is isothermal (i.e., incompressible), the inner (thermal) layer is very
thin and its flow values are imposed by the outer layer.

Concluding Remarks

Compressible edge-similarity solutions were found for a wide range
of the governing parameters V,, Ty, @, and o and existence conditions
were established. These solutions can be used to start computations
of the rotating flow field over a finite disk; even in cases for which the
solutions for the central part of the disk are not of boundary-layer
type. This applies also to heat transfer problems in shrouded disk
systems for both compressible and incompressible flow.

For the small-perturbation, incompressible case, the viscous
boundary-layer thickness and the radial mass flow are related to v, /4.
In our case vy, is the Rossby number and the solution shows how an
Ekman layer starts at the edge of the disk. It turns out that for finite
perturbations, the flow variables (stresses at the disk surface, radial
mass flow) when normalized by suitable power of vy in the same
manner as the small perturbation case, show an almost linear de-
pendence on vy, up to vy, ~ 2 even when the disk is rotating in opposite
sense to the fluid.

254 / VOL. 48, JUNE 1981

For a compressible flow, wall heating and dissipation effects arg
equivalent to a decrease in the velocity of the disk thus increasing
stresses and mass flow. Wall heating and dissipation effects are
equivalent to a negative increment of the velocity of the disk in 5
virtual incompressible flow. Thus thermally driven flows can kg
produced even when the disk is rotating with the same or higher ve.
locity than the outer fluid provided the disk is heated to a sufficiently'
high temperature. Cooling the disk has an opposite effect, equivalent
to an increase of the velocity of the disk thus suppressing the boundary:
layer flow.
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Unsteady Hydromagnetic Flow
Near a Moving Porous Plate

Unsteady two-dimensional flow of a viscous incompressible and electrically conducting
fluid near a moving porous plate of infinite extent in presence of a transverse magnetic
field is investigated. Solution of the problem in closed form is obtained with the help of
Laplace transform technique, when the plate is moving with a velocity which is an arbi-
trary function of time and the magnetic Prandtl number is unity. Three particular cases

of physical interest are also discussed.

1 Introduction

The study concerning the effect of fluctuations of the external
stream on unsteady hydromagnetic boundary-layer flow has stimu-
lated considerable interest due to its important applications in cosmic
fluid dynamics, meteorology, solar physics and in the motions of the
Earth’s core (Cramer and Pai [1]). '

This important phenomenon was studied by many authors by
formulating simple models and studying the behavior either for hy-
drodynamic or magnetohydrodynamic case. Some of the authors are
Rossow [2], Watson [3], Ludford [4], and Axford [5].

Recently, Puri and Kulshrestha [6] investigated the motion of
unsteady hydromagnetic boundary-layer flow in a rotating medium
ignoring the effect of induced magnetic field. This problem in the
absence of rotation has been studied by Tokis [7]. Pande, et al. [8, 9],
studied similar problem by formulating a simple idealized model
system in which the induced magnetic field is not neglected, and it
is shown that how does the induced magnetic field affect the mo-
tion.

In the present paper, we generalize the works of Pande, et al. [9],
and Tokis [7] for the case in which we envisage two distinct effects of
the magnetic field and the porosity (injection/suction) as a coupled
moving system. General solution of the problem is obtained with the
help of the Laplace transform when the magnetic Prandtl number is
unity. Further, in order to demonstrate the application of the results
obtained here, we consider three cases, e.g., impulsive motion, ac-
celerated motion, and decaying oscillatory motion. These motions
prescribe physically acceptable different time-dependent forms to
arbitrary velocity —Uof(t) of the porous plate or of the arbitrary ve-
locity Uof(¢) of external stream, where Uy is a constant velocity and
f(t) a nondimensional function of the time ¢. Finally, the results thus
ohtained are discussed in Section 6.
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2 Mathematical Analysis

We take the coordinate origin O at an arbitrary point on an infinite
porous plate, which is taken to be an electrical insulator. Cartesian
coordinate system has been used with axes Ox’ and Oy’ along and
perpendicular to the plate, respectively. We consider an electrically
conducting, viscous, incompressible fluid filling the semi-infinite space
¥y’ > 0; which is in contact with the plate at y’ = 0. The plate is initially
at rest and then it is suddenly accelerated with a velocity —Ugf(t’),
in its own plane along the negative x’-axis (Puri and Kulshrestha [6]).
On the physical ground of the problem all the quantities are assumed
to be functions of the space coordinate y’ and time t’ only; so that the
velocity V' and the magnetic field B’ are given, respectively, by
(w,v",0) and (B,",By’,0). »

The equation of continuity, on integration, gives

v’ = constant = vo’ (say),

where v¢’ is the constant normal velocity of suction or injection at the
plate according as vy’ < 0 or >0, respectively. Also, the divergence
equation for the magnetic field gives

B, = constant = By’ (say)

where By’ is the externally applied transverse magnetic field. Under
these assumptions the basic equations relevant to the problem are
(Ludford [4}).

%’

ou’ ou’ By 0B’

toy —=pr—+ , (1
o oy oy puo oy :
OB,/ 0B, 1 92B,” ou’
=+ vy — - L 25 N (2)
ot’ dy'  oup dy'? oy’
1 0B,/
fm o (3)
Ko Oy

where j’ denotes the component of electrical current density in z’-
direction, p the fluid density, v the kinematic coefficient of viscosity
of the fluid, and go and ¢ are the permeability and the electrical
conductivity of the fluid, respectively.

Assuming that no slipping occurs between the plate and the fluid,
the appropriate initial and the boundary conditions are (also, see Puri
and Kulshrestha [6])
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u(y’,0)=0 for y=0, (4a)
u’(0,t") = =Uof (t'), (4b)
u'(=,t’) =0, (4¢)

where f(t’) is an arbitrary function of time and Uy is a constant ve-
locity. The appropriate boundary conditions on B’ are

B/ (0,t'y =0, By’{0,t') =By, (5a,b)
B,/(,t') =0, By’(=,t’) — By'. (6a,b)
On using the following nondimensional transformations
U Uy? v
y==Lty, t=—Ct, V=— (Ta,b,c)
v v Uo
B, . v 1/2
= =B, (8a,b)
Uo{ppo) Uy
u’ B,
pg=s,*— —-=uxbh, (9a,b)
Us ™ Uslppa)'?
7 B ’
my,mg = 2y 2 —— =y + By, (10a,b)

Us Uo(l)llo)l/2

and assuming that the magnetic Prandtl number P, (=vouy) = 1,
which is a plausible assumption in most of the hydromagnetic prob-
lems, equations (1) and (2) then become

2?2 a Pe)
op_ 9P 9P _ 0, (11)
o2 oy ot
02 P P
4 _ 222, (12)

2y oy o
which are to be solved under the boundary conditions
p(0,t) = g(0,t) = —f(¢), (13)
p(o,t) =0, g(ot)—>0. (14)
With the aid of (9) solving the equations (11) and (12) under the
boundary conditions (13) and (14) with the help of the Laplace
my?

transform technique, we obtain
ex —_—— s
Py 9 4

N

where a bar over a quantity denotes its Laplace transform defined
as

aB = —éf(s)

F(s) = j; " emstf()dt.

In order to determine u and B, we must find out the inverse Laplace
transform of (15). We note that the right-hand side of the expression
(15) is the product of the two functions of s; one of which, f(s) hasa
known inverse f(¢). Thus u and B are best obtained by using the

- composition product rule (also known as Duhamel theorem), namely,

that
wrt) = |  uay,Df(E — 2)dz, (16a)
Bon = . "Buly)f(t - 2)dz, (16b)
where
. N - _H® 3/2[ (mly _mi®
us(y,t),Bs(y,t) 4\/—yt Xp s 1
may _ mg’t Y
iexp( 2 . )] exp( 4‘t)’ (17a,b)

H(t) is the Heaviside Unit function. The expressions (17) have been
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obtained by taking the inverse Laplace transform of (15) for the cage
when f(t) = 6(t); 6(¢) is the Dirac delta function.

To demonstrate the applications of the results obtained in thig
section, we shall now consider three particular cases, in the subsequent,
three sections, by perscribing physically acceptable forms to f(¢).

3 Impulsive Motion
The case of a single impulse is considered. This corresponds to

F(g) = H(z). (18)

On substituting (18) into (16), we obtain the expressions for the ve-
locity and the magnetic field as

~ H(t) y m1t1/2
u(y,t),B(y,t)——THexD (m1y) erfc( mt
y  mgt'? L £1/2
+ erfc (ﬁ_ 12 exp (may) erfe | == ot 1/2 22

mot1/2
+ erfe (Z_tyl_/z - ZT)” (19a,b)

Knowing u(y,t) and B(y,t) from (19), we can now calculate expres-
sions for the skin-friction and the electrical current density, in their
nondimensional forms, as

i H(t) mt1/? mat/?
T=—=—Tm1erfc . + mg erfe 5

mgzt
(wt)lfz{ ( e ”p("T)”’ (20)

) . mltl/
m1 exp (myy) erfc ” 1/2 5

Q|A
=

j:

m2t1/2
o 1/2 2 )

e i) fo (-5 oo (5
(m)mep m exp . cos. P

— exp (— ——1 cosh (——-)” 21)
4 Accelerated Motion

Considering now an accelerated plate motion which corresponds
to

— mg exp (may) erfc (

fe) = L H), 22)
to

where £¢ is a constant, In this case the expressions for the velocity and
the magnetic field are given with the aid of (22) and (16), by

H
u(y,t),B(yt) =~ H®) H(t + L} exp (m1y)
4ty my

y matV ¥ y mtl/2
><erfc(2 1/2+ p + t—m1 erfc —2t1/2— 5
y m2t1/2
+ [(t + ) exp (mgy) erfc (2 T + 5
£ 1/2!
+ t—L erfc | —— 2 me . (23a,b)
ma o172 2

The expressions for the skin-friction and the current density are
then given, respectively, by

H( ) (mltl/z) mztll
T=E-— t erfi + mat erfq
4t0 mil eric 9 ) mol €er C( D) z)
2 1/ 1/:
e (- e
mj, 2 mo, 2
t\1/2 12t 2
-2 (—) [exp (-— —-—-—) + exp (— ﬂiﬁ)”’ (24)
T, 4 4
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1
j= %f—)z [(————+ mat +y) exp (myy) erfe ( 3;/2 +212t—f)
(mat +y) mat + y*/t
" mawt) 12 (_ 4 )
1/2
- (miz + mot + y) exp (may) erfc (23/1/2 + 22t )
(st 2 (_mzmyz/t)_ierfc(_z__m_ﬁf)
malmwt)1/2 4 mi 2t1/2 2
mit —y /t1/2 = myt1/2)2 y__ mat!/
- a2 exp [ " ] — erfc ('Zt—l/-z— 9 2)
mat =y {_ (y/e12 m—_2t1/2)2}]. (25)
ma(mwt)1/2 4

5 Decaying Oscillatory Motion
We consider the case of decaying oscillatory velocity of the plate.
This corresponds to

f(t) = Re[H(¢t)e~(-iw)t], (26)

where A and o are real dimensionless constants. On using (26) into
the equations (16), we get

uy B =~ Re [e-<»2-im>t
X {(exp [y (m —a;— ibl)] erfe [2 7
+ exp |y [ (—— +a;+ib )] erfc[ + (a1 + Lbl)tl/zn
+ (exp [y (% —ag— ibz)] erfc [# —(ag + zb2)t1/2}

+ exp {y (212—2 +ag+ ibz)] erfc {—1—/2 +(as + zbz)tw””, (27a,b)

(a1 + Lbl)t1/2]

where a1, b1, @z, and bg are constants and are given by

2 /
e

1 [|jm?
a1,b1=7[(—1——}\2+w)

outn= 35 [ - 2e4)

Now, the nondimensional forms of the skin friction and the current
density are, respectively, given by

T= E(—-Re ”(01 + Lbl) erfl(a1 + Lb])t]‘/z}

2 /
+ ('—"4& - xz)r (290,

+ (az + ibg) erf {(ag + iba)t /% — vo

T tl)l/z fexp [~ (a1 + ibp)2] + exp [—(az + ib»%l}]

X exp (—(A\2 — iw)t)], (30)

oo -e-0)
[(——— —-ay - lbl) erfc {Zty
1
e [_ (_ —ayt - lblt) / }]

+ exp [y (% +ag+ ibl)} [(% +ay+ ibl)

1 2
T exp [— (32—/ +ayt+ iblt) /t}}
A [
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ji= Ef—) Re {exp {=~(A% - (w)t}

- (a1 + lbl)tl/2]

X erfc( 7

+ (a; + lbl)t1/2}

(31)
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— (ag + ibo)t 1/2] -

(,”t)l/2 exp l— (% - agl — ibzt)z/t]}
-~ exp {y ("% + as + Lbz)] [(% +ag + lbz)

X erfc[ + (az + ng)tm]

exp [— (% + agt + ith)Z / t]]” 1)

(Cont.)

X erfc {2 "

- (,n.t)l/2

6 Conclusion

When the plate is started impulsively the expressions for velocity,
magnetic field, skin-friction, and electrical current density are given,
respectively, by (19a,b), (20), and (21). We observe that in the absence
of the magnetic field, and with a slight adjustment, the expressions
(19a) and (20) are identical with those of Watson [3]. Also, it is in-
teresting to note that for large values of ¢, the expression for the ve-
locity is not affected by the presence of the magnetic field.

In the case of accelerated motion, the discussion of the results of
steady-state solution is the same as has been discussed earlier. Since
these results and discussion are similar to those of Watson [3], we feel
that any further discussion here about them is, therefore, unneces-
sary.

Finally, in the decaying oscillatory motion, the steady-state solution
is obtained by taking A = 0; which corresponds to the problem of flow
near an oscillating porous plate. In this case the expressions for the
velocity and the magnetic field (27a,b), respectively, reduce to

w( B =~ [exp [(ﬂ - al) y]
X cos {wt — byy) + exp {(7 - az) y]

X cos (wt — b?y)], (32a,b)

and also, the skin-friction and electrical current density for this case
are given by

1
T = 5 [(@a1 + ag — vo) cos wt — (b1 + by) sin wt], (33)

1
j= 5 &xP l(% - al) y] [(—? - al) cos (wt — byy)

+ by sin (wt — bly)]
- 1 exp {(% - az) y] [(% - ag) cos (wt — bay)

+ bg sin (wt — bzy)]. (34)

We observe that the expressions (32)-(34) are identical with those
obtained by Pande, et al. [9].

Here we see that two boundary layers (or hydromagnetic boundary
layers, since P, = 1) exist whose thicknesses depend on the velocity
of suction/injection and the strength of the applied magnetic field
besides depending on some other parameters as well. In the absence
of magnetic field the two boundary layers coalesce into one. We also
observe that the oscillations of the plate produce wavelike distur-
bances within the boundary layers and the velocity decays exponen-
tially as the distance from the plate increases. Other conclusions and
discussions regarding the behaviors of the induced magnetic field, the
skin friction, and the electrical current density inside the boundary
layers are self-evident from the foregoing expressions and hence any
further discussion about them seems to be redundant.
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Infiltration of a Fluid Into a Dry
Poro-Elastic Body

The infiltration of a fluid into a dry poro-elastic body, of infinite extent, from its cylindri-
cal or spherical cavity and the resulting mechanical behaviors are investigated. Since the
problem is a moving boundary problem, and therefore, an essentially nonlinear one, the
finite-difference scheme with the aid of the boundary fixing method is applied to obtain

the solution. The results thus obtained for sandstone are compared with those for a porous
rigid body as well as with those in a situation where a fluid pervades the whole body from
the outset. These comparisons show that the extent of the infiltration front into the body
is adequately predicted by the rigid.skeleton model and that the actual stress distribution
is remarkably different from that which exists if fluid pervades the whole body from the

outset.

Introduction

The mechanical behaviors of a poro-elastic material containing a
fluid has attracted considerable attention in various fields such as soil
mechanics, ground water hydrology, geophysics, seismology, biome-
chanics, the theory of filtration and purification, the study of machine
elements, and so forth. Many basic theories [1-6] have been proposed
to describe these behaviors. Among these theories, Biot’s theory [2,
3] is comparatively simple and it suffices to describe the various
phenomena in the field just mentioned.

As far as the authors know, all previous papers on poro-elasticity
dealt with the case in which the fluid pervades the whole body, and
no work has been done on the injection and infiltration of a fluid into
a part of the poro-elastic material which does not yet contain the fluid.
As regards infiltration problems, the effect of the elastic deformation
of a porous matrix on the infiltration process has been neglected. It
has not been established whether the rigid matrix theory is acceptable
or not for the purpose of calculating the moving front of the injected
fluid.

The present paper thus investigates how a fluid injected from a
cylindrical or spherical cavity infiltrates into an infinite poro-elastic
body and what deformation and stress fields the infiltration brings
about. Such fluid injection and infiltration have become practical for
the disposal of noxious liquid waste by pumping it into a permeable
underground layer of, for instance, sandstone or limestone through
a pipe. Recently, such a disposal technique is used to a considerable
and broad extent by industry.

Regarding this fluid infiltration problem, the referential field is

Contributed by the Applied Mechanics Division for publication in the
JOURNAL OF APPLIED MECHANICS.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N. Y.
10017, and will be accepted until September 1, 1981. Readers who need more

‘time {0 prepare a Discussion should request an extension from the Editorial
Department. Manuscrlpt received by ASME Applied Mechanics Division, Apnl
1980; final revision, August, 1980.

Journal of Applied Mechanics

divided into two regions: one is the region where the injected fluid
flows through the pores; namely, it is the region of a mixture consisting
of a fluid and a solid matrix, and another is the one where the fluid
has not yet penetrated into the pores. The material is regarded as
homogeneous and elastic. Moreover, the boundary of separation be-
tween these two regions moves with the infiltration of the injected
fluid. This problem is characterized distinctively by the possession
of the moving boundary, and mathematically it belongs to the so-
called moving (or free) boundary problem. Such a problem becomes
perfectly nonlinear because the positions of the moving boundary are
neither fixed in space nor known a priori. Due to this nonlinearity,
the analytical solution can be found only in limited situations, for
example, in Neumann’s solution for the one-dimensional Stefan
problem [7].

Up to now, several methods of tackling moving boundary problems
have appeared. These methods can be roughly classified into three
categories: analytical methods, approximate methods, and numerical
methods. Using the analytical method [8, 9], the moving boundary
is usually represented by the solution of a nonlinear, singular, inte-
gro-differential equation, which is not tractable. The scope within
which the approximate method is applicable is restricted. However,
with the recent remarkable advance of digital computers, many nu-
merical methods based on the finite-difference scheme have been
proposed. Among these methods, the boundary fixing method [10],
in which Landau’s transformation was adopted to immobilize the
moving boundary, seems to be the most practical -and superior

_method.

In this paper, formulating the aforementioned infiltration problem
on the basis of Biot’s theory, we obtained the numerical solution by
using the boundary fixing method and the Crank-Nicolson finite-
difference scheme. A sample calculation was performed by using
material constants for sandstone infiltrated by kerosene [12]. Also,
a similar infiltration problem into a porous rigid body was likewise
solved for the purpose of comparison. This comparison shows that
one can estimate roughly how far the moving boundary or a fluid in-
filtration front penetrates from the cavity into the infinite body using
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Fig. 1 Infiltration of a fluid into a poro-elastic bady, of infinite extent, from
its cavity of radius ro; the fluid infiltration front is r = R(1)

the rigid skeleton model. Furthermore, we compared the results for
the moving boundary problem under consideration with those in the
situation where the fluid pervades the whole infinite body with a
cavity from the outset. This comparison shows that the moving front
has a great influence on the distribution of fluid pressure and matrix
hoop stress. '

Statement of Problem and Governing Equations

A schematic diagram with a coordinate system for the fluid infil-
tration problem is shown in Fig. 1. Consider an infinite poro-elastic
body enclosing fluid in its cylindrical or spherical cavity, but without
fluid in its pores. When hydraulic pressure is applied to the fluid in
the cavity, the pressure injects it into the porous wall of the cavity and
begins to infiltrate it through the surrounding porous body. At this
stage, the relevant field can be divided into the two regions shown in
Fig. 1. Region (I) already has fluid penetration but Region (II) does
not. The former is regarded as a mixture composed of a solid and a
fluid, while the latter is regarded as a homogeneous elastic body. The
boundary of separation between these two regions moves with the
infiltration of the injected fluid and its positions are not known a
priori, depending upon the solid displacement field and the fluid
dilatation field.

The cylindrical cavity and spherical cavity will be denoted by Cases
1 and 2, respectively.

As examples of practical situations, these cases may be regarded
as follows. Case 1 is the situation in which the fluid is pumped through
a cavity into a thick permeable layer which is confined by two slippery
impermeable layers. This type of model assumes that the confining
layers do not offer shear stress at their interfaces. The effect of gravity
is neglected. Case 2 is similar but with the absence of the impermeable
layers.

Fluid infiltration and mechanical behavior will be modeled by using
Biot’s theory. We neglect inertia terms.

In infiltration theories, in addition to fluid pressure, capillary
pressure associated with surface tension works as the driving force
for fluid motion. We neglect the capillary pressure since it is much
smaller than applied fluid pressure. Furthermore, we neglect the
driving force due to fluid concentration gradient which is significant
only in conditions of low fluid content.

In 1955, Biot [3] proposed the linearized theory for infinitesimal
deformations of a homogeneous poro-elastic medium saturated with
an ideal fluid and for flows of the saturating fluid through the porous
medium. Biot and Willis [11] examined the material constants in-
volved in that theory in 1957. The basic equations in those works can
be summarized with some slight changes as follows, with the use of
the notations:

260 / VOL. 48, JUNE 1981

Tij, T = partial stresses of the solid and fluid,
respectively.

T = force per unit volume exerted on the solid
by the fluid or, as a reaction against it,
diffusion force.

u; = displacement of the solid.

v; = velocity of the fluid.

ejj = infinitesimal strain of the solid.

e, € = dilatation of the solid and fluid,
respectively.

Vi = velocity of the fluid relative to that of the
solid. :

A, N, Q, 8, b = material constants.

Kinematic Relations:

ey = Muij + ujg), (1)
e=u, (2)
Vi = v; — du;/dt, (3)

where, and in what follows, the sum is taken from 1-3 with respect
to the repeated indices and ( ), denotes partial differentiation with
respect to a Cartesian coordinate x;.

Motion and Continuity Equations:

gjij+ =0, (4)
Ti—m =0, (5)
;i = O¢/dt. (6)
Constitutive Relations:
oy = Aedy + 2Nej; + Qedy, D
7= Qe + Se, (8)
™= bV, )

where 6;; is the Kronecker delta. The constants N, A, @, and S can be
expressed as

N =g, (10)
/e 24 (1 =200 = d/k) 2

4= ¥ + 8~ 6% T )
Cf=f =5/

Q_'y+6—62/x’ (12)
I R

S——'y+6—~52/x’ 13)

where f is the porosity and 4 is given as
v =flc - 0), (14)

where ¢ is a compressibility coefficient of the fluid. The constants g,
K, 6, and -y are the shear modulus of the bulk material, a coefficient
of jacked compressibility, an unjacked compressibility coefficient,
and a coefficient of fluid content, respectively. All these constants are
measurable. The porous matrix is homogeneous, isotropic, and elas-
tically linear.

Substituting equation (7)-(9) into equations (4) and (5), and using
kinematical relations (1)—(3), gives the Navier (displacement type)
equation in the form:

NVZ2u+ (A+ N)graddivu+Qgrad e + bv =0, (15)

@ graddivu + S grad e — bv = 0. (16)
Formulation of the Problem

To the aforementioned problem, we will seek solutions for Cases
1 and 2. Due to the symmetric characteristics of the problem, we can
assume

ur=u(r,t), v,=vlrt), e=e(t) inRegion(), (17
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u, = U(r, t) in Region (II), (18)

with respect to the cylindrical polar coordinate system (r, §, ) for Case
1 and with respect to the spherical polar coordinate system (r, 8, ¢)
for Case 2. :

Now, substituting equations (17) and (18) into equations (15), (16),
and (6), we are able to obtain a set of field equations for Region (I) as
follows:

(A + 2N)ofr—ma(rmu)/or}/or + Qde/or + b(v — du/ot) = 0, (19)
Qofr—"a(r™u)/orl/ar + Sde/or — b(v'— du/dt) =0, (20)
r=ra(rmw)/or — de/dt =0, (21)

for ro <r < R(t), where rg denotes the inner radius of the cavity and
R(t) denotes the position of the fluid infiltration front at time ¢. n
assumes values 1 and 2 in Cases 1 and 2, respectively.

The stress-displacement relations in Region (I) are

o1 = Ar—r(r™u)/or + 2Nou/or + Qe, (22)
092 = Ar—ra(r™u)/or + 2Nu/r + Qe, (23)
o3z = Ar~md(r"u)/or + 2N(n — Du/r + Qe, . (24)
7=S8e+ Qr-ro(rru)/or, (25)

for ro < r< R(t), where 041, 093, and o33 are
011 = Grr, 92 = Gpp, 033 Oz, (26)

for Case 1, and

011 = Grr, 022 = Ggg, 033= Ogg, @7

for Case 2.
Since Region (1I) has no fluid, the field equation for a linear elastic
body holds.

(Ao + 2N)Ofr—ma(rnlU)/or})/or = 0, (28)

for R(t) <r < + =, where A¢ is the material constant of the poro-
elastic material which contains no fluid.

The stress-displacement relations, being the same as those of an
elastic body, are

21 = Aer~a(r*U)/or + 2NaU/or, (29)
- 2o = Aogr 0 (r"U)/or + 2NU/r, (30)
Zaz = Agr—mo(r*U)/or + 2N(n — 1)U/r, 31)
for R(t) <r < + «, where 21, 299, and 233 are as follows:
2y =2y, Z22= gy, Z33= 2y, (32)
for Case 1, and
21=2 Zoa=Zp, Za= Zge (33)

for Case 2.

Let us assume that the fluid in the cavity is suddenly pressurized,
and thereafter, varies as a continuous function of time p(t). On the
moving boundary or at the fluid infiltration front, the displacement
and the traction should be continuous, and the fluid veloeity should
coincide with the velocity of the moving boundary. Furthermore, the
solid displacement should vanish at infinity. Thus the initial and
boundary conditions for equations (19)-(33) are reduced to

u=0 (ro<r<R(0)) at t=0, (34)
ou=—(1=p@t), v=—fplt) at r=ro (35)
u=U at r=R(t), (36)
on=2n, 7=0 at r=R(), 37)
dR/dt = v at r=R(t), (38)
U=0 at r— +to, (39)

Journal of Applied Mechanics

Nondimensionalization
Here, we introduce the nondimensional variables to facilitate the
analysis:

S b - S
E=iu €=—¢, U=£——u, U=——1U,
ropo Po Po roPo
- 8
F=rlrg, t=—t, R=R/r, (40)

- (011, 022, T3, T, 211, 299, 233)

= (011, 022, 033, T, 211, 222, 233)/Po.

For simplicity, the bars on the nondimensional quantities will be
omitted in the following. Using these nondimensional variables, the
field equations are rewritten as

(E + GYolr—ra(rru)/or}/or + Hde/or + (v — ou/ot) = 0,

(41)
Holr—mo(rru)/or}/or + de/or — (v — ou/ot) = 0, (42)
r-nd(rtv)/or — de/ot = 0, (43)
for 1 <r < R{t),
(E¢ + G)ojr—ma(rnU)/or}/or = 0, (44)
for R(t) <r <+,
The constitutive relations are rewritten as
11 = Er—7d(rmu)/or + Gou/or + He, (45)
gog = Er=nd(rmu)/or + Gu/r + He, (46)
aaz = Er—no(ru)/or + G(n — 1)u/r + He, 47)
T=¢+ Hr—no(r"u)/or, (48)
for1 <r < R(t), and
211 = Egr—mo(rrU)/or + GoU/or, (49)
Zog = Eogr—mo(rnlU)/or + GU/r, (50)
23z = Egr=m0(rnU)/or + G(n — 1)U/, (51)

for R(t) < r <+, Furthermore, the initial and boundary conditions
are

u=0 (1<r<R(0) att=0, (52)

o =—(L—fip(t)/po, 7=—fp(t)/po atr=1, (53)
u=U at r=R(), (54)

o1=2Zn, 7=0 at r=R(), (55)

dR/dt =Pv at r=R(t), (56)

U=0 at r— +w, (57)

where po is the reference pressure. The nondimensional constants
appearing in equations (41)—(51) and P in equation (56) are defined
as

E=A/S, G=2N/S, H=Q/S, Eo=A¢S, P=po/S. (58)
Reduction of the Field Equations to a Single Equation
and the Fixing of the Moving Boundary

It is convenient to reduce the system of the simultaneous partial
differential equations (41)—(43) for Region (I) to a single equation.
In order to do so, let us express the solutions of that system in terms
of a scalar function ®(r, t):

(H+1)2
u= —E_+?)H—2r_"q> —rfi(t)/(n + 1) — folt)/rn, (59)
_(E+G+H)H+1) .
€= 10— r=ro®/or — fi(t), (60)
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Fig. 2 Distribution of radial stress 014 at varlous times for Case 1

(E+G+HYH+1)
E+G - H?

rrad/at — rhi(t)/ (n + 1) — falt)/rn,

(61)

with f1(t) and f2(¢) being unknown functions, where the dots denote
differentiation with respect to the nondimensional time ¢. These so-
lutions satisfy the continuity equation (43) automatically. From the
remaining field equations (41) and (42), we obtain the following single
equation for the function ®(r, t):

n E+G+2H+1
02®/or2 — —o®/or = ———— od/ot. 62
fort = otlor = e e °Y ©
The field equation (44) for Region (II) has a general solution
U=rFi@)/(n+ 1)+ Fo(t)/rn, (63)

where F1(t) and F2(¢) are also unknown. The unknown functions f1(¢),
fa(t), F1(t), and Fy(t) are determined by the boundary conditions
(53)—(57) as follows:

fi(t) =0, (64)
- __HA

folt) = nGP(t)/Po FrG_in (1, t), (65)

Fi(t) =0, (66)
_ H+1p _ 1

Fo(t) = T+ Gt {1, t) ~ ®(R, t) + nGP(t)/Po‘ (67)

The solutions (53)-(61) and (63) with (64)—(67) are easily proved to
satisfy the boundary conditions (54) and (57) automatically. Using
equations (45), (48), and (49), the remaining initial and boundary
conditions can be expressed in terms of ®$(r, £). Thus the equation
system for ®(r, t) is obtained as follows:

228(r, s)/or? — 2 a®(r, s)/or = 08(r, 5)/0s, (68)
r
o®(1,s)/or = —H+‘ ] p(s)/po, (69)
dB(R, s)/or = 0, (70)
L peei o pfEXGHHHAY
n+1 E+G-H?

(H + 1) 1 1 net1

T+10—I° ®(1, §) + nGP(S)/po} + " R{O)»+1,  (71)

®(r,0) =0 (1<r<R(0), (72)

with
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Fig. 3 Distribution of circumferential stress 052 at varlous times for Case
1

E+G-H? .
§ = ———
E+G+2H+1
In order to avoid the complexity of the finite-difference procedures

due to the moving boundary, let us introduce the following variable
transformation [10}:

(73)

n=(—1)}/(R-1) (74)

This transformation fixes the moving boundary on the n-coordinate.
Making use of the foregoing variable, the reduced equation system
(68)—(72) is changed into:

= 2, 2
2®(n, s)/os TR 2P(n, s)/on
1 n .
(DS IO A, <1 75
R-illtn@-1 nR]M)(n,s)/an 0<n<1), (75)
28(0,5)/on = = —L— (R = 1p(5)/po, (76)
®(1, s)/on = 0, (1M
1 R"+1=(E+G+H)(H+1)d>(1,s)
Pn+1) E+ G- H?
...—__—(H + 1)2 _1._ ___1_. n+1 8
T+ G- H ®(0, s) +nGp(S)/p°+P(n+ 1)R(O) , (78)
&(n,0)=0 (O<y<1). (79)

Numerical Example

In order to examine some features of the problem of the fluid in-
filtration into a poro-elastic body, we solve numerically the equation
system (75)—(79) by applying the Crank-Nicolson finite-difference
scheme. Because of the characteristics of the finite-difference scheme,
we need to start from the stage where the fluid slightly penetrates into
the surrounding porous solid from the cavity wall. We started by
putting R(0) = 1.1,

For the numerical calculations, it is sufficient to specify the nu-
merical values of f, v, ¢/k, 6/k. We used the following values, which were
computed from the data given for sandstone and kerosene by [12, 13]:
f=0.26,p=0.2,c/k = 4.2, /k = 0.18. The fluid dilatation caused by
the reference pressure po was taken as poc = 5 X 10~2, and the input
function p(t)/po was specialized to the form: p(t)/po = 1 — e~ with
a =10.

The results are shown in Figs. 2-8, where the bars on the nondi-
mensional quantities are resumed.

Figs. 2-4 show the spatial distribution of the radial stress 711, and
hoop stress ooy for the solid, and the fluid stress 7, respectively, for
Case 1 with the nondimensional time ¢ taken as the parameter. In the
first two figures, each curve has discontinuity in its gradient at the
fluid infiltration front. The curves behind the infiltration front show
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the stresses in Region (I), and the curves ahead of the front show the
ones in Region (1I).

Fig. 4 shows the distribution of fluid stress 7 for Class 1. The fluid
stress increases monotonically from the negative value 7 = —0.26 and
vanishes at the fluid infiltration front.

The time history of the position of the fluid infiltration front for
sandstone and kerosene is compared with that for a porous rigid body
and kerosene in Fig. 5 as to Case 1. As mentioned before, c¢/k = 4.2 and
0/k = 0.18 for the former case, while the limiting case of the rigid
skeleton is obtained by putting ¢/x — +® and 8/k = 1. The input
function p(t)/po and the reference fluid dilatation poc are the same
for both cases.

Initially the front progresses rapidly and later it does steadily. The
front in the sandstone goes ahead of that in the rigid body, but the
difference is rather small. Therefore, to estimate roughly how far the
front penetrates into the body, even the rigid skelton model may be
a sufficient alternative to the poro-elastic model for the sandstone.

In Figs. 6-8, the stress distributions in the solid and fluid at £ = 38.7
for the situation considered here are contrasted with those for situa-
tion where the fluid pervades the whole infinite poro-elastic body from
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Fig. 7 Distribution of circumferentlal stress o,, for Case 2 in comparison
with that In a situation where a fluid pervades the whole body from the
outset
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Fig. 8 Distribution of fluld stress T for Case 2 in comparison with that in a
sltuation where a fluid pervades the whole body from the outset

the outset as to Case 2. The analytical solution for the latter situation
can be easily obtained and is shown in the Appendix.

The difference in the radial stress distribution between the situa-
tion considered here and the situation where the fluid pervades the
whole body from the outset is rather small, while the differences in
the hoop stress and fluid stress distributions are remarkable.
Therefore, the analytical solution given in the Appendix cannot be
an alternative to the solution for the infiltration problem, no matter
how simply the analytical solution is obtained.

Conclusion
The infiltration of a fluid into a dry poro-elastic body with a cy-

“lindrical or spherical cavity has been examined by the boundary fixing

method and Crank-Nicolson finite-difference scheme. The following
conclusion can be drawn:

1 'The stress distribution in the body has discontinuity in its gra-
dient at the fluid infiltration front.

2 The extent of the infiltration front into the body is adequately
predicted by the rigid skelton model.

3 The actual stress distribution is remarkably different from that
which exists if fluid pervades the whole body from the outset. The
stress solution obtained using the latter model is not a good solution
for the infiltration problem.
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APPENDIX

We can easily obtain an analytical solution for a problem similar
to Case 2 except where a fluid pervades the whole body from the
outset. The equation to be solved is the same as in (68) and the
boundary conditions and initial condition are

o11=—( —fpt)/po, 7=—fp(t)/po at r=1, (80)
0611=0,7=0 at r—+=, (81)
u=0 at t=0 for 1<r<+w, (82)
The solution for the equation system (68) and (80)—(82) is
s r—1
P(r,sy=f/H+1 [f (1 — e—%u) erfe (———-—-) du
f ) 0 ) 2v's —u
s - (r—1)%
+r f (1 - e ™) exp{——— /\/ w(s — u)du}, (83)
0 4(s —u)
where erfc () is the complementary error function and
_ E+G+2H+1 (84)
=
“TTE+G-m?
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A Finite-Element Singular-
Perturbation Technique for
Convection-Diffusion Problems
Part 1: The One-Dimensional Case

Approximation procedures for the solution of convection-diffusion equations, occurring
in various physical problems, are considered. Several finite-element algorithms based on
singular-perturbation methods are proposed for the solution of these equations. A method
of variational matched asymptotic expansions is employed to develop shape functions
which are particularly useful when convection effects dominate diffusion effects in these
problems. When these shape functions are used, in conjunction with the standard Galerk-
in method, to solve convection-diffusion equations, increased solution accuracy is ob-
tained. Numerical results for various one-dimensional problems are presented to estab-
lish the workability of the developed methads.

Introduction _

In fluid mechanics problems in which convection effects dominate
diffusion effects, standard numerical techniques—centered finite-
difference models and finite-element Galerkin methods—have failed
to produce reasonable solutions. Convergence at optimum rates can
be obtained with these approximation procedures; however, if normal
mesh spacings are used, the absolute error is large and often physically
unreasonable oscillatory solutions are obtained.

In order to overcome these difficulties, techniques of “upwinding”
[1] have been introduced by practitioners of the finite-difference
method. These procedures produce noncentered finite-difference
schemes in which the bias in the algorithm depends on the direction
of the flow. Since finite-element Galerkin procedures, used in con-
junction with standard shape functions, result in centered discreti-
zations and corresponding poor numerical results, it has become
necessary to develop finite-element equivalents of the upwind dif-
ference algorithms.

A technique using the weighted residual method, in conjunction
with upwind weights, has been proposed in [2-5]. Hughes [6, 7] has
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cember 2-7, 1979 and contributed by the Applied Mechanics Division for.
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introduced a method of solution in which reduced integration, in
conjunction with a moving quadrature point, is used to produce an
upwinding effect. Kikuchi [8] has introduced an artificial viscosity
technique for this type of problem, and Barrett [9] has developed a
procedure in which exponential basis functions are used in finite-
element algorithms.

In this paper a solution technique, based on the standard Galerkin
method, is introduced for the convection-diffusion problem. The
approach advocated here is traditional in all respects except for the
choice of shape functions to be employed in the analysis. The shape
functions are constructed by a procedure which can be characterized
as a finite-element method of matched asymptotic expansions. These
shape functions can account for variable coefficients and zeroth-order
terms in the differential equations. In addition, they can be used in
conjunction with distorted elements and multidimensional prob-
lenis.

As the diffusion effects in the problem increase or as the mesh
discretization parameter decreases, the constructed shape functions
approach the standard forms. However, when convection effects are
important and when normal mesh spacings are employed, the shape
functions are quite different as compared to those used in classical
finite-element approximations for self-adjoint problems. The use of
these special shape functions produces an upwinding effect in the
discrete equations and a corresponding increase in solution accu-
racy.

The Physical Problem

Consider a one-dimensional domain I = [a, b]. Let x denote the
coordinate of a particular point in I. Then the convection-diffusion
problem in one-dimension can be stated as follows:
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d? d
e—¢+u—('b+g</>=0
dx

dx?

(1)
¢la)=p
o(b) =g

Normally, the parameter ¢ is a diffusion coefficient, u is related
(through a minus sign) to velocity, and g is associated with transient
or linearized convective effects.

Singular-Perturbation Procedures

The problem (1) is a singular-perturbation problem. If the value
of the diffusion coefficient ¢ is small compared to the coefficient w,
this problem is of boundary-layer type with boundary layers occurring
either at x = a or at x = b, or at both positions, depending on the
variation of u with x. A method of analysis which combines the fi-
nite-element discretization technique and the singular-perturbation
method can be introduced to solve this type of problem. In this pro-
cedure, the spatial domain 7 is first subdivided into finite elements
1. Then, singular-perturbation methods are used in the construction
of the discrete equations on the local elements. When the local
equations are assembled and the resulting systerm is solved, the entire
finite-element solution is obtained.

In this paper, this approach, involving the application of singular
perturbations on a local level, is employed. It will be assumed in this
development that e is a small, positive constant, while coefficients u
and g are variable. Let the typical element be defined by I, = [x., x.
+ h). Let a natural coordinate system be established in the element.
The natural coordinate is denoted £ and is defined on the mapped
element I, = [~1, 1]. The mapping between the natural coordinate
£ and the physical coordinate x takes the following form:

x=x(.+(E+1)% (2)

The local problem, equivalent to the original formulation (1), can be
established by making use of the transformation (2). If ¢(£), u(£), and

-8(£) denote the transformed dependent variable and variable coeffi-
cients, the following problem can be formulated:

A de
ed£2+u($)d£+g(£)¢—0 on I,
(3)
¢(-1)=p
p(1)=7q
where
_ €
€=—
h
O 183)
u(§) = 5
sep = EOR
{€3) e

Clearly, the mapped local problem (3) has a different character as
compared to the original global problem (1). If ¢ is small compared
to u, the solution of the original global problem (1) will be of bound-
ary-layer type. Similarly, if € is small compared to &, the local problem
(3) will have a solution with a boundary layer. However, € varies in-
versely with h, and g is proportional to k. Thus, if the element size
is large and if € and u have values which would lead to a boundary-
layer-type global solution, the local element will have a solution of
boundary-layer type. However, no matter how small € is compared
to u, as h approaches zero, the element boundary layer disappears.
In fact, in the limit as h approaches zero, the local solution becomes
a harmonic function.

On the typical element, there exist three solution regions. A
boundary layer may occur on the right-hand side of the element if u
is negative there. In addition, a boundary layer may occur on the
left-hand side of the element if u is positive at that end of the element.
Thus two “inner” boundary-layer regimes exist near the element
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boundaries. In addition, an “outer” solution region exists away frory
the boundary layers. Essentially, this region occupies the center of
the element. Grasman and Matkowsky [10] have introduced ap
asymptotically valid solution for a differential equation with three
similar solution regions. In the notation employed in this paper, the
solution of Grasman and Matkowsky can be stated as follows:

$(E) = colf) + (B — cpo(~1)) g TR NUFD/E

left boundary-
layer solution

+(T — co(1)) EWU-DE (4)

- right boundary-
layer solution

outer,
solution

In this equation the outer solution and boundary-layer solutions are
defined by perturbation methods. In particular, the outer solution
¢o(£) satisfies the following equation:

d
maj§+a9m=a

%@=upbjf§3w)

The constant ¢ in expression (4) must be defined in such a way that
the boundary-layer solutions match the outer solution in some ap-
propriate sense.

An assumption implicit in the use of the matched asymptotic ex-
pansion solution (4) is that @w(~1) > 0 and @(1) < 0. In this case
boundary layers exist at each end of the element. However, if 7(~1)
< 0and (1) <0, a boundary layer exists on the right-hand side only,
and the following matched solution is a valid restriction of (4):

H(E) = cpo(E) + 3 (1 = E(P — cdo(=1)) + (T — cdo(1))eT D=0/
(5)

Thus

Similarly, if Z(—1) > 0 and #(1) = 0, a boundary layer exists on the
left-hand side of the element only, and the appropriate matched as-
ymptotic solution is defined as follows:

B(E) = col®) + (B — co(—1))e FEDUHDS 4 L (1 + £)(T — cdo(1))
6)

In the remainder of this paper numerical algorithms will be con-
structed using a procedure which is based on the general solution (4).
When appropriate, similar algorithms can be obtained using the
special formulas (5) and (6). The techniques, required to analyze those
special cases, are a straightforward modification of the methods to
be presented here.

The Definition of Finite-Element Shape Functions Via
Singular Perturbations

The singular-perturbation solutions discussed in the previous
section can be used in the construction of shape functions for finite-
element convection-diffusion models. The use of these solutions seems
appropriate since they are asymptotically exact on the elements and,
thus, should provide accurate results. However, there are certain
difficulties involved in using these functions in finite-element anal-
yses. Asymptotically, as € — 0 the singular-perturbation solutions
satisfy the boundary conditions at the ends of the elements. However,
for large € these boundary conditions are not satisfied. This is a
problem since in finite-element work finite values of € are often used.
In fact, as h — 0 in a finite-element model, € — o,

To overcome these difficulties alternate singular-perturbation
solutions can be defined. An alternate version of (4), satisfying the
appropriate boundary conditions, takes the following form:

BHE) = cdolE) + 3 (P — cpo(=1))(1 — E)e~1EE-DIA+HA
+3(7 — coo(L)1 + Ee~EDIA-8% ()

It should be noted that, in this expression, the absolute value of i was
employed. This change was incorporated in order to insure that a
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potential boundary layer exists at each end of the element. Because
of this modification, the solution (7) can be used even when z(—1) <
0 or (1) > 0. The matching criteria, to be introduced subsequently,
will effectively determine which of the potential boundary layers is
real, and it will give the real boundary layers more weight in the so-
lution.

The interpolation functions for the one-dimensional problem can
be obtained by defining  and § in (7) in such a way that the following
condition is satisfied:

Vil\e) = bk

where Ax = (—1)%, k = 1, 2. The resulting shape functions take the
following form:

Vi) = x1:(&)e; + x2:(§) i =1,2,({ notsummed)  (8)

where

[ZQw)( - ME)}

€

i(®) = 0l8) =2 £ w01 + M) exp |~

(N -\
xai() = % (1+ k) exp {— '“—(M]

Variational Matching Procedures

The finite-element interpolation functions defined in (8) involve
undetermined constants ¢;. These parameters define the relative
importance of the outer and boundary-layer solutions in the overall
local element solution. These parameters could be chosen in many
different ways. However, a useful criteria to use in defining ¢y and cg
is to require that, in some approximate variational sense, 1(£) and
Yo(£) satisfy the differential equation (3); within the element. This
is, in a finite-element setting, the analog of the variational matching
criteria first proposed by Grasman and Matkowsky [10], in the context
.of analytical singular perturbation methods.

In order to provide a concise notation for the discussion of the
variational matching procedures certain integral expressions can be
introduced. Let the Ls inner product (., .) be defined in the following
way:

(v, w) = _[11 v(Ew(E)dE

In addition, certain bilinear forms denoted a(. , .) and b(., .) will be
utilized in subsequent developments. These bilinear forms have the
following definitions:

(W) (‘ AL N
=|le— A —_
dow) =\ g T T g

dv dw u(‘g’) g_g
blv,w) = f[dgdg 2 dg+wdg)

dv . d%w dw )

Many different variational techniques can be employed to match
the inner boundary-layer solutions with the outer solution in the sense
previously defined. In this analysis, the following four techniques have
been found to be useful:

1 Averaging Method. The differential equation (3); is satisfied
in the average sense over I.

d ;
X, o dxai
d«fz dg

d? a™Xai dX2t
dg? dE
i =1,2, (i not summed) (9)

——+ Exui, )c,'=—( ——=+gxa1

2 Point Collocation Method. The differential equation (3);
is satisfied at a collocation point £* (£* = 0 seems to produce the best
results).
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d2yy; ; B
{ d?; (&%) + m(k*) Xgl (£%) +g($*)x1i(£*)] ci
dxai .
= [ e+ men TR )+ B )|

i =1,2, (i not summed) (10)

3 Least-Squares Method. The differential equation (3); is
satisfied in the least-squares sense.

alxii, x1)ei = —alxu, x2:) ©=1,2,{i not summed) (11)

4 A Method Based on a Variational Principle for Singular
Perturbation Problems. The differential equation (3); is an Euler
equation of b(¢, ¢) [10]. Thus the constants ¢; can be defined by in-
sisting that b(y;, ¥;) take on a stationary value as the scalars are
varied.

blxu,x1)e: = —b{xu,x2:) i =1,2, ¢ notsummed) (12)

The Finite-Element Galerkin Method

The local shape functions ¥;(£) can be converted to global shape
functions ¥;(x) using standard assembly procedures. Then the scalar
function ¢ can be defined in terms of the global shape functions ¥;
and the nodal values of the scalar ®; by ¢ = ¥;®;. Finally, the fi-
nite-element Galerkin procedure can be used to develop the following
system of discrete equations defining the ®; variable:

K;®; =0

The global stiffness matrix Kj; is obtained by the assembly of local
stiffness matrices K,j; defined as follows:

Keji f [ lfilij (f;bl d\bl g‘h‘#l] dx
- - w,‘ffg' £ vy0 ot (13

Consider a particular class of problems. This class of problems is
obtained from (3); by setting g = 0 and making u a constant. Shape
functions which represent exact solutions to this type of problem can
be easily constructed [9]. A typical shape function i is defined as
follows:

1 - eu(h —x)e

Yilx) = (14)

— guh/e

If shape functions of the form of (14) are employed to solve the class
of constant coefficient problems with g = 0, the resulting solutions
are exact. For this reason these shape functions could be called the
“exact shape functions.” The terms in the “exact” local matrix K.j;
can be constructed by introducing (14) in (13). For example, the term
in the first row and first column, denoted Z, of the exact coefficient
matrix, is .
Zl __ ueuh/c

1 ~ guhle

An expression, similar to Z1, can be obtained when the singular-
perturbation shape functions (8) are introduced in (13). The term in
the first row and first column, denoted W, of the singular-pertur-
bation coefficient matrix is defined as follows:

W1 = E}Clz + E261 + Ea

where
ge—2A 1y .
E, = 2+ 4A + X sinh (24) + (2 + 4A) cosh (24)
4
- 4(1+A)2+ —AZ]
Ey = 2¢Se~ 2+ 4A
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1
+4S + ;) sinh (24) + (2 + 4A + 45) cosh (24)

4
—4(1+ A)2+§A2]

_ ce—24

3=

1
[(ZA +2S + ﬂ + 1) sinh (24) + (24 + 28
+ 1) cosh (2A)]

S=u/e A = |a|/e

In order to evaluate the error in the approximations, it is useful to have
an expression for the optimum constant cy. This is the constant ¢q opt
which produces exact solutions at the nodes of a finite-element mesh.
As a criteria to define ¢y opy, it is sufficient to require that the term
in the first row and first column of the coefficient matrix (this is the
term associated with ¥,(£) and, thus, with ¢,) be the same when either
the singular perturbation shape functions or the exact shape functions
are used in the analysis. The use of this criteria implies that, when ¢,
= 1 opt, the following relationship must hold:

Wi=2,
or

Eici?pt + Esc1opt + E3— 21 =0 (15)

This equation has two roots. The values of the two roots depend on
the magnitude of u but not on its sign. The parameter c; opt must be
identified with one of the roots. The particular root, with which ¢y pt
should be identified, depends on the sign of u, according to the fol-
lowing rule:

—Ey+ VE? — AE\(E3 — 7))
Clopt = ok s u<o
40y
—Eo— VEZ= 7
C1opt = 2 Es 2E4E1(E3 Z1) , u>0 (16)
1

" A similar analysis can be used to define cg opt. In this case, the pa-
rameter ¢ opt is defined in a way such that the term in the second row
and second column of the coefficient matrix is exact. It has been found
that as long as g(£) = 0, the following relationship holds:

€2 opt = 1-¢c; opt (4%)]

The constants, determined by variational matching, can be com-
pared to the optimum constants to assess the workability of the ap-
proximate matching procedures. A particular case was chosen for the
comparison. In this case u = —1. In Fig. 1, the optimum and approx-
imate values for ¢; are plotted versus €. It has been found that oscil-
latory solutions can occur when ¢; values less than the optimum ones
are utilized. For this reason, the averaging procedure has been judged
to be the most effective technique. Using the averaging method the
computed c1 values are always close to but greater than the optimum
values.

The shape functions which can be obtained using the ¢; and ¢j
parameters can take many forms. Suppose the coefficients in (3); are
constant with g = 0 and « = ~1. Then, the shape function ¥, defined
using the optimum constant in conjunction with (8), takes the form
shown in Fig. 2. If the problem has a variable coefficient quite dif-
ferent shape functions are obtained. Consider the case when u(¢) =
—£ and g(§) = 0. In this variable coefficient situation, the values of
¢y and ¢z must be defined by some approximate procedure (the op-
timum constants are not known for this case). In this particular
problem, all four variational matching procedures give the same
constants (¢; = ¢3 = 0.5). The resulting shape functions are pictured
in Fig. 3. In this particular variable coefficient case boundary layers
appear on both ends of the element.

Numerical Integration Technique
When u and g are variable coefficients, it is useful to employ nu-
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Fig. 1 Comparison of optimum and approximate values for ¢4 (v = —1,
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Fig. 2 Singular-perturbation shape functions for various values of ¢ (u(f)
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Fig. 5 Global L, error for various methods (¢ = 0.01)

merical integration techniques in the evaluation of the entries in
matrix K¢j;. In this work a quadrature rule, which is exact in the case
when u and g are constant, has been employed. This technique is
based on a two point Gaussian quadrature formula [11] for integrals
of the following form:

1
I, = fl Eneuédg

In this quadrature rule the Gauss points £; 9 and weights w, 2 are
defined as follows:

dx+d?—4r

E12= 5

Lo (L ) e
51—52(10 E‘L))e
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Fig. 6 Slﬁgular-perturbatlon solutions—a constant coefficient case

1 T
wy = —=2 (—1 - fx) etz
£ — &\
where
d Ioly — 111 Ids —19?
= ;or= ;
Ioly = I4? Iolo — 142
1—e~ 2 1+e 2
Iy = — I1= — -
Be— 8 oe=f @
2, Iy~ 381
12=I()"'“"1; 13=11+0—"“2; B=|a|.
a «

For 8 > 5, multiply by e~# to avoid overflows and use asymptotic
formulas in the analysis.

Numerical Experiments

In order to assess the accuracy of the finite-element algorithm, the
problem (1) was solved on the interval I = [0, 1]. Various choices of
the parameters ¢, u, and g were employed, and in all cases the
boundary values were defined by p = 0 and ¢ = 1. Initially the con-
stant coefficient case with g = 0 was considered. When optimum
values were employed for the constants, c;, the singular-perturbation
algorithm produced exact solutions at the nodes. This occurred no
matter what values were used for ¢, u, and k. The approximate vari-
ational matching schemes produced inexact finite-element solutions;
however, the answer obtained using these techniques were quite
reasonable. -

While the computed solutions for the constant coefficient problem
(with g = 0) were exact at the nodes, they were not exact within the
elements. The global L; error was used to define the error in matching
the solution within the elements. In Figs, 4 and 5 the global L error,
for various choices of ¢, is plotted for the standard Galerkin method,
the Petrov-Galerkin method [2], and the singular-perturbation
technique defined with optimum constants. The singular-perturba-
tion shape functions produce a significant reduction in the error
within the elements.

In Fig. 6 the solution to a problem with constant coefficients and
a nonzero g term is presented. In Fig. 7 a solution for the constant
coefficient differential equation e¢” + u¢’ + g¢ = f is pictured. In Figs.
8-11 the solutions to various problems with variable coefficients are
presented. In these variable coefficient solutions the averaging pro-
cedure was used to determine the constants c;.

The most difficult variable coefficient problems seem to be those
in which u changes sign within the domain. In these cases the slope
of the u curve seems to have a great effect on the accuracy of the sin-
gular-perturbation finite-element solutions. A case in which u has a
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Fig. 7 Singular-perturbation solutions—a nonhomogeneous equation
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Fig. 9 Singular-perturbation solutions—varlable coefficient cases with
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Fig. 11 Singular-perturbation solutions—a case with variable g term and
left-hand side boundary layer

positive slope is pictured in Fig. 8. In this case the solution has an
interior boundary layer centered at the point of change in sign of u.
The corresponding singular perturbation shape functions have a
corresponding boundary layer in the center region of the elements.
As can be seen from Fig. 8, the finite-element procedure works very
well in this positive slope case. However, when the slope of u is neg-
ative, the situation is quite different. A typical case of this kind is
pictured in Fig. 9. From Fig. 9, it can be seen that, when the slope of
u is negative, slight changes in the point at which u changes sign cause
large changes in the solution, and a movement of the boundary layer
from one end of the domain to the other occurs. The problem is very
sensitive to changes in u, and this sensitivity manifests itself as error
in the numerical solution.
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A Finite-Element Singular-
Perturbation Technique for
Convection-Diffusion Problems
Part 2: Two-Dimensional Problems

Approximation procedures for the solution of two-dimensional convection-diffusion prob-
lems are introduced. In these procedures finite-element techniques are utilized. The de-
’ veloped solution algorithms are based on a variational method of matched asymptotic ex-
pansions. When these techniques are used in conjunction with standard Galerkin meth-
ods, to solve convection-diffusion equations, highly accurate solutions are obtained. Nu-
merical results for certain two-dimensional problems are presented to establish the accu-
racy of the proposed procedures.

Introduction

In Part 1 of this paper [1], singular perturbation techniques were
used to develop finite-element approximations for certain convec-
tion-diffusion problems. In particular, a method of variational
matched asymptotic expansions was employed to construct shape
functions which, within the elements, are almost exact solutions to
the homogeneous convection-diffusion equations. These shape
functions were used, in conjunction with the standard Galerkin
method, to solve various one-dimensional problems. In this second
part of the paper, the previously developed singular perturbation
techniques are extended to two-dimensional cases.

The Physical Problem

Consider a domain Q ¢ R2 Let (x, v) be the coordinates of points
in . Let ¢(x, y) be a scalar function defined on Q. In addition, let 9§}
denote a boundary on  with normal n. The boundary segment €24
denotes a portion of 3 on which ¢ is specified, and the boundary
segment 3y is a portion of d§} on which d¢/0n is specified. The
boundary 0Q = 3Q; u 3. Then, the convection-diffusion problem
is posed as follows:
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e(~—¢+—¢) —9+v—¢+g¢=0 on
ox?  dy? ox oy
b=t on 0% (1)
o
—¢ =ty on 0Ofly
on

where ¢1 represents the specified ¢ values on 08y and ¢ represents
the specified values of flux on 0)s. Normally, the parameter ¢ is a
diffusion coefficient, u and v are related (through a minus sign) to
velocity components in the x and y-directions, and g is associated with
transient or linearized convective effects.

Singular-Perturbation Shape Functions for Two-
Dimensional Problems

Singular-perturbation shape functions for two-dimensional
problems can be defined in various ways. In this work, two methods
will be employed. In the first method, two-dimensional shape func-
tions are defined as a tensor product of the one-dimensional shape
functions introduced in [1]. Generally, the resulting finite-element
approximation is nonconforming. However, in the limit as the element
size approaches zero, this mode! is conforming. Thus it could be called
asymptotically conforming. The second technique involves matching
boundary layer and outer solutions for the two-dimensional problem
using various variational matching procedures. This method is an
extension of the technique introduced for the one-dimensional
problem. It allows the development of conforming shape functions
in two dimensions, regardless of the size of the particular element
being analyzed.

Consider a mapped element ﬁq as shown in Fig. 1. The standard
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bilinear shape functions u; (£, 1), defined on Q, take the following
form:

ia-80-7)
pelb, M =31+ 5H0 -1
s, m =4+ 8L +n)
e, =30 -850 +n) (2)

In addition, consider a four node quadrilateral element 2. defined
in the physical plane. The coordinates of the ith node of 2 are de-
noted (x;, ¥;). A mapping between the physical element Q, and the
mapped element §2, can be constructed using standard isoparametric
techniques

g, ) =

x = p; (&, M
vy =w& My (3)

As a measure of the element sizes in the x and y-directions, a natural
definition can be introduced

bx
hx (0 O)x,
bE g
a
-2 X o oy OO
omlt = =2

Finally, the following parameters can be defined in terms of h, and
Ayt

" €
€ = —
he
= €
Gy = ;’;
(g, ) = ”(52 Ll
(4)
_ L)
U(E? 77) = 2
)b
L =§(—‘§Si’—
, Mh.
7, ) = L& ;’) y

where ¢ is the positive constant diffusion coefficient defined in (1),
and u(&,n), v(£, n), and g(£, n) are the mappings of the variable coef-
ficients introduced in (1).

Two sets of shape functions are utilized in modeling the dependent
variable ¢ on the two-dimensional element. The first set of shape
functions is denoted B;. They are associated with the £ coordinate and
are defined as follows:

Bi(8) = xu(Bewu + x2(E) 1 =1,2, (i not summed) (5)

Journal of Applied Mechanics

where
12
xuE) =v(®) —= ¥ v+ N6
2 k=1
X exp I_ 120w, 0t - Ako]
€y

x2i (£) = % 1+ NE)exp {_ W]

€
Ay = (—1)*

£3:(5,0)  \.

v(£) = exp ( j; 26,0) ds)
The B; (£) expressions are designed to be singular-perturbation shape
functions, in the sense defined in [1], for the following problem:

d ¢

df 5+ 0)
These shape functions depend on the values of the variable coeffi-
cients evaluated on the = 0 line crossing the center of the element.
If the variable coefficients are, for example, known only at the nodes
of the element, they can be computed on the % = 0 line by interpola-
tion, prior to the construction of the shape functions. The constants
c11 and ¢z in (5) can be defined by insuring that, in some sense, the
B;(£) shape functions satisfy (6) within the element. The techniques,
defined in [1], involving variational matching and optimum constants
are useful in this regard. In particular, if .(£,0) = 0,ifz(£,0) is a
constant, and if the following identification of parameters is em-
ployed:

£+gx(£ 0)p =0 (6)

€= &

=u(£,0)
the optimum values for c¢11 and ¢12 can be obtained using equations
(16) and (17) in [1].
The second set of shape functions is denoted 7;. They are associated
with the 7 coordinates and are defined as follows:

7;(n) = prj(n)eg; + poi(n)  j = 1,2, {j not summed) ("N
where

1
uii(n) = aln) - Eél a(A)(1 + M) exp {—

[z, M) - km)}

€y

[Z(0, Ap)| (1 ~ }\kﬂ)}
Ey

1
pai(m) = 2 (1+ Ajn) exp [—

g, 'y 0, s) )
a(n) =exp|— f =———ds
! P ( Jo 5(0,s)
The 7;(n) shape functions are designed to be singular-perturbation

shape functions, in the sense that, on the element level, they satisfy
the following equation approximately;

¢+v(0 77)

& e +gy<o b =0

The 7;{(n) shape functions depend on the values of certain variable
coefficients on the line £ = 0 passing through the center of the element.
If necessary, these coefficient values can be obtained from nodal
values of the variable coefficients by interpolation. The cg; and ¢y
parameters must be defined by variational matching procedures, etc.
These techniques are the same as those introduced for the one-di-
mensional problem.

Two-dimensional shape functions (£, ), associated with the four
nodes of the element pictured in Fig. 1, can be defined as a tensor
product of 3;(£) and 7;(n). The following model results:

y1(&, n) = B1(E)71(n)
va(&, m) = Ba(£)T1(n)
v, n) = BalE)roln)
val, m) = B1(E)Taln) S ®
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As hy — 0and by — 0 (oré; — © and & —> =), v (&, 7)) = ur (€, 9).
That is, the two-dimensional singular perturbation shape functions
approach the bilinear shape functions. Thus the functions 7y are
asymptotically conforming. However, for large values of h, and h,,
these shape functions are nonconforming, relative to the solution
space associated with the variational problem.

A second method can be utilized to develop shape functions suitable
for the two-dimensional finite-element analysis. In this technique,
two-dimensional inner boundary-layer solutions, corresponding to
the four nodes of the element, and a two-dimensional outer solution
are defined. The outer solution is denoted w(£, 1) and the inner so-
lutions are labeled w;(&, 7). The inner and outer solutions can be
matched, using variational matching procedures, to obtain realistic
shape functions for the two-dimensional problem. Utilizing the same
notation as was employed in discussing the tensor product formula-
tion, the shape functions, defined by two-dimensional variational
matching, are denoted v (£, 7). The typical function vy1(£, 1), asso-
ciated with the first node in the element, takes the following form:

Y1k, ) = crw(E, 1) + 1 (1 =~ crw(=1, —1))(1 = H T — Derl§, 1)

_ cw(l, —1)

(14 81~ nwa(&, n)

_ Clw(l, 1)

. (L+ £ + nawsl(g, 1)

- SL“%LL) (1= 61 + Mo, n)

Various choices are possible for the outer solution w(, n) and the
boundary-layer solutions w; (£, 1), to be used in forming vy (£, n). The
inner and outer solutions could be defined so as to mimic, as closely
as possible, the corresponding terms in the tensor product model. The
following expressions, for w and w;, result from this type of anal-
ysis:

w(§, 1) = v(§aln)
wi(£, n) = e~ [EEL=DI+D/ o= [T(-L-DI(1+m)/Ey

wal, ) = e~ [EGL-D[(1~0/e o= [FA=D]1+a)/ey
w3(£, n) = e~ [EAD|A~8/ex o= [BUD | A-n/ey
walt, ) = e~ [BCLD|+8/E o= [B(-11) [(1-n)/%

In order to obtain the final form of v4(£, ), the constant ¢; must be
defined. This constant can be identified using a two-dimensional
approximate variational matching technique. A similar procedure can
be employed to obtain the remainder of the shape functions vy (£, n).
For finite h, and hy, the resulting model is not conforming. However,
the model is asymptotically conforming, and, in the limit as h, and
hy approach 0, v, (€, n) — ux (&, n)—the bilinear shape functions.

An alternate model can be obtained by defining the outer solution
w and the inner solutions w; so that, in the case when g(£, n) = 0, the
shape functions are conforming for any values of by and h,. The fol-
lowing expressions seem to preserve the character of the solution,
while yielding a conforming element:

g(0,0)
2u(0,0) (0, 0)
ha hy

wi(E, ) = e~ H-L=DA+D+n)

w(£, 1) = exp £+ 1)

wolE, 1) = e~ 2L -DU=E)1+n)
wal, ) = e~ LDA-HU-)
wy(f, 1) = e~ 2=LDO+H0—n)

Jz(& ) + |5 )

€x €

Q&)=
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Fig. 3 Two-dimensional finite-element solutions for ¢ on the line y = x (hy
= hy, = 0.25, Model A)

Two-Dimensional Finite-Element Galerkin
Techniques

The problem (1) can be solved by the finite-element Galerkin
procedure, using the shape function yx (£, 1) to define ¢ and using the
shape functions ux (£, 1) to define the geometric mappings. The local
shape functions v (&, 7) defined on Q, can be mapped to local shape
functions v (x, y) defined on €, by using the isoparametric trans-
formation (3). Global shape functions I';(x, y) defined on Q can be
obtained from the local shape functions v (x, y) using standard as-
sembly procedures. The finite-element Galerkin model for problem
(1), defined in terms of the global shape functions, takes the following
form:

Sl G

26

)+ (x,y )bx

d
+v(x,y)£+g(x,y)¢ I‘kdxdy=0 9)

For simplicity, it is assumed that 0£s = 0. Thus only kinematic
boundary conditions are applied, and I';, = 0 on 0$2. The dependent
variable ¢ can be defined in terms of the singular perturbation shape

functions I'; as follows:
¢ = qu)j (10)

where ®; is the dependent variable at global node j. Introducing (10)
in (9) and using the Green’s theorem to simplify the resulting ex-
pression, the following algorithm is obtained:
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Fig.5 Two-dimensional finite-element solutions for ¢ on the line y = x (h,
= h, = 0.25, Model 8)

‘ Kpj®j=0 (11)
where
o'y al; oI ol ol
Kyj= f [€ (——k—]+—"“ﬁ“‘—] —ulx, )T —*
Q ox ox oy Oy ox

oI
= v{x, y)T% a—yj - g(x, )T Tj] dxdy

This system of equations defines the values of ¢ at the global nodes
of the mesh. Normally the matrix Kj; is defined by assembling similar
local coefficient matrices constructed on the elements Q.. These local
coefficient matrices are normally determined using numerical inte-
gration techniques in the mapped plane .. In transforming the local
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Fig.8 Two-dimensional finite-element solutions for ¢ on the line y = x (h,
= hy, = 0.10, Model B)

integrajs similar to (11) from . to 59, the transformation (3) involving
the bilinear shape functions is employed.

Numerical Experiments for the Two-Dimensional
Problem

In order to evaluate the accuracy of the two-dimensional finite-
element algorithm composed of (8) and (11), two typical problems
were solved. These problems are denoted A and B. In these calcula-
tions Q was assumed to be a square region with unit area, and the
boundary conditions were defined as shown in Fig. 2. In this figure,
Ax =u/eand Ay = v/e

The coefficients were assumed to be constant with e = 0.05,u = v
= —1, and g = 0. A uniform mesh of finite elements was constructed
on the square domain Q. The algorithm composed of (8) and (11) was
used to obtain the approximate solutions for various values of &, and
hy. In Figs. 3 and 4, the approximate solution defined by singular
perturbation is compared to the standard Galerkin solution. In these
figures, the approximations for ¢, on the diagonal line ¥ = x in the
domain {, are plotted versus x.

The exact solution for this problem takes the following form:

_ e | [exy(y—n —e~M|
T e |

For the problem A, the singular perturbation finite-element solution
matched the exact solution at all nodes of the mesh. Similar results,
for problem B, are presented in Figs. 5 and 6. The exact solution for
problem B was not determined; however, it is clear that the finite-
element singular perturbation model is not exact for this choice of
boundary conditions. Even though, for model B, the finite-element
singular perturbation algorithm was not exact, the resulting solution
is considerably smoother and more reasonable than the one obtained
using the standard Galerkin method.

In these calculations, typical isoparametric techniques were utilized.
The numerical integrations were carried out employing the Gauss
quadrature formulas for exponentials defined in [1].

Reference

1 Diaz-Munio, R. F., and Wellford, L. C., “A Finite-Element Singular-
Perturbation Technique for Convection-Diffusion Problems; Part 1: The
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1981, pp. 265-271.
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duce to existing theories under appropriate restrictions. The theory accommodates eniso-
tropic hardening laws which, by means of Lagrangian mappings in stress space, incorpo-
rate experimentally observed yield surface distortion as well as kinematic and isotropic

flow-induced changes. The theory is applied to the prediction of flow surfaces in tension-

torsion space.

1 Introduction

The classical plasticity and rheological theories recognize exclu-
sively the path-dependent and rate-dependent nature of inelastic
deformation, respectively. In general, both dependencies are manifest.
However, for specific materials subject to a restricted range of envi-
ronmental conditions the basic hypotheses of one or the other of the

foregoing theories may be approximated with sufficient accuracy for
a given application. To address the problems where such approxi-
mation is not obtained a variety of more ambitious constitutive the-
ories have been proposed: among them, the theory of viscoplasticity.
Perzyna [1] identifies theories which attempt to describe two classes
of behavior: elastic/viscoplastic and elastic-viscoplastic. The former
represents inviscid elastic response, while the latter, for which Naghdi
and Murch {2] use the more descriptive label viscoelastic/plastic,
assumes viscoelastic behavior for all stress states. The viscoplasticity
theories to be discussed are restricted to the elastic/viscoplastic
class.

The theory, rooted in the works of Bingham [3] and Hohenemser
and Prager [4], has been extensively developed and popularized by
Perzyna in a series of papers dating to 1963 [5}. It is assumed that
there exists a yield function

F=flk~1 (1)

where F, f, and « are scalar functions of inelastic strain, f; = ¢; — €},
and possible internal state variables which summarize the history of
deformation. The functions F and f also depend upon stress o;;j such
that

F=0, f=x (2)
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define in siress space the region of elastic response. The inelastic
strains are then obtained by integrating

&5 = v, (P(F))(f/00ij) o4

where { ) are Macaulay brackets, yo and ® are scalar material re-
sponse functions, and o}, is the point in stress space at which the
derivative is defined.

The viscoplasticity theory, to be completed, must address the fol-
lowing questions:

(A) How are ¢ and ¢ to be determined?

(B) How shall o}, be defined?

{C) What is the form of the initial quasi-static yield surface?

(D) How does the quasi-static yield surface translate, rotate,
and/or deform as the inelastic deformation proceeds?

Questions (A) and (B) are treated in Sections 2 and 4 in which the
uniaxial response and the multiaxial generalization thereof are dis-
cussed. Questions (C) and (D) are treated in Sections 3 and 5, in which
the problem of hardening is discussed and specialized resulis are
given. In Section 6 the theory is specialized to the tension-torsion
space, and in Section 7 surfaces of constant offset strain and constant
stiffness are calculated.

2 TUniaxial Flow Rules

Consider a quasi-static stress-strain curve (Fig. 1, OA’BE)¢* =
g*(e?), which is obtained by loading at extremely slow stress rates.
That is, each increment of stress is applied after the total plastic strain
due to the previous stress increment has had time to develop fully.
Thus the quasi-static stress-strain curve may be interpreted as a se-
quence of equilibrium states such that plastic flow occurs at finite
loading rates when the flow condition o > g*(eP) is satisfied. Ob-
viously, the equilibrium stress-strain curve coincides with the upper
bound of the elastic region, which is bounded from below by the curve
(FA”CQG), o%* — €P,

To describe the rate effects we may use the constitutive equation
proposed by Malvern [6] for the uniaxial work-hardening case

Eé¢=¢+ ®(g,¢) (4)
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Fig. 1 Schematic illustration of rate-dependent uniaxial stress-strain re-

sponse

where E is the elastic modulus and ¢? = $/E. When the quasi-static
stress-plastic strain curve is used as a relaxation boundary or reference
curve, (4) may be rewritten in the form

Ee=¢+ ®(H) (5)
H=0—-0c*=0—g*P) (8)

where H is the overstress, i.e., the excess of the instantaneous stress
over the stress on the quasi-static curve evaluated at the same plastic
strain.! The stress state ¢*, which corresponds to ¢, is called the
quasi-static loading point. For simplicity, we consider the special
case

¢=G/E + kR(H) (7)

where & and 77 are material constants. The quasi-static stress rate o*
is related to the plastic strain by

eP = g*/EP (8)

where the quasi-static plastic tangent modulus EP is the derivative
of g*.

In Fig. 1, OAD represents the stress-strain curve at a given strain
rate, o4 — o is the overstress at time ta, and curves 00’0” and
FA”G represent the change in the “center” « and the lower bound
o** of the elastic region with strain. They may be computed, re-
spectively, by

&= g* — d* (9)
and
§4% = 5% — D

(10)

where d* and D* (see Fig. 2) are the forward part of the width (in the
loading direction) and the width of the elastic region. The definition
of the center « is discussed in the next section.

1 In [6] the overstress is defined by the total strain.

Journal of Applied Mechanics

aij, oij

Fig. 2 The deformed yield surface in deviatoric stress space

At a particular loading point A in Fig. 1, the corresponding quasi-
static loading point A’, the center of the yield surface O, and the lower
bound of the elastic limit A” are determined by the plastic strain €%.
If at point A the stress is gradually decreased, the overstress H = o
— o* decreases while the plastic strain continues to increase until the
point B is reached. If, at point B, the strain rate imposed during the
segment OA is reimposed, the new stress-strain path will have an
initial slope equal to the elastic modulus, and the curve will approach
the original path OAD gradually, while the quasi-static curve follows
the original path OBE. From Fig. 1 other features of viscoplastic flow
such as creep and relaxation can be seen to follow from (7).

3 Hardening Rules

Before generalizing the flow law to the multiaxial case it is appro-
priate to discuss the representation of the yield surface and its
translation, growth, and distortion during the flow process. Hence-
forth all second rank tensors which represent stress or strain-like
quantities shall be assumed to represent deviatoric quantities unless
otherwise indicated.

For the purpose of describing the modification of subsequent yield
surfaces during plastic flow, let Sj; and s;; be corresponding deviatoric
stress states on the initial and the subsequent yield surfaces, respec-
tively. If a Lagrangian description of the yield surface is used, then
the motion s;; = s;;(Sks, £) gives the position s;; at time ¢t occupied by
a point on the subsequent yield surface whose initial position is at S;;.
Thus the elastic domain, bounded by the yield surface, can be envis-
aged as a deformable continuum in stress space.

Let the current stress deviator be ¢;; and let the quasi-static stress
deviator be o};. Two equally plausible definitions of o}; are pos-
sible,

ot The point on the yield surface closest to o;;. That is, the line
of action of the normal (if defined) to the yield surface n; j(a;',) passes
through o;j;

o3 The intersection of the yield surface and the radial line seg-
ment o;j — a5, where «;j represents the position of the center of the
yield surface in deviatoric stress space.
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Q' =ai*f

QII =o".jl
(o] ojj
o 7ij

(b}
Fig. 3 Geometric interpretations of the quasi-static loading points for (a)
regular yield surface and (b) corner of singular yieid surface

The locations of ¢}; are denoted by points Q on Figs. 3(a) and 3(b)
for regular and singular yield surfaces, respectively. For most surfaces
there is little difference in the positions calculated by the alternative
definitions. For our immediate purposes let the loading be quasi-static

so that ¢y; and ¢}; coincide.
" To describe both deformation and translation of the yield surface
during the plastic flow, the subsequent yield state s;; (see Fig. 4) may
be referred back to its initial yield state S;; by

sij — aij + Rij = 8y (11)
where R;; is a measure of the deformation of the yield surface. In
general, R;; is a function of S;; and the history of material deformation.
Fig. 4(a) represents a typical deformation and translation of a yield
surface. The subsequent yield surface, S, has been created from the
initial yield surface, S©, by loading very slowly along the path OP.
The path of a “material” stress point on the yield surface is given by
ab. In accordance with Lagrangian description, the stress states at
points a and b are denoted by S;; and s;;, respectively. In Fig. 4 the
two surfaces are superposed by subtracting a;; from s;;. For an initial
Mises surface

278 / VOL. 48, JUNE 1981

Trajectory of Yisld Surface Center

Loading Path

(0)
s sl0)
511)
0,00
[1] \ - %
X Sij %
S Rij
(a} (b}

Fig. 4 A schematic representation of the deformation and translation of the
yleld surface

f(S;) = 388y = «}§ (12)

where ko represents the size of the initial yield surface. From (11) and
(12)

4 (sij — ayj + Rij)(sij — o + Ryj) =} (13)

For the special case of combined kinematic and isotropic hardening,
the isotropic deformation (expansion or contraction) of the yield
surface with respect to its center may be represented by defining the
tensor R;; in (11) to be proportion to Si;. Thus (11) becomes

(1 + 8)(sij — a4j) = Sy (14)
Now, the subsequent yield surface becomes, from (13),
(14 8)2(s;; ~ uij)(sij — o) = &3 (15)

where kg is the initial size of the yield surface and 4 is a scalar func-
tional of the history of plastic deformation. The current size x of the
yield surface is given by « = xo/(1 + 6). The pure kinematic hardening
and pure isotropic hardening models may be obtained by setting R;;
= 0 and a;; = 0, respectively.

To complete the hardening rule one must determine the rate of
change of size by specifying § as a function of the deformation. If the
direction of motion of the center is parallel to a specified unit vector
v;j, then

&ij = f1vij (16)
where the scalar quantity i may be determined from the consistency
condition [7]. For the special case (15)

o

T35 (o — il — o)

{6k — or)vm

The direction of v;; may be defined in a variety of ways [8, 9], all of
which are equivalent to the loading direction in deviatoric stress space
for proportional loading of an initial Mises surface.

The general form of the hardening law (11) is capable of describing
not only the translation and dilatation (or contraction) of the elastic
region but the experimentally observed distortion [10-15] as well.
Generally, the yield surface deformation includes the development
of a region of high curvature on the forward part (the part directed
toward the loading point) of the yield surface; a flattening of the rear
part of the surface; and a reduction of the width of the yield surface
in the direction of monotonic loading. Usually zero cross effect is
observed. That is, the yield strengths in directions orthogonal to the
direction of loading do not change. To incorporate such phenomena
we generalize a rule proposed by Phillips and his coworkers [11, 12,
16]. 2 :

Let

(o} — aj)aj +

= (17)

R_ij = Ay (18)

where u;; is a unit vector whose possible directions are the same as
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those of v;; and where \ is a scalar functional representing the non-
uniform deformation of the yield surface. From (18) and the material
derivative of (11),

A= (i — dujdu (19)

Let the yield surface be divided in two parts separated by the hy-
perplane in Fig. 2, which contains the center of the yield surface o;
and is perpendicular to the direction of deformation u;;. The points
on the forward and rear parts of the yield surface obey the inequali-

ties

(sij — oyj)ug; =20 and (i — ai)uij <0 (20)

respectively. Thus the distances d and e (see Fig. 2) measured from
typical stress points on the forward and rear parts of the yield surface
to the dividing plane are given by

d
{ ] = (855 — o Iuij (21)

Let wu;; be approximately constant during an incremental loading
event. Then from (19) and (21), we obtain

A=d,  A=-¢ (22)
on the forward and rear parts of the yield surface. To a first approx-
imation let

d=Ad, ¢=Be (23)
where A and B are independent of position on their respective por-
tions of the yield surface. For monotonic loading, higher curvature
is observed to develop in the forward part of the yield surface, thus
A > B. To determine the appropriate expressions for A and B, it is

assumed that

A=g1, B=gyy (24)
where
()% = &fel; (25)

In general, g1 and g2 are scalar functionals of the history of the de-
formation.

For proportional loading of an initial Mises surface, u;; = v;; = Ij,
a unit vector in the loading direction, and so

) d
Sij — qyj — {—e’} l,‘j =0 (26)
Equation (26) may be integrated to obtain
d-—d
sij = otij — { 0} lj =8y 27
e —eg

where do and eg are evaluated at the beginning of the loading event
during which A« plastic strain is accumulated. Also from (21), (23),

and (24),
9%1
d = dgexp f g1d7] (28)
0
The unit change in dimension of the yield surface is given by
d-d Av1
gi="—"=1-exp [— f gldv] (29)
d 0
Similarly,
Ayy
e = eg exp [— j; ggd’y] (30)
e—e Art
g3 =220 1 —exp [— f ggdy] (31)
e 0
From (21), (27), (29), and (31)
sij — aj — sk — apMuliy = Sij (32)

Journal of Applied Mechanics

where g assumes the values g1 and g3 on the front and rear surfaces,
respectively. Equation (32) may be written as

sij = oj — Lijpi(ser — i} = Sy (33)

where Lj,; assumes different forms on the front and rear surfaces.
In general, after n linear loading trajectories L;jr assumes 2n different
values on 2n subdomains of the surface and the description becomes
quite complex [9].

However, a considerable simplification of the proposed hardening
rule may be achieved by assuming only one deformation rate, i.e., A
= B. With this approximation, the subsequent yield surface represents
an ellipsoid in six-dimensional deviatoric stress-space. The defor-
mation of the yield surface is given by the fourth-order tensor L;j,
which is single-valued over the entire surface. For the initial Mises
yield condition, the subsequent yield surface is now

% [sij — aij = Lijra(sn — an)lsij — o
— Lijui(spr — )] = k§ (34)

By computing the material time derivative of (34), we obtain

$ij — étj = Lijaa(snt ~ am) — Lijua (S0 — o) = 0 (35)

From (11), {18), (21), and (23)kand the assumption of a single hard-
ening rate A,

§ij ~ 0uj — Alsp — o)upauij = 0 (36)

From (35) and (36),

ASin — 0tmn)tmnttij + Lijeisn — o)
- A(Spq - apq)upqursLijrs =0 (37)

Note that L;j i_s independent of position on the yield surface. Thus,
based on (37), Lijx may be defined by

Lijpi = Kijup (38)

where K;; may be obtained by substituting (38) into (37) and elimi-
nating the scalar quantity (sa; — ar)us;. That is,

Lijui = Kijupt = Altij — LijmntimnJum (39)

The scalar quantity 4 may be computed from the consistency
condition at the active stress point, s;; = ¢};. Then, from (16), (34),
and (39), we obtain

o= S;’jl’;’j — ASi(up — Lklmnumn)upq(o';)q - Olpq) + StLsiuw 65
(Spq + SuvLuopg)vpq

(40)
where

(41)

8§ = o — aij — Ligi(ok) = ont)

In its specialized form, the simplified hardening rule is similar to
Baltov and Sawczuk’s [17] anisotropic hardening rule, which also
includes a combination of kinematic hardening, rigid body rotation,
and symmetric deformation of the yield surface.

4 Multiaxial Flow Rules

The theory of viscoplasticity may be formulated by generalizing
Malvern’s one-dimensional model into multiple-dimensional con-
stitutive relations. Generalization of the uniaxial theory required the
specification of two key features: the direction of the viscoplastic
strain rate, ¢, and the magnitude of the overstress.

Perzyna’s version of the theory of viscoplasticity (5] is based on the
existence of a yield function, (1), in deviatoric stress space. The region
of elastic response is defined by (2) and the viscoelastic strain rate is
given by (3), where the derivative is defined at ¢}; = 0;;.

At the loading point outside the yield surface, f > &, the dynamic
loading surface is given by f = C*, an isotropic expansion of the sub-
sequént yield surface, and from equation (3), the viscoplastic strain
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rate is defined to be normal to the dynamic loading surface. The ov-
erstress H is defined by

H=C*~« (42)

which is independent of position on a given dynamic loading sur-
face.

In [5], the theory is only proposed for isotropic hardening. However,
it may be extended to any of the existing hardening rules by specifying
the quasi-static loading point ¢}; properly.

As an alternative to Perzyna’s theory, Phillips and Wu [18] pro-
posed that the overstress H be defined as the perpendicular distance
in the deviatoric space from the loading point ¢;; to the yield surface.
Thus the quasi-static loading point ¢}; is given by

o= gy ~ Hny(op,) (43)

and

H = (0i; — onij(opy) (44)
where n;;(op,) is, for smooth yield surfaces without corners, an
uniquely defined unit normal vector to the yield surface at o},

To take into account the possibility of the existence of corners on
the yield surface, one alternative is to assume the existence of a dy-
namic loading surface which is everywhere parallel to the static yield
surface and at a constant distance equal to the overstress H. The
viscoplastic strain rate is assumed to be normal to both the dynamic
loading surface and to the regular regime of the yield surface. When
the quasi-static loading point is at a singular point on the yield surface
the plastic strain rate direction is defined uniquely by the normal to
the dynamic loading surface. The constitutive relation is then of the
form

& = v (R H))nij(opg) = v (P (H))nyj(apg) (45)
From (45)
V218 = (&é8)V2 = y(P(H)) (46)
which may be inverted to obtain
H= (9! [{2—152’] 47)

Equations (43) and (47) now define the dynamic loading surface at
each value of viscoplastic strain rate.

From the foregoing discussion, it can be seen that the primary role
of the dynamic loading surface in Phillips and Wu'’s theory is to define
the direction of & at points which correspond to the corners of the
yield surface.

In the current work, the effective overstress H is defined by the
distance between the loading point ¢;; and the quasi-static loading
point ¢};. That is,

H= [%(oi,- - G'Ej)(trij - 0-;}.)]1/2 for (oi; — oinii(opy) >0 (48)

Otherwise, H = 0. The yield surface is given at ¢{; by an equation of
the form

flof; — i) = «3 (49)

where the quasi-static loading point ¢}; is determined in one of the
two ways discussed at the beginning of Section 3 and illustrated in
Fig. 3.

The rate-dependent flow rule now may be expressed by

&8 = 3 (P(H))v;j(a}y)

where $(H) is given by equation (7), and the unit vector v;;(a},4) is
determined by one of two criteria:

(50)

(a) 1If nij(o},) is uniquely defined, then

vii{opq) = nij{opg) (61)
(b) 1If nij(ap,) is not uniquely defined, then
vii{apg) = hijlopg) (52)
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Perzyna‘s Dynamic
Loading Surface

Phillips and Wu's Dynamic
Loading Surface
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Fig. 5 Comparison of the generalized Perzyna’s and Phillips and Wu’s the-
ories of viscoplasticity

where
hij = (o5 — oi)/H (53)

Note that the use of the loading point of the first kind (¢};) leads
to a theory which is essentially equivalent to Phillips and Wu'’s version
of viscoplasticity—although the concept of a dynamic loading surface
is not introduced. Note also, that a theory based on equation (50) and
the quasi-static loading point of the second kind (GZ;)‘is similar to
Perzyna’s theory, since n;; ('a;‘,';) = 1 (0pq), Where nij(opq) is the unit
normal to Perzyna’s dynamic loading surface, f(o;; — aij) = C*.
However, in the present theory the quasi-static loading point of the
second kind, ¢};, is computed as the intersection of the yield surface
and the line connecting the loading point and the center of the yield
surface. That is,

ot — aij = Cloyj — ) (54)

By substituting equation (54) into (49) C may be determined. Thus
the overstress given by (54) is, in general, position-dependent, while
Perzyna’s overstress given by equation (42) is not.

Fig. 5 shows the differences between the predictions of Phillips and
Wu’s and Perzyna’s theories of viscoplasticity. At the loading point
P, the unit vectors n;; and n;; are the unit normals to Phillips and
Wu’s and Perzyna’s dynamic loading surfaces, respectively. Note that
n,f‘j' is parallel to n; and n}j is parallel to nj;.

For many cases, the alternative theories predict identical results
and, in most situations, what differences there are, are small. However,
the determination of cr,?j” by (54) and (49) is computationally simpler
than that of the first kind. To determine JE,'-, minimize H by intro-
ducing the Lagrangian multiplier A, to obtain

oH
do ;j
In six-dimensional deviatoric stress space, equations (49) and (55)

give six equations with six independent unknowns, X and o};. By
solving these six simultaneous equations, ¢}; may be obtained.

9f (07 = 0tpg) -

bcrf‘j

+A 0 (55)

5 A Specific Constitutive Law
To illustrate the application of the flow law developed in Section
4, consider the simplified hardening rule described at the end of
Section 3. Then, at the quasi-static loading point, s;j = ¢};, the yield
surface given by (34) may be written as
' H(S1) = 38355 = & (56)
where
Sii= o} — oy — Lijr(oh — aw) (57)

The unit normal to the yield surface at ¢}; becomes
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nij = floa; == (68)
Of/00by0f /00 s 2 Z
where
Z;j = S} — SiiLsij (59)
Z = (Z;Zi)"? (60)

The rate-dependent flow rule given by (50) and (51) becomes
; 3 Zi;
b= —(PH)) =
e’ \/2 (PHD =

¥ = ®(H)

(61)

From (61) and (25)
(62)

The translation of the yield surface is given by (16) in which ji may
be rewritten from (40) together with (39) and (59)

_ Zijo}; = Shilbimn (Ohn = Qmn)

63
ZpqVpq ©3)
Note that vpq must be specified and Lijkl is given by equation (39).
To complete the computation of 1 we must relate the flow law to the
quasi-static stress-strain law or relaxation boundary. The classical
rate-independent flow law requires that
(64)

&= K CRINRING;

Thus, from (58) and (64), we obtain the rate-independent analog of
(61),

, (6%:Z01) Z;j
b= 65
€5 K(@)? (65)
From (25) and (65)
. 3 611Zn
= ———— 66
i \/; ErZ 6)
Since EP = 3/2 K. Thus (62) and (66) imply that
s 2
Chlp = \/%EPZ(@(H)) (67)
and thus, from (63) and (67),
ZE‘DZ PH "‘S‘L mn ;m_ mn
_ VEEPZ(R(H)) = Stlbimn(0n = ctmn) (68)

Zpq¥pq
The remaining unknown quantities are C and &};. By substituting
equation (54) into (56), C is obtained

P ]1/2

* ¥ *x (69)
CISHIH:

o

where

8§ = 0ij — oy — Lijr(om — o) (70)

Then, the quasi-static stress rate ¢{; may be computed by differen-
tiating (54). That is,

a; j = C (o’ij hd
where C may be calculated by substituting (71) into (67). That is,
VEEPZ(®H)) —~ (1 = C)Zijéij = CZpio

(Cmn — Amn)Zmn

This completes the formulation of the constitutive equations for
the proposed model of viscoplasticity combined with the simplified
hardening rule. Here the definition of the second kind for the
quasistatic loading point ¢} is used. In numerical simulations of stress
control tests, the independent variables a;; are specified at a succes-
sion of small time increments, then the successive increments of the
dependent variables €fj, Lgimn, oij, C, and o}; are computed from

equations (60), (39), (68), (72), and (71), respectively. In the next
section these governing equations for combined tension-compression

aii) + Cay; + (1 — C)éyy (71)

C= (72)

Journal of Applied Mechanics

and torsion loading will be given. Then, together with the proper ex-
pressions for A, ®(H), and EP, flow surfaces for pure aluminum are
computed in Section 7.

6 Application te Tension-Torsion Loading

In this section, the deviatoric quantities are denoted by the con-
ventional (7) notation, and summations are carried out over the range
1 to 5, unless otherwise indicated. The range of free subscripts is
similarly defined. By using vector notation for nonzero components
of the second-order tensors, we have

{_} 36) 305 é(f, T Tlr {E*‘ = ga*!_ég*y T*, T*I’

and
{fp} = (6 ée‘;, - 1 €8, fxy: egy}
The unit vectors &;; and 7;; are denoted by

{m} = {3 Uy, = § Uz, — By, Usy, Usy)

and
%Vx; Vxy, ny}s

= Bre, —dvs, —

where du?+ 2u?, = land §»2+ 202, = L.
Write (39) and (57) in contracted notation,

Z;‘j =Alg; - E,'jl_tk]iij

(73)
and

= (o} — a;) — Lij(o} — &) (74)
where {57} = §S;, — 451, — 485, 8%, Sijand @ =, — o, — 30,

8, B}. Noting the initial zero value of L;; for initial isotropic material
and @y = I3 = — 4i7; and &4 = &5, we conclude from (73) and (74),

L L3J = - 2Llj) L;z =L 3= — lel, sz L4j, LL5 = L;4 (75)

Similar restrictions apply to L;;. The four independent components
of the deviatoric tensor L;; are given in terms of the corresponding
nondeviatoric components by

IEII; EM; E41, Z44, = {g Lx,x: %Lx,xy: §ny,x; ny,xy}

From (76), equation (74) provides two independent equations in
¢ — T space,

(76)

{S; } _ [U* - al _ [Lx,x Lx,xy ] [g (o* — Ol)] )
S;y T* — 6 ny,x ny,xy 2(r* — )6)
From (56), the yield surface is

(S1)2 + 3(S; y)Z = 3«3 (78)

By denoting {Z} = {8 Z,, — 3 Zx, — § Zx, Zxy, Zsy), (59) reduces to

{ ;}___tS;l_[ - Lx,xy”§S; ] (79)
Zwl 8Siy)  \Lsyx Layayl 1285y
From (79), the rate-dependent flow rule (61) gives
{ée ] (e [zx ] )
)~ (@ +sz2 )z,
where H is given by (48)
H=[(c— o*)?2+ 3(r — 7%)?]1/2 (81)
From (73),
Lysx=Al(1 = 8Ly )uf ~ 2Ly ryliztiny]
Ly = AL = 8 Lo isttey = 2Loayiidy]
Lyyye = A[= § Laycu3 + (1 — 2Lay 5y )tsliny]
Luyxy = A[= & Luytistlay + (1 = 2Ly 2y)ud,] (82)
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Fig. 6 Rate-dependent offset surfaces following 0.2 percent tensile plastic prestrain

where A is given by (24) and, for 1100 aluminum at room temperature

(9}

g1 = —a1byyt! (83)
where
a1 = 4345, by = 0.9767 fory = 150 X 107¢ 84)
a; = 1.338,b; = 0.0584 fory < 150 X 108
The accumulated inelastic strain rate 7 is
%7y + 37%Z.
S (:pa lip e T 2x T OT sy
'Y (Gx + 36xy) (Z% + 3Z%y)1/2 (85)
The kinematic rule for the yield surface is defined by (16),
@ L fvs
t=h (86)
-a0)

where, from (68),
u={EP(Z, + 3Z2,)V2(®(H))
- 123 [S;Lx,x(o'* — o)+ 3S;Lx,xy(7* et B)
+ S;nyy,x (0% —a) + QS;yLI}',x)’(T* - ﬂ)”/(le’x + Z:cy”xy) (87

According to equation (71), the quasi-static stress rates (¢*, 7*)
are

*=Cla—a)+Co+ (1 ~C)

#=Cr—-B+Ci+(1-C)B (88)
where, from (69) and (70),
B
€+ sy (®9)
and
{S;*] - [g - Lx,x ny,x ] {g (o — 04)} (90)
S;; ny,x % - ny,xy 201 — ﬁ)

and from (72),

¢

_3EP(Z + 3Z3)(B(H)) = (1 = C)(Zubr + 87,y f) — C(Zuis + 875y )

For stress control loading programs, ¢ and 7 are specified. After
choosing the proper directions for Z;; and ;;, the incremental quan-
tities of the 13 dependent variables, €%, €%y, €., €xy, ¥, Loz, Lx,xy, Lzy,x
Ly <y, &, B, o*, and 7*, can be sequentially integrated from the cor-
responding differential equations (77)-(91). Note that at the onset
of inelastic flow, we have (¢*, 7¥) = (g, 7), and also initial zero values
for Ly, «, and B.

For strain control loading programs, & and &y are specified. A
similar procedure can be specified for this case.

7 Flow Surfaces

For simplicity consider the case of initial tensile loading followed
by probes directed radially outward from the center of the first sub-
sequent yield surface. Let the hardening law be pure kinematic
hardening of a Mises surface. Under these conditions it can be shown
that the alternative definitions of kinematic hardening direction re-
duce to the loading direction (., lx,} = {5/], 7/I}, where ] = § (62 +
3+2)1/2'

One can compute the rate-dependent offset surfaces of constant
plastic strain accumulation and the constant tangent modulus sur-
faces. Along a probing path, the points on a rate-dependent offset
surface and on the corresponding quasi-static offset surface are the
loading point and its corresponding quasi-static loading point for
which the designated amount of offset strain is accumulated. The
points on a rate-dependent constant tangent modulus surface are
similarly defined. In this section the rate-dependent tangent modulus
is defined by the ratio of the effective stress rate and the effective
plastic strain rate, i.e., o/4. Then from equation (62), the rate-de-
pendent tangent modulus becomes /®(H). The function & is de-
termined from (5) and (7). For the 1100 aluminum considered herein,
1/k = 237 MPa"-min and 7 = 2.86. Also €P = (¢/k)1/% EP = bay—1
where 7i = 0.1014 and £ = 126 MPa.

Figs. 6 and 7 illustrate the two families of surfaces of rate-dependent

[(17 — o)y + 31—~ ﬁ)zxy]
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Fig. 7 Rate-dependent tangent modulus surfaces following 0.2 percent tensile plastic prestrain

offset surfaces and tangent modulus surfaces, respectively. The initial
loading is such that 0.2 percent of plastic strain is obtained in uniaxial
tension. The surfaces are computed by incorporating the pure kine-
matic hardening rule into the rate-dependent flow rule for a constant
stress rate of 0.345 MPa/min (50 psi/min). The offset strains range
from 0.002 to 0.5 percent, and the tangent modulus from 1000 GPa
to 5 GPa. Fifteen probing paths are computed and then the surfaces
are completed by interpolation. It can be seen that the rate-dependent
offset surfaces are similar to those reported by Williams and Svensson
[19]. The surfaces are significantly distorted for small offset strain
and tend to be isotropic for large offset strain. The tangent modulus
surfaces tend to become isotropic for small tangent moduli, while the
surfaces of large tangent moduli show significant distortion and local
concavities. Although the concept of a family of constant modulus
surfaces proposed by Mroz [20] has been widely applied to formulate
theories of cyclic plasticity [21, 22], no biaxial experiments to deter-
mine such surfaces have been reported.

8 Closure

In the preceding sections a theory of viscoplasticity capable of in-
corporating anisotropic hardening in a most general sense has been
presented. The theory has been shown to reduce to those of Perzyna
[5] and Phillips and Wu [18] under appropriate restrictions, and it
has been applied to simple loading conditions in tension-torsion. The
specific form of the calculated offset surfaces depends on the under-
lying quasi-static stress-strain curve during load reversal, the detailed
description of which is presented in [9] and in a forthcoming paper
in which the application of the theory to cyclic loading processes is
explored. Similarly, the application of the theory in its more general
form (Sections 3 and 4) to the description of yield surface distortion
and studies of the effects of choice of direction of »;; and u;; [8] are to
be found in [9] and forthcoming papers.
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On the Characterization of Strain-
Hardening in Plasticity

In the context of a purely mechanical, rate-type theory of elastic-plastic materials and
utilizing a strain space formulation introduced in [1], this paper is concerned mainly with
developments pertaining to strain-hardening behavior consisting of three distinct types

" of material response, namely, hardening, softening, and perfectly plastic behavior. It is
shown that such strain-hardening behavior may be characterized by a rate-independent
quotient of quantities occurring in the loading criteria of strain space and the correspond-
ing loading conditions of stress space. With the use of special constitutive equations, the
predictive capability of the results obtained are illustrated for strain-hardening response
and saturation hardening in a uniaxial tension test.

1 Introduction

Within the scope of a rate-type mechanical theory of elastic-plastic
materials, Naghdi and Trapp [1] have recently discussed the advan-
tages of formulating plasticity theory relative to yield (or loading)
surfaces in strain space (rather than siress space). We adopt here the
loading criteria of the strain space formulation as primary and derive
the associated loading conditions in stress space. By comparing the
local motion of the loading surface in stress space to that of the loading
surface in strain space during loading, we find that three distinct types
of material response representing hardening, softening, and perfectly
plastic behavior can be defined in a natural way. For convenience,
these three types of response will be referred to collectively as
strain-hardening behavior. The development leading to the latter,
as well as illustrative examples of the results for special constitutive
equations, are the main objectives of the present paper. As in [1], we
confine attention to the purely mechanical theory of elastic-plastic
materials, and base our development on the rate-type stress space
formulation of Green and Naghdi {2, 3]2 and on the alternative strain
space formulation introduced by Naghdi and Trapp [1}.

By way of motivation, consider the response of a typical ductile
metal in a one-dimensional simple tension test in which the strain may

I Now in the Department of Mechanical Engineering, University of Houston,
Houston, Texas 77004.

2 The theory proposed in [2, 3] is a general thermodynamical theory of elas-
tic-plastic materials. The development in [1} is carried out within a purely
mechanical framework which can readily be interpreted in_terms of the iso-
thermal case of the thermodynamical theory. : i
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Fig. 1 Idealized siress-strain diagram for a typical ductile metal. As the points
1, 2, 3, 4, 5 of the stress-strain curve are successively transversed, the locus
of the yleld point on the g¢-axis moves outwards through B4, B,, B3, B,, and
Bs, respectively, while the corresponding locus of the yield point on the s-axis
first moves upwards through A4, Az to A3, and it then moves downwards
through A, and As. All unloading curves are drawn parallel to the linear elastic
segment 1-0 and hysteresis Is ignored.

be moderately large. Let e and s stand, respectively, for the compo-
nent e;; of the Lagrangian strain tensor and the component s1, and
symmetric Piola-Kirchhoff stress tensor. Fig. 1 shows a plot of the
stress s versus the strain e for the one-dimensional homogeneous
simple tension test. From the origin 0 to the elastic limit (identified
by the point 1) the material is elastic, stress strictly increases® with

3 Recall that a real-valued function f defined on some interval J of the real
line is increasing if f(xg) = f(x1) whenever x; and x belong to 7 and xp = x3.
A function f is strictly increasing if f(xg) > f(xy) whenever x5 > x,. Similarly,
f is decreasing if x5 = x1 implies f(x2) = f(x1) and strictly decreasing if xo >
x1 implies f(x2) < f(x1).

JUNE 1981, VOL. 48 / 285

Copyright © 1981 by ASME
Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



strain, there is no plastic straining and unloading takes place along
1-0. On the rising portion 1-3 (excluding point 3) of the s-e curve both
stress and plastic strain strictly increase with strain. Unloading from
a point such as 2 takes place along 2-2 leaving a plastic strain of
amount 02’. At point 3, s attains its maximum value. On the falling
portion 3-4-5 (excluding point 8) of the s-e curve, stress strictly de-
creases with strain, but plastic strain continues to strictly increase.
Associated with each point of the segment 1-5 in Fig. 1, there is a
unique yield point on the s-axis (i.e., in stress space) and a unique yield
point on the e-axis (i.e., in strain space). For the points 1, 2, 3, 4, 5 these
are denoted by Ay, Ay, As, Ay, A5 and By, By, Bs, By, Bs, respectively.
The points A1 and Bj are the initial yield points. As the segment 1-5
of the stress-strain curve is traversed, the locus of the yield point on
the s-axis differs characteristically from that of the yield point on the
e-axis, in that the former reverses its direction of motion while the
latter does not.

The usual loading criteria of the stress space formulation of plas-
ticity theory, when applied to the one-dimensional case under dis-
cussion, require that the plastic strain rate be nonzero whenever the
yield point on the s-axis is moving upwards, and be zero when it is
stationary. It is further stipulated that the yield point on the s-axis
cannot move downwards while tension is being applied. These criteria
are consistent with the results of the tensile test for the rising portion
1-3 of the stress-strain curve, both for paths of the type 1-2 and paths
of the type 2—-2’. They also demand the correct kind of behavior for
paths of the type 4-4’ issuing from points on the falling portion 3-5
of the stress-strain curve. However, they are clearly inadequate for
paths of the type 3-4 because the yield point on the s-axis does move
downwards for any such path; and, as was pointed out in [1}, plastic
strain is observed to be strictly increasing in this region. On the other
hand, again with reference to the one-dimensional case under dis-
cussion, the loading criteria of the strain space formulation require
that the plastic strain rate be nonzero whenever the yield point on the
e-axis is moving outwards and that it be zero whenever this yield point
is stationary. It is further required that the yield point on the e-axis
cannot move inwards while extension is occurring. These require-
ments are consistent with the behavior represented in Fig. 1. Thus
the plastic strain is strictly increasing along the paths 1-2 and 3-4 and
is constant along the paths 2-2’ and 4-4".

In order to provide a background for some subsequent develop-
ments, it is desirable to make further observations regarding the
stress-strain curve in Fig. 1. In the context of the classical infinitesimal
theory, we recall the relations

e, = s/E, (§))

e =g+ ep,

where e, and e, are abbreviations for the components e, and ef; of
the elastic and plastic strains, respectively, and E (>0) is Young’s
modulus. We note that

d de.\1 d
i:@( e‘-’) =142 2

de _de,  dep dee
ds ds ds’ de, ds\ds de,
Now with the use of de./ds = 1/E > 0 and (2)2, we have

de de
— > 0 if and only if —— > 0,
o ifa onyld

€e

@ <0 if and only ifjdi <0. (3)
ds ) de,

On the rising portion of the s-¢ curve de/ds > 0 (or equivalently ds/de
> 0), on the falling portion de/ds < 0 (ds/de < 0) and de/ds at point
3 becomes unbounded. Then, at a point A on the portion 1-5 of the
s-e curve, with the help of (2) and (3) it is readily seen that

&,_ >0 if and only if A is on the rising portion of the curve,
de. |<0if and only if A is on the falling portion of the curve,

while 1 + dep/de, becomes unbounded at point 3.
After recalling the main features of the purely mechanical theory

4 As was observed by Naghdi and Trapp [1, p. 789)], the maximum of the s-e
curve corresponds to a point which is still in the rising portion of the engineering
stress () versus engineering strain (e) curve. The maximum of the 7—e curve,
where necking begins, corresponds to a point on the falling portion of the s—e
curve.
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of elastic-plastic materials from [1-8]5 in Section 2, a quotient f/2 of
quantities which are derived from the loading functions f in stress
space, and g in strain space, is introduced. It is noteworthy that while
f involves the time rate of the stress tensor and £ the time rate of the
strain tensor, the quotient //# is independent of rates, In the latter
part of Section 2, using an equation obtained with the help of a
physically plausible work assumption introduced by Naghdi and
Trapp in [4], we derive a geometrically revealing expression for the
quotient f/2 [see equation (32)]. Next (Section 3), in terms of the
quotient f/¢, definitions are provided (see (43)) for strain-hardening
behavior, i.e., for hardening, softening, and perfectly plastic behavior,
and their geometrical implications are examined. It is demonstrated
that, while during loading the yield surface in strain space is always
moving outwards locally, the corresponding yield surface in stress
space may concurrently be moving outwards, inwards, or may be
stationary depending on whether the material is hardening, softening,
or exhibiting perfectly plastic behavior. Because of our definitions
(43), a variety of functions associated with material behavior and
deriving from f/2 or  are found to be positive, negative, or zero ac-
cording as a material exhibits hardening, softening, or perfectly plastic
behavior. To avoid undue repetition, we introduce the abbreviation
(44) and denote such conditions by the letter H. Any function that
satisfies conditions H can be used to characterize strain-hardening
behavior. By considering the limiting behavior of //8, we also examine
(in the context of the developments of the present paper) the phe-
nomenon of saturation hardening studied previously by Caulk and
Naghdi [5]. Definitions for saturation behavior are given at the end
of Section 3.

The results in Sections 2 and 3 hold in the context of the nonlinear
theory, but in the remainder of the paper attention is confined to
small deformations of elastic-plastic materials. In order to demon-
strate the predictive capability of the strain-hardening character-
ization developed in Section 3, special sets of constitutive equations
are utilized in Sections 4 and 5 to discuss, respectively, strain-hard-
ening response and saturation hardening under uniaxial loading.

For the particular constitutive equations utilized in Section 4, a
rate-independent characterization of strain-hardening behavior is
provided in terms of a certain combination (28 + Y¥¢) of material
constants. Moreover, it is shown that both the time rate of work-
hardening (k) and the time rate of tension (s) may be used to char-
acterize strain-hardening behavior. While the quotient f/2 involves
the coefficient { as well as the derivatives of strains with respect to
stress (see equation (64)), it is shown that for a certain special case,
the quotient £/ may be expressed (see equation (65a)) in terms of
quantities appearing in (2)-(4) recorded earlier in this section. An
examination of details of the solution in Section 4 shows that in uni-
axial tension and in the sense of our definitions, linear elastic behavior
is followed for perfectly plastic behavior by a horizontal stress-strain
curve, while hardening behavior is represented by a straight line lying
above, and softening by a straight line lying below the perfectly plastic
line.

Finally, in Section 5, we consider another set of constitutive
equations having in particular a loading function employed by Caulk
and Naghdi [5] in their discussion of hardening response in small
deformation of metals. Again it is shown that a number of different
functions can be used to characterize strain-hardening behavior.
Moreover, it is demonstrated that the quotient f/2 may be calculated
in uniaxial tension from a knowledge of the slope de/ds, found from
the stress-strain curve, and the elastic constants, namely, Young’s
modulus E and the shear modulus g, and thus may be easily identified
experimentally. Although our characterization of strain-hardening
is, in general, different from that discussed previously by Caulk and
Naghdi [5], the two sets of results are in agreement for the class of
materials for which detailed comparisons with experiments were

5 While some of the formulas in Section 2 may appear to be repetitions of
those in [1], our starting point and some of our conclusions differ from {1] and
for clarity we have repeated these formulas.
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undertaken in [5]. In this connection see equations (88), which also
include a simple expression in terms of material coefficients for the
gaturation hardening constant.

2 The Quotient #/¢ of Quantities Occurring in
Loading Criteria

Let the motion of a body be referred to a fixed system of rectangular
Cartesian axes and let the position of a typical particle in the present
configuration at time ¢ be designated by x; = x;(X 4, t), where X4 is
a reference position of the particle. Throughout the paper, lower case
Latin indices are associated with the spatial coordinates x; and assume
the values 1, 2, 3. Similarly, upper case Latin indices are associated
with the material coordinates X4 and take the values 1, 2, 3. We also
adopt the usual convention of summation over repeated indices.

We define a symmetric Lagrangian strain tensor by exz, = 3 (FigFir,
— 0x1.), where Fig = dxi/0Xk is the deformation gradient relative
to reference position and 6k, is the Kronecker symbol. The six-
dimensional Euclidean vector space formed from the components ey,
is called strain space. The components of the symmetric Piola-
Kirchhoff stress tensor are denoted by sjs and the six-dimensional
Buclidean space formed from these components is ealled stress
space. '

We now summarize the main ingredients of the purely mechanical
rate-type theory of a finitely deforming elastic-plastic solid and base
our treatment on the work of Green and Naghdi [2, 3] and Naghdi and
Trapp [1]. In addition to the strain tensor exy., we assume the exis-
tence of a symmetric® second-order tensor-valued function e%; =
e%1.(X 4, t) called the plastic strain at X4 and ¢, and a scalar-valued
function k = k(X4, t) called a measure of work-hardening. It is as-
sumed that the stress sy is given by the constitutive eqdfation

U= fE]{L, e%ln K}y . (5)

and that for fixed values of e%, and «, (5); possesses an inverse of the
form '

sun = Sun (U),

emn = éun(V), V = lskr, ek, &} (6)

The response functions §yn and épy in (5) and (6) are taken to be
smooth.

We admit the existence of a continuously differentiable scalar-
valued yield (or loading) function g(/) such that, for fixed values of
e%;, and «, the equation

g =0 V)]

represents a closed orientable hypersurface a6 of dimension five
enclosing a region & of strain space. The function g is chosen so that
£(U) <0 for all points in the interior of the region . The hypersurface
06 is called the yield (or loading) surface in strain space. Corre-
sponding to a motion x;, we may associate with each particle of the
body a continuous oriented curve C, in strain space. This curve will
be called a strain trajectory. The strain trajectories are restricted to
lie initially in & or on its surface 36, i.e.,

gU) =0 (8

initially on C,.
The constitutive equations for k and é%; are [1]

k= CkrLékL, 9
and
0 ifg <0, (a)
0 ifg=0 d <0, (b)
kL = s e 8 (10)
0 ifg=0 and 2=0, (c)

Aog 8 ifg=0 and 2>0, (d)

6 In [4], Naghdi and Trapp have shown that the symmetry of ey, follows from
a physically plausible work assumption which will be discussed at the end of
this section.
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where Cg; = @1 (U) is a symmetric tensor-valued function, a su-
perposed dot indicates material time differentiation,

= eMN, (11)
and where A = A(%) and pkr = prr (U) are,” respectively, a scalar-
valued function and a symmetric tensor-valued function. The quan-
tity 4 is the inner product of the tangent vector épy to a strain tra-
jectory C, and the vector dg/depn. When g = 0 and at least one
component of 9g/depn # 0, & gives the inner product of épn and the
outward normal vector to the yield surface 96, where the notation
dg/depn stands for the symmetric form 4 (dg/depn + 0g/denar). The
conditions involving g and £ in (10) are the loading criteria of the
strain space formulation. Using conventional terminology, these four
conditions id the order listed correspond to (a) an elastic state (or
point in strain space); (b) unloading from an elastic-plastic state, i.e.,
a point in strain space for which g = 0; (¢) neutral loading from an
elastic-plastic state; and (d) loading from an elastic-plastic state. We
assume that the coefficient of £ in (10d) is nonzero on the yield surface
and, without loss in generality, we then set

pxL # 0, A>0. (12)

In order to provide a geometrical interpretation of the conditions
(10), we need to record the material time derivative of the loading
function, namely,

% o+ 25,

oel, oK

where (11) has been used. It follows from (7), (9), and (10a) that in
an elastic state the strain trajectory C. lies in the interior of &, which
is referred to as the elastic region in strain space, and the yield surface
96 remains stationary. Similarly, by (7), (9), (10b), and (13), during
unloading the strain trajectory C. intersects the yield surface 96 and
is moving in an inwardly direction, with the function g decreasing,
while 96 itself remains stationary. Likewise, from (7), (9), (10¢), and
(13) during peuﬁral loading the strain trajectory C, lies in the yield
surface 06 while the latter remains stationary and § = 0. Finally, from
(7), (9), (10d), and (13) during loading the strain trajectory C, inter-
sects 06 and is moving in an outwardly direction. It is stipulated in
this'case that 06 is locally pushed outwards by the strain trajectory
C. so that8 ) ‘

§=48+ (13)

=0, e

if g = 0, 2 > 0. Thus positive values of the function g can never be
reached on a strain trajectory and the condition (8) holds for all time.
It follows from (9), (10d), (13), and (14) that during loading
9, 9,
5 + % @ KL)} = 0.

oe%; Ok

Thereforg, since the coefficient of 2 is independent of éyn, we
have

(15)

»g{l'}’)\PKL(

og | og
1+ A ( +—0 ) =0
PKL ek, | oK KL

(16)

at all points on the yield surface 06 through which loading can occur.
We note’that equations (5); and (6); hold during loading, neutral
loading, unloading, and in an elastic state.

For a given motion x; and an associated strain trajectory C, we may
utilize the constitutive equations (5)1, (9), and (10), together with
appropriate initial conditions for e%; and k, to obtain the corre-
sponding stress trajectory Cs, a continuous oriented curve in stress

7 Our notation A corresponds to A in [1].

8 In the literature on plasticity this is called the “consistency” condition,
namely, that loading from an elastic-plastic state leads to another elastic-plastic
state. For references and background information in the context of a stress space
formulation, see, for example, Naghdi [6, Pages 141, 137].
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space. In a similar fashion (6); may be used to obtain C. from C;.
Furthermore, for a given loading function g (%), with the aid of (6)1,
we can obtain a corresponding function f(%V) through the formula

g(U) = g@xr(V).ekr, ©) = f(V), {17

where the variables % and V are defined by (5) and (6)2, respectively.
Conversely, (5)1 may be used to obtain g from f. Because of the as-
sumed smoothness of (6)y, for fixed values of e%; and «, the equa-
tion

f(V)=0 (18)

represents a hypersurface oS in stress space having the same geo-
metrical properties as the hypersurface 96 in strain space. The region
enclosed by 08 is denoted &. It follows from (17) that a point in strain
space belongs to the region & (i.e., g(U) = 0) if and only if the corre-
sponding point in stress space satisfies f(?) = 0 and hence belongs
to &. Similarly, by (17) and (18) a point in strain space belongs to the
yield surface 96 (i.e., g = 0) if and only if the corresponding point in
stress space belongs to o0& (i.e., f = 0). Hence, we refer to the interior
of & as the elastic region in stress space, and to 08 as the yield (or
loading) surface in stress space. We have seen that (8) holds for all £.
Therefore, by (17), every stress trajectory Cj is restricted to lie in &
or on its surface 38 and positive values of f can never be reached. We
note that any function of variables ¥/ can be written as a different
function of variables V and vice versa, e.g., Cxr, = Cxr (U) = Cxr (V)
which occurs in (9).

In [1] a comparative basis was provided between the two indepen-
dent sets of loading criteria for the stress space and the strain space
formulations. A correspondence between the two sets of loading cri-
teria was established for all conditions except that during loading. The
approach in the present paper differs from that of [1] in that the
loading criteria of the strain space formulation are regarded as pri-
mary and associated loading conditions in stress space are deduced
from the former.? Although in the examination of the loading criteria
our starting point and conclusions are different, the arguments em-
ployed parallel those of [1]. Thus, taking the material time derivative
of (17) and making use of (13), we obtain

of of | og og .
= 5 —_— = 5 — 1
f=r+ vog, et g k= o et Tk (19)
where
f= of SMN. (20)
OSMN

The quantity f is, of course, the inner product of the tangent vector
$mn to a stress trajectory Cs and the vector dof/dsyn. In view of
(19)

F=2 if é%,=0andi=0. (21)

Considering an elastic state, f = g <0, (10a) holds, & = 0 by (9) and
hence f = g by (21). Since the yield surface 3¢ in strain space is sta-
tionary so also is the yield surface 08 in stress space. The stress tra-
jectories remain in the interior of &. It is clear from (9), (10b), (17),
and (21) that!®f = 0 and f < 0if g = 0 and g < 0. In this case (g =0,
2 <0) the stress trajectory C; intersects 048 and is directed inwards,
with the function f decreasing in value, while 98 itself remains sta-
tionary. It follows from (9), (10¢), (17), and (21) that!! f = 0 and
}=0ifg =0and g = 0. In this case (g = 0,8 = 0) the stress trajectory
C; lies in the surface 38 which remains stationary andf=0.

9 These derived conditions are not the same as the loading criteria usually
assumed in the stress space formulation.

10Tn [1] it was possible to prove the converse of this statement because of the
independent loading criteria that were assumed in the stress-space formulation.
1t will become clear presently that in the context of this paper the converse
statement does not hold.

11 See the previous footnote.
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In the case of loading from an elastic-plastic state, it follows from

(9), (10d), and (19) that
I [ og _ _of } (%g_2of
=1 o ( beh) * (bk OK) @KL}’
=0,6>0). (22

8 deky,
In the developments that follow, the quotient f/2 can be expressed
in a number of different forms. In order to establish one such form
we note that by (17), (5)1, (6)1 and the chain rule of differentiation

%8 _ Of _ Oof d8mn_  dg démn

de%k; oeky - dspn Oeky, B depmN Def(L,

o0 _9f __Of O%un_ __ ¢ démn %)
oK OK_OSMN oK __aeMN ok

With the use of (23), (22) can be rewritten as

9, o8 o8
£, 1+ Apki f { CMN y SoMN @KL]
8 sy | Deky, ok
9, oé oé
=1— hpxr — { MYy SMN @KL}, €=0,£>0. (2a)
demn | 0efy dk

Another useful form of the quotient //2 that may be derived from (22)
with the help of (12); and (16) is

i APKL ek, + % CxL
of
L+ Lol
= 2 , (g=0,8>0). (24b)
PMN' ek o MN

Since the right-hand side of (24b)3 is independent of rates, it is clear
that the quotient //2 is independent of rates and has the same value
for all strain trajectories through a given elastic-plastic point on 36.
Also, in view of (17), /2 is dimensionless. Clearly a knowledge of all
constitutive equations is required for the calculation of /3.

We now turn to the work assumption of Naghdi and Trapp [4, 7].
Starting with the assumption that the external work done on an
elastic-plastic body in any smooth homogeneous cycle of deformation
is nonnegative, it was demonstrated!2 in [4] that

{OS‘MN OSMN (25)

oeky, Ak
during loading or neutral loading, i.e., when g = 0, 2 = 0. In the case
of neutral loading it follows from (10c¢) that the left-hand side of (25)
vanishes and (25) is satisfied trivially, while in the case of loading, it
follows from (10d) and (12)s that (25) becomes

IO§MN + $MN

deky, [e13
with g = 0 and g > 0. The coefficient of éprn in (26) is itself indepen-
dent of épsn and the inequality must hold for all choices of épy that
satisfy g2 > 0. Therefore, by the same argument used in Section 5 of
[4], we deduce that

@KL] ékiémn =0

(26)

@KL]pKLéMN =0

og
demN

27

[as‘MN + OSMN
deky, oK

evaluated on the yield surface g = 0, where the scalar function y*
satisfies

@KL}pKL =—y*

Yr=F*(U) z0. (28)

We emphasize that (27) holds even for a motion that is not homoge-
neous.13

12 See equations (5.2}, (5.3), and (4.11) of [4]; the notation Hy in [4] corre-
sponds to @y in the present paper.
13 For a discussion of this point, see {4, p. 40] or [7, p. 63].
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In order to compare (27) with the results of [4] we multiply on both
sides of (27) by Ag and utilize (10d) to obtain
MmN . OSmN og

TN 4 CKLIeRL = — Ay* ,
doks 5. CKL &L v*é ean
Recalling the restrictions (12); and (28), we define a function vy

by“

(g=0,8>0). (29

Yy=M*%z0 (30)

and from (29) obtain

0SMN | O8mN og

+ e ékp= -y —, =0,8>0). (31

ety T ox KL} ekL= — v o (g £>0). (31)
Equation (31) is the same as (5.4) of [4]. We note that (81) involves
rates, while (27) does not. We have shown that (27) implies (31).
Conversely, it follows at once from (10d) and (12) that (31) implies
(27) with y* = v/Ag, as in (30).

From (27) and (24a); follows an expression for f/2 in the form:

i

§= 1-Ay*A, (€=0,8>0), (32)
where
0, 9,
=L % o), (33)
OsyN OemN

The quantity A represents the inner product of the normal to the yield
surface 08 in stress space and the normal to the yield surface 06 in
strain space.

For some purposes it is convenient to express the constitutive
equation (5); in terms of an equivalent set of kinematical variables
in the form

smn = Smn(exr — ek, eki, k). (34)

Suppose that the partial derivatives d8an/dexr, possess the sym-
metries!® d§yv/dekr, = 0éx1/depmn. Then, in a manner similar to that
in [4, Section 5], from (27) we obtain!é

Oépg [OSMN  OSMN of
-ppg + + e = —y* ,
PPQ dsmn \ oek, ox KL |PKL Y dspq
(g=f=0). (35)

It is clear from (35), (30), (10d), and (12) that if the response
function Spn in (34) is independent of its second and third arguments,
ie., if O5pmn/0ek = 0, dsynN/Ok = 0, then

of

KL = ¥
o Y OSKL

d
# 0, é%ﬁvas—f (g=0) (36)

and pgy is directed along the normal to the yield surface o8 in stress
space, as also is é%;, during loading. It follows from (36); and (28) that
in this case

Y*>0, (g=0) (37)
and hence, during loading, in view of (30) and (12),
v>0 . (38)
also. When pgy, satisfies (36);, (16) can be written as
of [og | 28 )
T+ My ——|——+ = Cke|=0, (g=0). 39
07 dos \oeky | ax KL =0 (39)

14 The function v on the right-hand side of (31) depends on the variables ey,
e8sn, k, and épn.

15 This is equivalent to the condition that éyy be derivable from a potential,
as indeed is the case in the general thermodynamical theory (see Section 4 of
[3]) of which the present development may be regarded as corresponding to the
isothermal case. The existence of a potential in the purely mechanical theory
[can also be demonstrated by an argument based on the work postulate of

4]. . :

16 The symmetry of pxi and hence ef;, follows from (35). See [4, Section

5].
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The last result can be used to solve for the product Ay* and (30) then
gives 7. Also, we may set y* equal to an arbitrary positive scalar-
valued function of the variables % and then use (39) to determine A.
Thus, in the special case in which 5psy in (34) depends only on its first
argument, no constitutive equation is needed for pgy,.

We observe that when pxy, satisfies (36),, then (24b); may be used
to express /2 as

/g = \y*T, (g=0,8>0), (40)
where
of [ of  of } -
F = = ———— — ES
oL [beﬁ’g_ + oK CkLi, (g=0). (41)
Also, in view of (32), (40), (37), and (12),,
1
0<——=T+A4, £j= L g=028>0). (42)

Ay* I'+A’
3 Strain-Hardening Behavior and Its Geometrical
Interpretation

The quotient /2 which occurs in (24b)s and related equations in
Section 2, is utilized here to define three distinct types-of strain-
hardening response for an elastic-plastic material. These definitions
are as follows: An elastic-plastic material is said to be hardening,
softening or exhibiting perfectly plastic behavior during loading
(g =0, 8 > 0) according to whether!?

(a) 7/2 >0 (for hardening),
(b)  }/6 <0 (for softening),

. (43)
(c) 7/8 =0 (for perfectly plastic).

We emphasize that a condition of loading, i.e., g = 0and 2 > 0, is al-

ways presupposed in the definitions (43). It is worth observing from

(24b), that once pky, kL, &, and (6); are specified, then the strain-

hardening response is also known.

We now provide a geometrical interpretation of the definitions (43).
We recall that during loading, since g = 0,2 > 0, and g = 0, the strain
trajectory C, is intersecting the yield surface 96 and locally pushing
it outwards. Since g = 0 and g = 0 it follows from (17) and (19) that
f=0and f = 0 also, and the corresponding stress trajectory Cj is in-
tersecting the yield surface 98 in stress space. If the material is
hardening, (43a) holds and the stress trajectory C; is directed out-
wards and is pushing the surface 08 locally outwards. But, (43b) holds
if the material is softening and the stress trajectory is directed inwards
and is pulling the surface o8 locally inwards. In perfectly plastic be-
havior when (43c) holds, the stress trajectory continues to lie on the
yield surface o0& which is stationary.

Thus while during loading the strain trajectory C, is always pushing
the yield surface 98 in strain space locally outwards, the corre-
sponding yield surface 98 in stress space may be moving concurrently
outwards, inwards, or may be stationary depending on the type of
strain-hardening response being exhibited. The actual occurrence of
such behavior has been indicated in Section 1 with reference to the
simple tension test. The usual stress space formulation of plasticity
theory introduces a priori loading criteria in stress space and stipu-
lates that during loading the yield surface in stress space can never
move inwards. Viewed in the context of the present development, the
usual stress space formulation of plasticity is seen to include only a
hardening-type response and to exclude softening and perfectly
plastic responses.!® Fig. 2 illustrates the three types of material be-
havior defined by (43).

17 Since £ is always positive in (43), we could use only / in providing the
foregoing definitions. But the use of the quotient /2 which is rate-independent,
is preferable in general. For certain purposes, however, it is useful to employ
only f as in (58) and (59) of Section 4.

18 In the context of the present paper, it is not possible to formulate loading
criteria in stress space using only f and f.
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Table 1 Summary of loading criteria in strain space and associated conditions in

stress space

Elastic g<0 implies f<0
Unloading g=0, <0 implies f=0, f<o
Neutral loading g£=0, =0 implies f=0, f=0
(a) hardening f=9, f >0
) £=0, 2>0/{(b)softening implies { =0, f<0
Loading .
(c) perfectly plastic | __ f=0, f=0

=0 ’ 9=0

Fig. 2 A sketch indicating the motion of yield surfaces in stress space and
strain space. During loading the yield surface & in strain space moves out-
wards with the strain trajectory C, through positions such as By, By, Bs, By,
Bs. The corresponding yield surface 08 in stress space moves outwards
through positions such as A4 and A, during hardening behavior, Is stationary
in positions of the type A3 during perfectly plastic behavior, and moves inwards
through positions such as A, and As during softening behavior.

The definitions for hardening, softening, and perfectly plastic be-
havior introduced in (43) require the use of yield surfaces both in
strain space and stress space. However, it may be noted that our ter-
minology for softening and hardening seems to be consistent with the
geometrical sense of these terms employed in a stress space formu-
lation by Edelman and Drucker [8]; see Fig. 5 of their paper. Also,
Prager [9] employs the terms hard and soft with reference to material
behavior, but this sense of these terms differs from ours: In [9], a hard
material is one whose stress-strain curve always lies above a given
straight line (representing linear elastic r/espolnse)}with the deviation
from linear behavior increasing for larger deformation; a soft material
is one whose stress-strain curve always lies below the straight line with
the deviation increasing for larger deformation. .

In what follows, we frequently need to refer to a set of conditions
which must be satisfied by various functions and material coefficients,
and which arise from characterization of strain-hardening response.
To avoid undue repetition we denote this set of conditions by H and
write

> 0if and only if the material is hardening, (a) '

- < 0if and only if the material is softening,  (b) (44)
" )=o0ifand only if the material is exhibiting

perfectly plastic behavior. (c)

Returning to the definitions (43) and recalling (24b), and (12)y, it is
seen that '
of + —af- @ KL} satisfies conditions H.
oe ?(L oK
It is worth mentioning that the usual treatment of an elastic-perfectly
plastic material (see, for example, [2, Section 9]) in stress space re-
quires the use of a yield condition of the form f(sg;,) = constant and
the quantity on the left-hand side of (45) indeed vanishes identically
in this case. :
With the use of the definitions (43a, b), we now obtain an expression

(45)

~PKL {

290 / VOL. 48, JUNE 1981

for the rate of plastic strain which is valid in regions of hardening and
softening behavior only. Thus, by (10d), (12), (24b); and (43a), in a
region of hardening é%;, can be related to f through the expression

ek = )\PKL—}?‘ =- prc f #0 (46)
fla ) { of L o, ]
MN — @un
beﬁ,N oK

with (43a) and (45a) holding,!® while in a region of softening é%; is
again given by (46) but now with (436) and (45b) holding; in both
cases, the sign of the coefficient of pgy, in (46) is positive. For perfectly
plastic behavior, it is clear from (10d), (24b)1, (43¢), and (45¢) that
&%, 'cannot be expressed as a product involving / and must be calcu-
lated from (10d). For convenience, a summary of the relationships
between the loading criteria in strain space and the associated con-
ditions in stress space is provided in Table 1.

In the remainder of this section, we discuss some special cases of
the foregoing results which are of particular interest in view of their
simplicity. The first two of these (see Cases (a¢) and (b) below) examine
the consequences on strain-hardening behavior of certain restrictions

- on the stress response functions §yn in (5); and Sy in (34). The third

(see Case (c) below) pertains to a limiting behavior of strain-hardening
response, i.e., saturation hardening and softening.

Case (a). Consider the special case of (5); for which the stress
response is independent of its last two arguments, i.e.,

8 23
OsMN _ , 9SMN _ 0. (47a)
dekr oK

When conditions (47a) are satisfied, (5)1 may be replaced by an
equation of the form

smn = Smn(exr). (47b)

We observe that (476) has the same form as the stress constitutive
equation of a nonlinear elastic solid. For an elastic-plastic material
whose stress constitutive equation is (47b), the stress tensor sy is
determined once the motion x; of the body is specified. This should
be contrasted with the general case for which the differential equa-
tions (9) and (10) must be solved before syn can be calculated. A
further interesting feature of elastic-plastic materials for which
(47a)1,2 hold is that their hardening response is extremely limited.
Thus, by (47a) and (23), we have

% _ o %_of
OC%L be?(L ’ oK ok

“and hence by (24a) or (22)

fe=1. (48)

Recalling the definitions (43), it is clear that a material for which
(47)1,2 hold can never exhibit softening or perfectly plastic befiavior.
If conditions (47a), 2 are satisfied and if dg/dep 5= 0, it follows from
(27) and (30) that )

18 The equation number (45a) refers to (45) along with part (a) of condition
H.
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y*=0, vy=0.

Conversely, if (49), is satisfied so is (49)2 and then (48) holds by virtue
of (32). ]

It is clear from the results of the foregoing special case that in order
to construct a general theory of elastic-plastic materials, it is necessary
to include e%;, and « (or at least one of them) in the list of arguments
of the stress response function $ay. Otherwise, the strain-hardening
behavior will be too restrictive.

Case (b). Consider the special case of (34) for which the stress
response is independent of its last two arguments. In this case, the
results (36) to (42) hold. It then follows from (37), (40), (43), and (12)2
that

T satisfies conditions H. (50)

With the use of (36); and (40), in a region of hardening or softening
(46) becomes

g, o1 O
ek = T orc #= 0, (bla)

while it follows from (50c), (42), (36)1, and (10d) that in a region of
perfectly plastic behavior

ek = 2o # 0. (51b)
K.

Case (¢). Caulk and Naghdi [5] have previously introduced a
definition of saturation hardening in connection with their discussion
of hardening response in cyclic loading of metallic materials (see
equation (19) in [5]). In view of the definitions (43), it is of interest
to reexamine here the notion of saturation hardening. Thus, for our
present purpose, an elastic-plastic material is said to exhibit satura-
tion hardening along a strain trajectory C. (or a stress trajectory Cs)
if and only if there exists a constant K}, such that 20

limf/§=K,>0 (g=0,>0). (52a)

Lt~
Similarly a material exhibits saturation softening along a strain tra-
jectory C, if and only if there exists a constant K, such that

lim f/=K;<0 (g=0,8>0). (52b)

t—o

In order to indicate the relationship between the definition (52a)

of saturation hardening and that given by Caulk and Naghdi [5,

equation (19)], we observe that if during loading the limit as t — =

of k is zero on some strain trajectory C., then assuming (12) to hold
in the limit, it follows from (9) and (10d) that on C,:

lim pgr @k, = 0.

t—>o
Consequently, by (24b)3 on C,:

of

PKL
>

tim £ < i —2°KE

t-»o ag

M,
PMN ek

if this limit exists. The latter limit may be positive, negative, or zero
depending on the limiting value of —pkr/(df/deky), in view of
(45).

We close this section with some remarks on certain other ap-
proaches which have been used in connection with the characteriza-
tion of strain-hardening.

One approach, that of Palmer, Maier, and Drucker {10] is based on
a “plastic work” criterion. In the notation of the present paper, the

t—ow

20 In the definitions (52a, b) we have excluded for convenience the equality
sign. If the limit of the left-hand sides of (52a, b) is zero, we say that the material
saturates to a perfectly plastic behavior.
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9)

procedure of [10] amounts to stipulating that the scalar sg;.é%; is
positive for hardening and negative for softening. However, such a
criterion leads to ambiguities since §x7.6%;, vanishes for both perfectly
plastic behavior and neutral loading (and in an elastic state as
well).

Another approach is that of Hill [11].2! Hill confines his discussion
to a special class of constitutive equations which may be derived from
(34) when 5y is independent of its last two arguments. While Hill
considers flow rules in both strain space and stress space,?? his stress
space flow rules are anomalous; and, in particular, his flow rule for
perfectly plastic behavior involves an indeterminacy in strain rate
(and hence also in plastic strain rate). The reason for these anomalies
is that Hill does not regard the loading criteria of strain space as pri-
mary.

To elaborate, although Hill [11, p. 245] speaks of a condition of
“continued plastic flow,” his flow rules 1), 2), 3) are not consistent with
the requirement that £ be positive.23 In particular, if § > 0 and //2 >
0, then the first part of flow rule 1) corresponding to 7 < 0 can never
apply. Hill’s flow rule 2) involves a “double-valued” inverse. Again,
if the condition 2 > 0 is enforced no such anomaly occurs. Finally, in
the case 3) of perfectly plastic behavior, the first part of the flow rule
corresponding to f < 0 should be omitted and instead of the second
part of the flow rule which involves an indeterminacy, the flow rule
of the strain space formulation should be retained.?* The indeter-
minacy in Hill’s flow rule 3) results from the fact that the determinant
of L (in equation (4) of [11]) vanishes for perfectly plastic behavior.

Setting aside the matter of incorrectness of the flow rules in [11],
we now wish to relate Hill’s quantity 1-£’X to the quotient /2 of the
present paper. Consider the stress constitutive equation in the al-
ternative forms (5) and (34). By applying the chain rule to these
equations, (24); may be expressed as

I =1 - \pKL % + Npkr of {asMN + 95mN @KL]-
4 dekr dsyn L 0eky, dk

In [11], Hill defines strain-hardening, strain softening, and perfectly
plastic behavior in accordance with whether Apk; (0g/0ex1) is less
than, greater than or equal to unity. Such a characterization is clearly
not adequate for a general elastic-plastic material of the type being
treated in the present paper. If, however, we confine attention to the
special class of constitutive equations for which the function Sy in
(34) is independent of its last two arguments, then /8 reduces to 1 —
Apx1(d8/dekL). Indeed, as we have indicated above (see (36)—(42)
and Case (b) of the present section), when Sy is independent of its
last two arguments, the work assumption of Naghdi and Trapp [4, 7]
implies the normality condition (36); on pg;z, and instead of }/8, the
simpler quantity T" in (41) can be used to characterize strain-hard-
ening behavior. Furthermore, in a region of hardening and in a region
of softening the flow rule for plastic strain rate may be written in the
stress space form (51a), while in a region of perfectly plastic behavior
it reduces to the strain space form (515).

4 Strain-Hardening Response for Special
Constitutive Equations

We consider now in some detail the nature of the hardening re-
sponse in small deformation of metals whose behavior is characterized

21 Hill’s paper [11] was brought to our attention by a referee after the present
paper was submitted for publication.

22 Actually, Hill [11] employs strain-rate and stress-rate space in conjunction
with a constitutive equation for an objective stress rate.

23 Hill’s A, £, m, £'¢, m’s correspond to our Apxy, dg/dexr, of/dskL, £, f» re-
spectively. As will be shown presently, for the case discussed by Hill, the quo-
tient f/2 of the present paper reduces to Hill’s 1-£’A.

24 As we have observed in the present paper (see the paragraph containing
(46)) one can go over to the flow rules of stress space (involving /) in a region
of hardening (8 > 0, # > 0) and in a region of softening (8 > 0, <0), although
even then one must retain the loading conditions of strain space. In the case
of perfectly plastic behavior, however, one must retain (10d), the flow rule of
the strain space formulation, which gives a determinate plastic strain rate once
the motion y; is specified. :
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by a simple set of constitutive equations appropriate for elastic-plastic
materials which are homogeneous and initially isotropic in their ref-
erence state. First, we recall that the infinitesimal elastic strain tensor
is defined by e%;, = exi — e%, and note that with e%;, = 0 in the ref-
erence configuration, e%, = 0 also there. It is convenient to utilize a
standard decomposition for second-order tensors. Thus, for example,
in the case of the stress tensor, we have

SkL =§0kL + Tk, §=}skK,

where 50k, is the spherical part of sk1, Tk1 is the deviatoric (traceless)
part of skz, and 5 is the mean normal stress. In a similar manner we
decompose ey, ek, ek into spherical parts €6k, POk, €€k and
deviatoric parts yxr, Y%L, Y%L

Let the stress response function in (5); be specified by generalized

Hooke’s law, namely,
§ = 3kee,

TKL = 2uv%Ls (53)

and the coefficient function @k, for the rate of work-hardening re-
sponse in (9) in the form [12]

Cki = BriL + ¢50kL, (54)

where i (> 0) is the shear modulus, k& (> 0) the bulk modulus and §
and ¢ are constants. With the use of the decompositions just noted,
the loading functions f(V) and g(%) can be written as different
functions f(rmn, 5, Y3n, €2, «) and E(ymn, & YR, €7, k). In this
section, we restrict attention to special loading functions of the
form

FV) = f(Tmn, 5, Yin, 8P, &) = TR TRL + 3Y5% — &,
g(w) = E(’YMN! Ev ’Yﬁle EP’ K)
= 4u(yrL — vk (vre — vke) + 2TYR%@E — 8P)2 ~ &,

where ¥ is a constant and where (17) and (53) have been used.?5 Uti-
lizing formulas of the type?®
of _ of 1 ( of of

: AP
ok o5 N

(55)

(56)

OSMN - OTMN B 3
and recalling (20) and (11), it can be easily shown that

= 2(rmn + YE0MN), F=2(rMnTrn + 3¥SE),

OSMN
8= 20uTuNYMN + OVkse) = F+ 22urun YRt SPksér) (57)

and the expressions for 0g/depn-and 0f/defyy may be obtained
similarly. We recall that during loading £ is positive while g = f = ¢
= f = 0. Keeping this in mind, it follows from (55); and (57) that
during loading

TRLTRL + s —k =0, 2(rkLirL+3YsS) ~k=0, f=k (58)
and hence by the definitions (43),

k and (TmnTMN + 3yS§8) both satisfy conditions H. (59)

Clearly for the special constitutive equations used in this section, in
view of (58)3 and (59), the strain-hardening behavior may be char-
acterized by &. .

The stress response (53) may be regarded as a special case of that
in (34) with the last two arguments absent; and, in addition, the
symmetry conditions mentioned following (34) are satisfied by (53).
Hence, in addition to (36)-(42) the special results obtained at the end
of Section 3 [see Case (b) following equation (49)] remain valid here.

25 The loading function (55); does not depend explicitly on plastic strain, but
includes a dependency on mean normal stress. When y = 0 and « = constant,

(55); reduces to the usual von Mises yield function. A loading function of the

type (55); was previously employed by Green and Naghdi [12}.
_26 Tt is understood that in line with the summation convention, our notation
df/d7kK in (56) stands for the sum df/d71; + f/d79a + 3f/071a3.
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Thus, using (54) and (55), from (33), (41), and formulas of the type
(56) and (57); and recalling that df/dskr # 0 by (36)1, we obtain

A = 4(2#TKLTKL + 91//2k§2) > 0, P = Q(ﬁTKLTKL + 3¢¢§2)_
(60)

With the use of (60), Ay* and f/# may be obtained at once from (42),
Moreover, in this case, since /2 is always < 1 the degree of hardening
behavior is limited. Also, remembering (50), we observe that in thig
case the right-hand side of (60); provides a rate-independent char-
acterization of strain hardening, Constitutive equations for the rate
of plastic strain or equivalently for 7 and 4%, simplify and may now
be obtained from (51a) in a region of hardening or softening and from
(51b) in a region of perfectly plastic behavior.

Since our development in Sections 2 and 3 began with the strain
space (rather than the stress space) formulation as primary and since
the quotient /8 is used to define strain hardening, it is desirable to
examine the predictions of various theoretical results in the case of
the familiar one-dimensional tension test. To this end, consider a
homogeneous deformation sustained by a uniaxial tension sq; = s =
$(t) along the X-axis. Then, using a matrix representation for 7,
we have

2 0 0
s s
lrgell = 3 logel, 5= 3 20, logell =|lo -1 o}, 61)
0 0 -1

where for brevity we have introduced the constant matrix [|bgy,{.
Assuming that initial yield occurs at a value s¢ of s and a value
ko > 0 of k, the solution can be obtained in a straightforward manner.
We omit details, but record here some of the results of interest:2?

k=3s522+y), ko=%sk2+Y), 2+¢¥>0, 50>0, (62a)
§>0, k>0, é5,>0 when g=0,8>0, (62b)
Both ¢ and (26 + J¢) satisfy conditions H. (62¢)

We postpone a discussion of perfectly plastic behavior until later in
this section but consider further calculations for the other two types
of behavior: In a region of hardening or softening, the elastic and
plastic strains are

O R AR -
e=r flykel 6u” ke, (63a)
- 8§ =89 § — So
P=e2 k] = biel, 63b
€ Py el o lokel (63b)
1 0 0
legul === flo ~»* 0
0 0 —»*
c_igﬁ an dyi, [> 0 if and only if the material is hardening,
ds ds < 0if and only if the material is softening,
{63c)
where the constants v*, E*, u*, and k* are defined by
24y 202 + )2
E* 2+
¥ e = el 63d
T I S (63)
E* 24y
% o e = E* 0
31-2v*) 9y W0
and
(63¢)

E#* and p* satisfy conditions H,

271t is clear from (10), (62a)3, (62b);, and the expression f = (2/3) (2 + y)ss,
that during neutral loading, it is necessary to have s = 0 and during unloading
it is necessary to have § < 0. In this connection, recall Table 1 and the discussion
following (21).
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while
2(4u + 3y 2k)
28+

The constants in (63d) have been defined analogously to the corre-
sponding constants in linear elasticity, e.g., u = E/2(1 + v), k = E/3(1
— 2v), where v is Poisson’s ratio. In the special case that y = 0, v = 1/2
and the expressions for E*, u* simplify while * — = asy — 0. Con-
tinuing our discussion of hardening and softening behavior, it can be
shown that when y > 0 (see the Appendix for details) the quotient
f/¢ can be written as
2+
>§=1 d dys : de(d 69
-1 eldee\—1
i (2 SYKL|| |2 kL _e( ) |]5KL||)

+
3 ds ds v ds\ds

where tr stands for the trace operator. In the special case when v* =
v, (64) reduces to (see the Appendix for details)

>4 {Eg—g]—l = [1 +ge_,,]—1
8 ds de,

g=§ss-(2+¢) 1+ >0, ©63f)

(85a)

and by (43a,b)

d
= and (1 +
ds

dep) {> 0 if and only if the material is hardening,

de.] {< 0 if and only if the material is softening,

(65b)

where as in Section 1, we have again used the notatione = ey, e, =
efl, ep = efl.

Before closing this section, it is desirable to elaborate briefly on
some features of the foregoing results for uniaxial tension, which have
been obtained with the use of a special set of constitutive equations.
With reference to all three types of strain hardening response defined
in (43), it is clear that during loading e¥, is strictly increasing with time
by virtue of (62b)3. Moreover, according to (62¢) the time rate of stress
may be used to characterize strain-hardening behavior in uniaxial
tension and a characterization of the same behavior is provided by
the combination (28 + y¥¢) of the constitutive coefficients. While the
elastic moduli E, u are always positive, it follows from (63e) that the
constants E*, u* are positive for hardening and negative for softening
behavior. In the special case of v* = p, it is clear from (65a) that the
quotient #/2 can be expressed in terms of quantities (2)—(4) and indeed
(65b) corresponds to the behavior summarized in (4) for uniaxial
tension.2® Furthermore, with = 0 in (55);, the plastic volume change
or equivalently €7 vanishes also. The strain-hardening response is
then characterized by 8, in view of (62¢). Also, in a region of hardening
or softening the quotient /2 reduces to (see the Appendix for de-

tails)
I [ 5“1]‘1
g - 3” ds ’

where we have put v = v,; and ve = v%,.

(66)

The significance of the strain space formulation in the case of
elastic-perfectly plastic materials was pointed out in {1}. Since the
quotient f/2 is used here to define various types of hardening response,
it is desirable to indicate the reduction of the present development
to the usual perfectly plastic behavior in uniaxial tension. First, we
observe that during loading (g = 0, 8 > 0) for perfectly plastic behavior
f/g = T' = 0 by (43¢) and (42). It then follows that & = 0, k = Ko, s = so

28 Recall that the special constitutive equations employed in this section are
not sufficiently general to predict all details of the stress-strain curve in Fig.
1. Indeed, different choices of the combination (28 + V¢) of the coefficients
(appropriate for different materials) yield stress-strain curves consisting of
straight line segments which correspond to the rising and falling portions of
the curve in Fig. 1. ’
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by (58)3.and (62a)y,2 and that, in view of (62b)s, e?,is strictly increasing
with time.2? Thus, in the context of the present paper, the uniaxial
stress-strain curve for elastic-perfectly plastic behavior consists of
a linearly elastic portion followed by a horizontal portion and as time
progresses the locus of ef; moves outward along the abscissa of the
s-e curve. This is in agreement with the usual characterization of
perfectly plastic behavior in uniaxial tension. We also note that an
examination of the solution given by (63a, b) and (63e) easily reveals
that hardening (softening) is represented in a stress-strain diagram
by a straight line which lies above (below) the horizontal perfectly
plastic line. Indeed, since e1; = s/E + (s — s¢)/E*, then dey;/ds = 1/E
+ 1/E* and by standard results for inequalities it follows from (63¢)
that

d 1 1
o > fen > max {—- R ——-] if the material is hardening,
ds E E*
1_d 1
- > e, = >~  if the material is softening.
E ds E*
Moreover,

de 1
w > —d—n > i implies that the material is hardening,
s

de 1
—o < —d—u < E implies that the material is softening,
s

and it is at once clear by comparing the constant slope de;/ds with
the inverse 1/E of the elastic modulus whether the material is hard-
ening or softening.

5 Saturation Hardening

As in Section 4, we again restrict attention to small deformations
of elastic-plastic materials, which are homogeneous and initially
isotropic in their reference configuration. We also assume that there
is no plastic volume change so that €7 = 0 in the notation of Section
4. For a fairly large class of metallic materials, it is well known that
the stress-strain curves of uniaxial cyclic loading attain—after several
cycles—saturation hardening. The purpose of this section is to indi-
cate how the development of Sections 2 and 3 can be used to charac-
terize a hardening response that includes saturation behavior and to
compare the results with those of Caulk and Naghdi [5].

Starting with a fairly general discussion of loading functions con-
tained in the paper of Green and Naghdi [2], for initially isotropic
materials Caulk and Naghdi [5] derived a loading function in the form
(see [5, equations (40); and (56),])

FV) = Frmn, i, €) = TRLTRL — Q7KLY R + 07k Vi — K,

g(U) = glymn, Yiun &) = 4p2(yrr — vhe)(yxr — Yie)

= 2ap (vrr — YhVke + oYL YEL — &,

where o and ¢ are constants and where (53) has been used in writing
(67)2. It should be noted that the loading functions (67)1,2 depend
explicitly on %, but not on the mean normal stress 5. Here we also
adopt (67)1,9 but, instead of the hardening response assumed in [5],
we specify the coefficient function Cgy, in (9) by

Cxr = Bk + Ak YL,

which is different from that used in Section 4. The constitutive as-
sumption for @k, in [5] is similar to (68) but with B(K) and #(x) spec-
ified

(67)

(68)

B = 8, k)= n, (69)

K — K K — Kg
0— Ks Ko — Ks

K

where 8 and 5 are constants, kg is the value of  at initial yield and &,
is the saturation value of k. Since the stress response (53) is used in

29 In the case of perfectly plastic behavior in uniaxial tension, (51b) reduces
to an identity unless the motion is specified.

JUNE 1981, VOL. 48 / 293

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



this section, in addition to (36)—(42), all the results stated under Case
(b) at the end of Section 3 are also valid here.

To facilitate the discussion that follows and for later reference, we
record the expressions

b}
F o oo — avBay = 0,
OSMN
ls) d,
¢ oL o, @=0,
oeMN OSMN

(70
f=@run — avBn)Tun,
8 =2pQ7Mn — Y)Y M
=1+ 2u@TMn — ¥R VRus
which have been obtained with the use of formulas of the type (56)
along with (20), (11), (86)1, and (37). With the help of (70) and re-
calling the definitions (33) and (41), A and T" are given by
of of
bs;q, bSKL
= @rir, — avkolla + Bk — (20 — Rk vke),
Thus, based on the constitutive equations assumed in this section,
A is 2u times the square of the magnitude of the normal to the yield
surface 08 in stress space. Having obtained the results (71)y,9, Ay*
can be calculated from (42); and it then follows from (32) that the
quotient }/¢ must satisfy the inequality
fe <1,

which limits the extent of the hardening behavior. The restriction (72),
in turn, places an upper bound of unity on the value of the saturation
constant Kj, in (52a) so that

0<Kp=1.

A=p

= 2u27kL — ayk)(21kL — avkL) > 0,

(71)

(72)

(73)

Expressions for ¥%; can now be easily calculated from {51a) in are-
gion of hardening or softening and from (51b) in a region of perfectly
plastic behavior.

Given the constitutive assumptions employed in this section, the
results (71);,2 and the restrictions (72) and (73) are valid for any small
elastic-plastic deformations. In the rest of this section, however, we
again confine attention to a homogeneous deformation sustained by
uniaxial tension (61). Since plastic volume change g? = 0,2¢ = € is
given by (63a);. Again, as in (1)1, for convenience we use the notation
e = ejy, e, = ey, e, = efjand write

lvkell = 3 epllibrel,

where the constant matrix [bgr |l is defined by (61)s. Also, from
(70)1,3,4, (61), and (1)9, we deduce that

F=@s—aey)s, 2=(s— aep)iEe+ (3u — E)ép),

s —ae, % 0(g =0). (74)

At initial yield e, = 0 and ko = & s3> 0 by virtue of (74)3 and (67)1.
Hence, on the yield surface (g = 0),4s — ae, must be positive. From
this last result, along with (30) and (36)2, we have ¢, > 0 during
loading and therefore ey, is strictly increasing with time. Further, from
the definition (43), and the positivity of the coefficient of § in (74),
it follows that ¢ must satisfy the conditions in (44). The above results
may be summarized as follows30

45— aep, >0, é>0,

s g s (75)
§ satisfies conditions H.

While (75)g holds during all three types of strain-hardening behavior
defined in (43), it follows at once from (75)3 and (1), that é. also
satisfies conditions H.

30 The inequality (75)1, together with (74); and (10), imply the following:
During neutral loading it is necessary that § = 0, while during unloading it is
necessary that § <0.
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For uniaxial tension under discussion, the quantities A and T" in
(71)1,0 reduce to

A=3ulds — aey)?2>0, = (s — aep)T,
T = (a + B))s — 820 — #(x))ep,

where for later convenience we have introduced the quantity r defined
by (76)a. Further, from (50), {76)s, and (75)1 follows the result

(76)

T satisfies conditions H. 1

Also, the expression for the plastic strain rate ¢, ina region of hard-
ening or softening can be written as

4
ép = E—ST“—QBS (78a)
IfT = —E@3s — aep), (78a) may be written as
T -1
ep=|1+—7—| ¢ (78b)

E(% 8§ - aep)
which is similar in form to that obtained in [5] and where the relation
s = E(e — ep,) has been used in deriving (78b). In fact, if the coefficient
functions ,3 and % which occur in T are specialized to those given by
(69), then (78b) reduces to that in [5, equation (80)]. The value T =
—E(4s — aep) corresponds to a special softening behavior in which
¢=0,5=—Eé,.

The result (75)a enables us to calculate the slopes de/ds, dep/ds
explicitly as functions of s, ep,, k. Thus, with the use of (1), (78a) and
chain rule of differentiation, in a region of hardening or softening we
have

de_1,dep dep_3s—ae (19)
ds E ds ds T
It follows from (79), (75)y, and (77) that
d
>Z25 0,
ds

d 1d '
o > ad > max {—, —EB] > 0 if the material is hardening,
d E ds

d 1 de_d
—o < f 0, E > Z > Ee_sg if the material is softening. (80a)
Moreover,
d 1 de,
© > had >—= (or equivalently = > —£ > O) implies hardening,
ds FE ds

de 1 ( . dep ) . . .
—o < — < — |or equivalently —e < —= < 0| implies softening.
ds E ds

(80b)
Since de./ds = 1/E which is always positive, we may write dep/de.
= E dep/ds, de/de. = E de/ds and then obtain explicit expressions
for these derivatives from (79). It is evident that conditions of the type
indicated in (80) for de,/ds also hold for dep/de.. It follows from (42),
(76), and (79)2 that in a region of hardening or softening

de dvi (d’Yeil)"ll‘l
1 > S=l1+43u—8 =|1+—2|-1=
[ K ds ] l ds \ ds

In view of (80a) and (43), (81) implies that dep/ds < ~1/3u in a region
of softening. It is clear from (81); and (1) that a knowledge of u, E and
the slope de/ds suffices to determine f/8. If the material saturates to
perfectly plastic behavior, the left-hand side of (81)y, i.e., //8 must tend
to zero and hence in this case de,/ds must become unbounded.

We now turn to a brief discussion of saturation hardening usually
observed under uniaxial cyclic loading. Recalling the definitions (52a,
b), from (81) we deduce that saturation hardening occurs if there
exists a constant K, such that
{ dep]-1 . de 1 1-K,

143ulim —%[ =Ki lim—=—+
t—o ds t—ods E  3uKp

(81)

, (0 <Ky =1).

(82)
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In order to exploit the implications of (82), we first observe that r
defined by (76)5 can be rewritten as

—~ 3[4 5 3 (a? . 5
r =Z(§s - aep) (ot Bl +> (f;—— 20 + H(x) +—§6<x))ep

(83)
and then express (79)5 in the form
2 A —
. , 3(“——2o+ o) +gﬁ(f<))ep !
ep :
— = —(a+ B) + = (84)
s 4 (e + B 2 is — aep

Consider now a special material response which corresponds to the
vanishing of the numerator of the second term in the square brackets
in (84), i.e.,

2
92—-20+ 500 +—;‘-6(K) =0, (85)

which has the same form as a particular case discussed in [5]. From
(75)1, (17)1, (83)—(85), and (81), it can be readily concluded that
o+ ﬁ(K) satisfies conditions H,

4/3 }

4 -1
+ -L] <1, (86)
a+ B(x)
Also, in view of (43b) and (86)s, in a region of softening:
0> a+ Bk) > - 4p.

If saturation hardening occurs with 0 < K, < 1, then from (82)4, (86),
and the condition (85) we have

4ukK, 2aukK,
lim Bk) = —=1 — o lim H) = - 2E2E 4 94
f—w 1- Kh t—o 1- Kh
(0<Kn<1), (87)

while 3(K) becomes unbounded for K = 1.

We further examine saturation hardening by adopting the special
coefficients (69) subject to the condition (85). When saturation is
assumed to occur, the limit of the coefficients (69) as ¢ — = is zero and
from (85), (82), and (86)2 we obtain

L de 1 4
lim —=~+—,

af +2n =0,
6 K t—-—mdS

o? = 4o,

4ul-1
0<Kh=[1+—-*f] <1, a>0, (88)
(24

the first three of which are the same as those derived in [5, equations
(70) and (86)].

By way of illustration, consider the 304 stainless steel whose be-
havior in cyclic tension-compression is discussed in [5, Section 7]. As
in [5], for the 304 stainless steel, we take the values of E = 123 GPa
and de/ds = (3.85 GPa)~! at initial yield and also assume the value
v = 0.3 for Poisson’s ratio,3! With these values, the expressions (79)1
and (81) predict that the quotient //2 at initial yield is approximately
equal to 0.027. Again using the above values; as well as @ = 1.5 (for
tension), (88)3 gives an approximate value of 0.008 for K. Thus f/8
decreases from a value of 0.027 at initial yield to a value of 0.008 at
saturation. It is clear from (82) that the definition of saturation
hardening given by (52a) implies that the slopes de/ds and dep/ds
tend to constant limits at saturation. In this connection, it should be
noted that when fi’ and 7 are of the form (69), the definition of satu-
ration hardening used in [5] also gives constant limiting slopes.

31 A value for Poisson’s ratio was not needed in the calculation given in [5,
Section 7]. With » = 0.3 and E = 123 GPa, u is calculated to be 47.31 GPa.
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We return once more to the perfectly plastic case, and first observe
that the expression for32 4%, can be obtained from (51b) with the use
of (70)1,4 and (71);. In view of (75)3, s = 0 for perfectly plastic behavior
and s retains its initial yield value so and, in accordance with (75)s,
¢p 18 strictly increasing with time during loading. The work-hardening
parameter x may then be obtained as a function of ep fromg=f=0
with f given by (67)1:

k =853 — asoep + 3§ oel. (89)
By (76) and (77c¢), for perfectly plastic behavior it is necessary that
§la+ B)so— (2o = fi(Kk)ep =0 (90)

for all e,. We observe, however, that in view of (76) and (77¢) the
constant values

Bx)=—a, #(x) =20

are sufficient for perfectly plastic behavior. It should be noted that
the values (91) satisfy the condition (85).

(91)
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APPENDIX

We provide here details of the calculations leading to (64), (65a),
and (66), and also record alternative useful forms of the quotient }/2
associated with the constitutive equations of Section 4. From (63),
in a region of hardening or softening we have

32 In fact, in the case of uniaxial tension, the resulting expression is an iden-
tity, unless the motion is specified.
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de (dee\-1 der dée)—l k
utid =14 — =14+—, (Y=0), (92)
ds ( ds ) ds ( k* v
dve d dverl]-1
| dyieef| ||V s f = 6Ll + “ Vil (142 |7 (1 + ﬁ) floxel, (93)
ds ds ds u*
derr|| ||dek|| -t deki|| ||deke|]* E *
= I18r | + ||ZZEL =KL T ot | +— [0 w*/v O ) (94)
s s ozl s 7 6%zl pm

In a region of hardening or softening I" 5 0 by (50) and using (42)2
we may write }/8 = (1 + A/T")~1. Then, by (60), (61), and (62b); we
have
2(dp + 3y%)]-

28+ yo¢
2(1 + v*)?

1+v

1+ —m

1+

o]
Bk

3E*{ 1-2v

A e
=1+ {1+ ————
Ex T (1+p)(1-2)

and we may recall that 1+ p> 0,1 — 2» > 0. If 5 0, then f/2 may also
be written as

1>§=[1+

(95)

2+ ¢

=2(1+i‘;)+\//(1+

A+ 3% ]—1 (96)

4u* + SyY2k*
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00 v*/y

The result (64) follows at once from (92), (93), and (96). Similarly, if
v* = p[ory =1—2v/(1 + )], then from (94) and (95) we obtain

o 1 =
3 ds

E* ds
The result (65a) follows from (97) and (63a). With the use of (94) it
is also possible to write (97) in terms of
deﬁ( 1 |_1
ds

dekr,
ds
but we do not record this here.
In the special case that Y = 0, we note that by (63d)z,3 and (93),
1 e 11~ dv [dvye\-1
1+4E=_tr“ dykr MI ]=_7(_v_) R
g 3 ds ds ds \ ds

The relations (95), (98), (63a)s, and (63b)z lead to the expression
(66).
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Constitutive Equations of
Elastoplastic Materials With
Anisotropic Hardening and

Elastic-Plastic Transition

Constitutive equations of elastoplastic materials with anisotropic hardening and elastic-
plastic transition are presented by introducing three similar surfaces, i.e., a loading sur-
face on which a current stress exists, a subyield surface limiting a size of the loading sur-
face and a distinct-yield surface representing a fully plastic state. The assumption of sim-
ilarity of these surfaces leads the derived equations to remarkably simple forms. Also a
more general rule of the kinematic hardening for the distinct-yield surface is incorporated
into the constitutive equations. While they seem to be applicable to various materials,
special constitutive equations of metals, for example, are derived from them and are com-
pared with experimental data on a cyclic uniaxial loading of aluminum. A close correla-
tion between theory and experiment is observed in this comparison.

Introduction

The author proposed previously constitutive equations of elasto-
plastic materials with elastic-plastic transition [1], introducing the
concept of a loading surface in a subyield state. A reasonably simpli-
fied rule of kinematic hardening is incorporated into the constitutive
equations. They cannot, however, describe the phenomenon that the
curvature of the stress-strain curve becomes smaller in the reverse
loading than in the first loading from an initial isotropic state as is
observed in the stress—strain curve for the uniaxial loading of elas-
toplastic materials such as metals. Further, according to them, the
loading along the yield surface which represents the fully plastic state
brings about not a plastic deformation but an elastic deformation,
since the loading surface is assumed to coincide with the yield surface
in the fully plastic state. However, not only an elastic but a plastic
deformation will occur in real materials subjected to such a
loading.

On the other hand, the Mroz model of a field of hardening moduli
[2] in which are assumed many surfaces can describe these phenomena
suitably to some extent. Further, Krieg [3] and Dafalias and Popov
|4] proposed independently the simplified constitutive equations in
the form of the so-called two-surface theory. The former [3] formu-
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lated elastoplastic constitutive equations in concrete forms though
they are confined to metals, while the latter [4] provided only a con-
ceptional description. These constitutive equations in the two-surface
theory would have similar mathematical behaviors to those of the
Mroz model. The Mroz model and the Krieg or the Dafalias and
Popov’s two-surface theory are, however, incapable of describing
suitably the elastic-plastic transition, since they assume the surface.
which delimits an elastic region. For instance, the reloading after a
partial unloading within this surface brings about an abrupt change
from the elastic to the fully plastic state.

In this paper, the elastoplastic constitutive equations which are
modified to remove the aforementioned defects in the past theories
are presented by formulating a simplified two-surface theory on the
assumption of similarity of surfaces and then incorporating the au-
thor’s previous theory with a loading surface [1] into it. Consequently,
three similar surfaces are assumed; a loading surface on which a
current stress exists, a subyield surface limiting the size of the loading
surface and a distinct-yield surface representing a fully plastic or
distinct-yield state. The assumption of similarity of these surfaces
leads the derived constitutive equations to remarkably simple forms.
And a more general rule of the kinematic hardening for the distinct-
yield surface, which would be applicable to various materials including
metals and granular media, is incorporated into them. Further, from
them are derived special constitutive equations of metals, for example.
And the adaptability of them to the description of the actual behavior
of metals is examined comparing with experimental data on a cyclic
unlaxial loading of aluminum which was reported by Lipkin and
Swearengen [5] and quoted by Krieg [3] also to compare with his
theory. In this comparison, a close correlation between theory and
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Fig. 1 The distinct-yield state (f = F) illustrated as the envelope curve of
reloading curves

experiment is obtained by the equations proposed in the present paper
better than the equations of Krieg.

Basic Constitutive Equations

A typical stress-strain curve of elastoplastic materials is schemat-
ically illustrated in Fig. 1. Assume that the surface which represents
stresses in the distinct-yield state shown by the envelope curve of
reloading curves in this figure is described by the following equation
(see Fig. 2).

flo—&) - F(K)=0 1
or
(&) — F(K) =0, 4]
where
b=o—& )

The second-order tensor ¢ is a stress, and the scalar K and the sec-
ond-order tensor & are parameters to describe, respectively, the ex-
pansion or contraction and the translation of the surface. Let this
surface be called a distinct-yield surface.

Now, we assume that the distinct-yield surface retains a similarity
in a stress space. Therefore, the function f is to be a homogeneous
function of its arguments. Then, let the degree of f be denoted by
n.

Further, we introduce the secondary surface which is similar to the
distinct-yield surface and translates within the distinct-yield surface
(see Fig. 2). Hence, let the surface be described by

flo— & —r"F(K)=0 (4)
or
fl@) — r"F(K) =0, (5)
where we set
g=0c—-a. (6)

r (0 = r = 1) is a material constant and the second-order tensor o is
a parameter to describe a translation of the surface. Let this surface
be called a subyield surface.

In what follows, the parameters K, & and a are defined.

Let K where a superposed dot designates a material time derivative
be a function of stress, plastic strain, and plastic strain rate é? in de-
gree one, which satisfies the condition K = 0 when &7 = 0.

Now, suppose that the current stress is on the subyield surface, and
let it be denoted by a5. Further, let the conjugate point on the dis-
tinct-yield surface having the same outer normal direction as that of
the subyield surface at g5 be designated by a,.

Then, let & be given by

. 5\ &
&=Atr(épl)1+Btr(éP%)A—y
: [&y1] |8y]
dy | &
=AévP1+Btr(éPA—y ~ Q)
l"){l [y
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Fig. 2 The distinct-yield, the subyleld and the loading surfaces

or

(8)

: os | @
&=AéuP1+Btr(éP ) .

751/ |95
by the relation

A

1
Gy =—
r

as )]

in accordance with the assumption of the similarity of the distinct-
yield and the subyield surfaces. In these equations,

&P =tr (¢P), (10)

A A = _ —
Gy=0y,— &,0,=0; — .

A and B are scalar functions of K and &, and the notation | | is used
to represent the magnitude. In (7) or (8), the first term is added to the
equation assumed in the previous paper [1], while the first and the
second term would be significant for granular media and metals, re-
spectively.

Since the subyield surface must not intersect the distinct-yield
surface but can come into contact with it, the direction of the relative
motion of the conjugate point g, and o, must coincide with that of
the vector @, — 05 at least when g, is near to g,. Then, let the fol-
lowing equation be assumed as is done in the Mroz model [2].

B =B, (11)
where [ is a scalar parameter formulated later and we set
ﬂ = gy — Os (12)
which can be written as
1
ﬂ=(——1)a+&—a (13)
r
by (9).
Substituting (13) into (11) using (10), we have
@=(1~r), +r& - rBj. (14)
Differentiation of (5) with substitution of (14) yields
i 0, .
riTlf — tr {a_f (6s — &)}
L= of g (15)
tr
(o]
Further, substituting (15) into (14), we obtain
. D, .
rr-lp — tr{ _{ (a5 — &)]
- . i d0¢
a=(l-r)os +ra-rf (16)
tr ( a_f ﬂ)
a0
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Finally, the plastic strain rate &? is formulated in the following.
In the distinct-yield state (g5 = @), it can be obtained by differ-
entiating (2) and substituting (7) that

a a A [y B
tr( f.'ry)—u f [Aépl +Bir (ep =2 ) %y ] =FEK, (17)
ooy Oy tay|] 18y
where
F'= i{‘" (18)
dK
Adopting the associated flow rule
. O .
&P =\ of (A>0), (19)
o0

where X is a proportionality factor, &P is given from (17) as follows:

of ,
u (aa “y) of
N T
A{tr (%f—” +B[tr (—91- %y )} +Fky O
26, oy |6y]

where &y is a scalar function of stress, plastic strain and 3f/2#, in
degree one given by

ky = K/X, (21)
that is, ky is given by replacing the argument é? by 9f/04, in the
function K.

Now, we extend (20) to the subyield state a5 # oy as follows:
9,
tr (—b—‘f_ é's) >
a.
& = Q(b) - . a-f—, (22)
2 & 2 0
A {tr (——f—)} +B {tr of &y )} +Fr,
0y 28y |8y}
where b denotes
of
o6
=tr Fﬁ: —ny_ , 23)
ddy

and @ (0 = @ = 1) is a monotonically decreasing function of b satis-
fying the condition

@=1 when b=0. (24)

(22) means that the plastic strain rate produced in the subyield state
relates to the parameter b, i.e., the projection of the vector §/F1/" to
the outer-normal direction of the subyield surface at ;.

Further, since the homogeneity of the function f and the relation

(9) yield the relation
9,
Lopn L 25)
0a, [eI
(22) can be written as
9,
o (EEL &s) d
& =Q— - aaf , (26)
2 7. \l2 A
A {tr (—azf- } +B {u E_L:_’—)} + rn-1FR,
Ts 00 ICSI

where , stands for a function given by replacing the argument df/2é,
by 9f/d@; in the function &,.

The constitutive equations formulated in the foregoing are regarded
as one of the so-called two-surface theory, which are considerably
simplified by virtue of the similarity of the distinct-yield and the
subyield surfaces. However, if the interior of the subyield surface is
assumed to be an elastic region as is done on the Mroz model of a field
of hardening moduli [2] and the Krieg'[3] or the Dafalias and Popov
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[4]’s two-surface theory, the aforementioned constitutive equations
cannot describe suitably the elastic-plastic transition. For instance,
the reloading after a partial unloading within the subyield surface
brings about a gradual transition from the elastic to the plastic state
but an abrupt one. In what follows, the previous constitutive equations
are extended so as to describe suitably a gradual elastic-plastic
transition even in a reloading state.

In accordance with the foregoing discussion, it should be assumed
that a plastic deformation occurs even in the state that a current stress
exists within a subyield surface. Then, let the current stress be des-
ignated simply by ¢, and assume the following relation.

a5 = H(R)#, (27)

where H (0 = H = 1) is a monotonically increasing function of R sat-
isfying the condition

H=1 when R=1. (28)

R (0 = R = 1) designates the ratio of the size of the third surface,
which passes through ¢ and is similar to the subyield surface with
respect to a (see Fig. 2) and which we call a loading surface, to that
of the subyield surface, i.e.,

R= l [f(_E)}l/n (29)
rl F

in setting

Fizo—a. (30)

Now, noting the homogeneity of the function f and the equations
(5) and (29), we get
(31)

and also

e —. (32)
00, o0

By substituting (25), (27), (31), and (32) into (8), (13), (16), (23),
and (26) for the state R = 1, we obtain the extended constitutive
equations to the general state 0 = R =< 1 as follows:

of ,
tr 'a—a 0’) of
&P = QH 3%’ (33)
2 o o
A (tr (_a_f)] +B {tr a_{ -{—)]” + F'k(rR)"~1
oF o7 o}
b= A&Pl+Bir (evpé){—, (34)
|al/ |a]
(rR)"1F — tr I%(H(r - &)]
&= -nrHe+r&—rB f" . (35)
d
w(24
11
= e | - ' & — 6
8 R(r 1)a+a a, (36)
of
p=te| 22| 37)
Fl/n —a-/—.|
o7

where k stands for a function given by replacing the argument af/0d;
by 9f/9@ in the function ;.

As a consequence of formulating (33), it follows that the associated
flow rule is applied to the loading surface whose interior is not an
elastic region. The applicability of this rule to the loading surface was
discussed in the previous paper [6, 7].

Constitutive Equations of Metals
Based on the constitutive equations formulated in the preceding
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section, constitutive equations of metals are derived in this sec-

tion.
We first introduce the modified von Mises yield condition
L -FE) =0, (38)
where
‘ 3 .. . . 1
ZE\/:Iu*I, o*=g——tr ()1 (39)
2 3
s 2
= — &P
¢ \/; '5 I ’
Hence, it follows that
n=1, k=1 (40)

Substitution of (38) and (40) into (29) and (33)-(37) leads to

.o _ [3)2 tr(@*é) _,
v e S “w
. 3 tr (7*6)
A=jeH=rto (42)
a=Btr(é —_-)f, (43)
o/ |a|
3 [o* . i
. F—Etr{E(Ha—a)]
a=(1-r)Hs+r&d-rB . 44y
§tr(§ﬁ)
2\
g=-nfsra-a 45)
S :
b=tr 9—;'-*—), (46)
{o*]
_Z
R= B (47)

Now, we consider the uniaxial loading of a bar. In this case, it holds

that

£ = &P, (48)

Z = ;EH')

where

Gq =0q — Qg,

(49)

and o,, dg, and ¢,P designate components cf ¢, &, and éP along the

axis, respectively.
Substituting (48) into (41)-(47), we have

&P = QH - i —» (50)
. Fo O

A=QH N b1

q |0a| B+ F’ 6D

& = Bé,p, (52)

Gy =Hég —r IFGI B, (53)

a

Bo=(1~r)F l;nl + bty — ey (54)
3 F |5’

el -

where &, is the component of & along the axis.

Comparison With Experimental Data
In this section, how closely the foregoing constitutive equations can
predict the actual behavior of metals is examined by comparing with
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Fig. 3 Theoretical prediction of cyclic uniaxial loading behavior of 6061-0
Aluminum

experimental data on a cyclic uniaxial loading of aluminum. The ex-
perimental curve for the stress-strain relation of 6061-0 Aluminum
subjected to a repeated uniaxial loading between —95 and +95 Mpa,
measured by Lipkin and Swearengen [5], is depicted by the heavy
solid line in Fig. 3. Thie material was selected for presentation because
it satisfies the assumption of initial plastic isotropy. Further, the
theoretical curve calculated by the present theory is depicted by the
broken line, provided that this curve is supplemented by the elastic
axial strain €, ¢ given by the Hooke’s law

€® = 0./E, (67)
where E is the Young’s modulus. Functions and material constants
in (41)-(47) and (57) are selected as follows:

F = 88 ~ 26 exp (—300§) Mpa,
B = 32000£9€ Mpa,

r=20.7,
1
- 58
=T a6 (68)
H=RW,
E = 64000 Mpa.

The distinction between a loading (€7 » 0) and an unloading’
(€P = 0) is made by the sign of A as was described in the previous paper
1], while for the uniaxial loading it is made by the sign of 5,6, as is

known from (51).
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Theoretical curves for the relations of parameters 6,4, 0yq, 6sa, &a,
and &, versus ¢, P are depicted by the broken line, the fine solid line,
the fine chain line, the solid line and the chain line respectively in Fig.
4, where g,, and o5, are components of ¢, and o, along the axis, re-
spectively.

In Fig. 3, the theoretical curve calculated by Krieg [3] with his
two-surface theory is also depicted by the chain line. It does not,
however, exactly satisfy the stress condition varying between —95 and
+95 Mpa. The ratio of the strain rate to the stress rate becomes pro-
gressively greater as |0, | comes up to the maximum value 95 Mpa.
Therefore, note that the slight difference of the stress range affects
considerably the magnitude of the strain calculated. On the other
hand, the broken line is calculated conforming exactly to that stress
condition. And yet the very close approximation throughout all de-
formation process is obtained by this line.

Besides, the theoretical stress-strain curve for the partial unloading
from 80 Mpa (point u) to 60 Mpa (point r) and the reloading from 60
Mpa (point r) is depicted in Fig. 4 where we observe the gradual
change of its slope. On the other hand, the Mréz model and the Krieg
and the Dafalias and Popov’s two-surface theory express not a gradual
transition but an abrupt change of the stress-strain curve in which
the reloading curve coincides with the unloading curve until o, = 80
Mpa and bents suddenly to follow the curve depicted by the direct
loading without the unloading, since they assume the surface whose
interior is an elastic region.

Summary and Application to the Other Material

Constitutive equations of elastoplastic materials with an anisotropic
hardening (or softening) and an elastic-plastic transition have been
presented. They have quite simple forms by virtue of the similarity
of the assumed three surfaces, i.e., the distinct-yield, the subyield and
the loading surfaces. Hence, they can be called a three-surface theory.
Though the equations have been applied to metals and their adapt-
ability was examined on the cyclic uniaxial loading behavior of alu-
minum for example, they seem to be applicable to various materials.
For instance, constitutive equations of granular media which exhibit
very different plastic behaviors, softening and volume change, from
metals would be formulated suitably by introducing the following
functions [7]. ‘

g 0
f(E)=P2+(g‘), F=Foexp(——eup),
m I

m
A=—+/F, B=0,
pM\/_

where
P =1itr (0.

m, M, and p are material constants and Fy is an initial value of F.
Elastoplastic constitutive equations of granular media will be re-
ported in another paper at length.
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The shadow spots which are obtained in using the optical method of caustics to experi-
mentally determine dynamic stress-intensity factors are usually interpreted on the basis
of a static elastic crack model. In this paper, an attempt is made to include both crack-tip
plasticity and inertial effects in the analysis underlying the use of the method in reflec-
tion. For dynamic crack propagation in the two-dimensional tensile mode which is accom-
panied by a Dugdale-Barenblatt line plastic zone, the predicted caustic curves and corre-
sponding initial curves are studied within the framework of plane stress and small scale
yielding conditions. These curves are found to have geometrical features which are quite
different from those for purely elastic crack growth. Estimates are made of the range of
system parameters for which plasticity and inertia effects should be included in data
analysis when using the method of caustics. For example, it is found that the error intro-
duced through the neglect of plasticity effects in the analysis of data will be small as long
as the distance from the crack tip to the initial curve ahead of the tip is more than about
twice the plastic zone size. Also, it is found that the error introduced through the neglect
of inertial effects will be small as long as the crack speed is less than about 20 percent of
the longitudinal wave speed.

1 Introduction

Progress toward understanding the phenomenon of dynamic crack
propagation in solids has been impeded by several complicating fea-
tures which are encountered in both analytical and experimental
approaches. From the experimental viewpoint, the inherent time -
dependence of the process requires that many sequential measure-
ments of field quantities be made in an extremely short time in a way
which does not interfere with the process itself. Furthermore, the place
at which field quantities are to be measured varies, often in a non-
uniform way, during the course of the process. Because of this com-
plexity, most experimental techniques for measuring crack-tip stress
and deformation fields during rapid fracture are based on optics. Such

(i) There is no coupling between the optical and mechanical
processes, 1.e., the method of measurement does not interfere with
the process being examined.

(iti) The response of an optical system is essentially instantaneous
on the time scale of mechanical rapid fracture events.

Several optical methods have been used during the past 50 years
to measure deformations in nominally elastic materials, and thereby
to determine stress fields. Most of the methods are based on light wave
interference principles, and their application has been confined to
transparent materials, or to opagque materials coated with transparent
materials.

methods have three main advantages:

(i) 'The techniques are full-field methods, i.e., the entire specimen
is observed continuously and crack paths need not be known a
priori.
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Recently, the optical method of caustics, or the shadow spot
method, was developed and applied in the investigation of nonuniform
surface deformations due to stress concentrations in deformed solids
[1, 2]. Details of the stress field may then be inferred from shadow spot
measurements on the basis of an analytical model. The method of
caustics is an exceptional method because it is based on the principles
of geometrical optics, rather than light interference, and it has been
successfully applied to cases of both opaque and transparent mate-
rials. The method was first used in a reflection arrangement by The-
ocaris [2], who studied the stress singularity in the vicinity of a sta-
tionary crack tip. Later, Theocaris and Gdoutos {3, 4] applied the
method of caustics in reflection to experimentally examine the de-
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SPECIMEN:

Fig. 1 Schematlc of the formation of the three-dimensional caustic envelope
obtained by reflection

formation fields near the tips of stationary cracks in metal plates. In
this case, which apparently was the first application of the method
to metal specimens, plastic deformation occurred locally and the
optical data were analyzed by assuming a plane stress Dugdale-Bar-
enblatt model for the crack-tip plastic zones.

The method was first used in experiments involving very rapid
crack propagation and stress wave loading by Kalthoff and coworkers
[5] and Theocaris and coworkers [6, 7], and more recently by Gold-
smith [8]. In each case, it was assumed that the elastic stress field near
the tip of a rapidly growing crack in a brittle solid has precisely the
same spatial variation as the elastic stress field near the tip of a sta-
tionary crack. That is, the influence of inertial effects on the spatial
dependence of the crack-tip field was not taken into account. More
recently, several investigators have reanalyzed the method of caustics
as applied to rapid crack propagation in brittle materials, including
the effect of inertia on the spatial variation of the elastic crack-tip
stress field. Kalthoff, et al. [9], introduced an approximate correction
factor to account for the potentially large error introduced when the
static local field is used in data analysis. The exact equations of the
caustic envelope formed by the reflection of parallel incident light
from the surface of a specimen containing a rapidly growing crack were
recently obtained by Rosakis [10] for mixed mode plane-stress crack
growth. It was found that, for some typical laboratory materials used
in crack propagation studies, the neglect of the influence of inertia
on the crack-tip stress field could lead to errors of up to 30 to 40 per-
cent in the value of the elastic stress-intensity factor inferred from
the measured caustic diameter. A similar analysis has also been dis-
cussed by Theocaris, et al. [11].
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Fig. 2 Optical mapping of points P(x4, x2) of the surface of an iluminated
solid, to points P/( X4, X2) on a screen

In this paper, a first attempt is made at including plasticity effects
in the analysis underlying the optical method of caustics as applied
in dynamic crack propagation studies. The analysis is based on the
one-dimensional line plastic zone model of Dugdale and Barenblatt.
For dynamic crack propagation in the two-dimensional tensile mode
which is accompanied by such a strip yield zone, the sizes and shapes
of the predicted caustic curves are studied. The influence of material
inertia and of the extent of the plastic zone on stress-intensity factor
measurements are considered. The initial and caustic curves are found
to have geometrical features quite different from those present for
purely elastic crack growth, and the dependence of these features on
crack speed and plastic zone size is investigated.

2 Formation of Caustics in Reflection

Consider a family of parallel light rays incident on the reflective
surface xs = —f(x1, x2) of an opague material; see Fig. 1. Upon re-
flection from the surface, the light rays will deviate from parallelism.
(In practice, the intensity of the reflected ray will be less than the
intensity of the incident ray due to random scattering.) If certain
geometrical conditions are met by the reflecting surface, then the
family of reflected rays will have an envelope in the form of a three-
dimensional surface in space. A section of such a surface is shown as
the dashed curve in Fig. 1. This surface, which is called the caustic
surface, is the locus of points of maximum luminosity (i.e., highest
density of rays) in the reflected field. The reflected rays are tangent
to the caustic surface. If a screen is positioned parallel to the (x1, x2)-
plane and so that it intersects the caustic surface, then a cross section
of the caustic surface can be observed as a bright curve (the so-called
caustic curve) bordering a relatively dark region (the shadow spot)
on the screen.

Suppose that the incident ray which is reflected from the point
P(x1, x9) on the reflecting surface will intersect the screen at the image
point P'(X;, X5); see Fig. 2. The (X1, Xs) coordinate system is
identical to the (x1, x2) system, except that the origin of the former
has been translated to the screen. The position of the image point P’
will depend on the slope of the reflecting surface at P and on the
normal distance z¢ between the screen and the reflecting surface. It
has been shown elsewhere [12] that the position of the image point
P’ on the screen has coordinates

X = x; £ 220(0f/0x;) (1
where 2z > |f|. Equation (1) represents a mapping of points P of the

reflecting surface onto points P’ of the screen. The choice of sign in
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(1) depends on whether the image point is a real image in front of the
reflecting surface (+ sign) as is the case in Fig. 2 or a virtual image
behind the reflecting surface (— sign). The use of the virtual image
has certain advantages in experimental fracture mechanics, and the
subsequent analysis will be based on the choice of the negative sign
in (1).

If the screen intersects a caustic surface, then the resulting caustic
curve on the screen is a locus of points of multiple reflection. That is,
for those points on the caustic curve, the mapping (1) is not invertible
and the Jacobian of the transformation must vanish, i.e.,

o(Xy, Xo) _

o(x1, x2)
The vanishing of the Jacobian is the necessary and sufficient condition
for the existence of a caustic curve. The points on the reflecting surface
for which J(x1, x2) = 0 are the points from which the rays forming the
caustic curve are reflected. The locus of these points on the reflecting
surface is the so-called initial curve.

(2

J(x1, x9) =

3 Application of Caustics to Plane-Stress
Elastodynamics

Consider a two-dimensional elastic solid occupying a region of the
%1, Xxo-plane. The outer boundary is subjected to traction and/or
displacement boundary conditions of a type to ensure uniqueness of
solution, Suppose that a planar crack grows through the body, with
the crack tip speed being v. Within the framework of the theory of
plane stress, the two-dimensjional displacement vector u is governed
by the equation

VIV W~V XV Xu=i 3)

where V is the two-dimensional gradient operator and the superposed
dot denotes time derivative. In terms of the elastic modulus E and
Poisson’s ratio v, the longitudinal and shear wave speeds for plane
stress are ¢; = [E/(1 — »?)p]12 and ¢; = [E/2(1 + »)p]Y/2, respec-
tively.

Any displacement vector which is derived from the longitudinal
and shear wave potentials ¢ and ¢ according to

u=Ve+VXY; IVI-G=0; VW -F=0 (4

satisfies (3). In plane stress, Y has a single nonzero component which
is here denoted by . 4
Suppose now that the (x1, x3) coordinate system is fixed with its
origin at the moving crack tip and that it is oriented so that crack
growth is in the x;-direction. Furthermore, suppose that the crack
grows with constant speed, and that the geometry and applied loading
are steady (i.e., independent of time) as seen by an observer moving
with the crack tip. Under these circumstances, it is expected that the
complete elastodynamic field is steady, so that ¢ and ¥ depend only

onxy, xgand () = —00( )/9x;. Under steady conditions, the wave
equations in (4) reduce to
aZ 1)2 02 92 v2 a2
—%(1——2)+—f=0 —f(l——z)+—f=0 ®)
0xf ci ox3 ox1 cs x5

" But each of the reduced wave equations is clearly equivalent to La-
place’s equation with the x coordinates scaled by the factor oy = (1
~ 2/c})L/2 in the first case and o = (1 ~ 02/¢2)2/2 in the second case.
General solutions of (5) may be written immediately in the form

¢ =Re[F@)], ¥=Im[G()] (6)

where z; = x4 +iayxo, 2s = x1 + iasx9, and F and G are each an ana-
lytic function of its complex argument in the region occupied by the
body. In any given problem, the analytic functions are determined
by the boundary conditions. Although (5)-(6) have been established
with reference to crack growth, it should be noted that these equations
are valid for any steady plane-stress elastodynamic field.
Generally, for plane-stress crack propagation in a body which is
symmetric about the crack plane, the deformation fields are a com-
bination of two modes. The tensile mode, or Mode I, exhibits reflective
symmetry with respect to the crack plane, while the shearing mode,
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or Mode I, is antisymmetric with respect to the crack plane. For these
cases

F@E)=+F@), GE)=+G() (7)

where the upper signs apply for Mode I and the lower signs for Mode
II. The bar denotes complex conjugate.

Consider now a plate which has uniform thickness d in the unde-
formed state. If the plate is subjected to edge loading which results
in a nonuniform state of plane stress, then the thickness of the de-
formed plate is also nonuniform. In terms of the in-plane stress
components the lateral contraction is

flx1, x2) = —ua(x1, x9) = vd(ayy + 022)/2E (8)

Clearly, the function f here is identified with the function f describing
the reflecting surface in Section 2. It represents the shape of the
originally plane surface which is the reflecting surface.

In terms of the stress distribution, the equations of the mapping
(1) based on geometrical optics become

Xi = x; — Co(o11+ 020)/0x; 9

where C = zord/E. Thus determination of the first invariant of stress
establishes the mapping, even for dynamic problems.

In terms of the displacement potential ¢, the first stress invariant
is

V2 (10)

o1+ o = T-
For a steady-state deformation field translating in the x;-direction
with speed v, (5) may be employed to reduce (10) to

o1+ o9z = (1 + »)pv202¢/dx} (11)

or, in terms of the analytic function F appearing in the general solution

(6),

o11 + 092 = (1 + v)pv2 Re [F” (21)] (12)

If the differentiation indicated in (9) is performed and the result is
expressed in terms of the complex variables Z = X1 +iXq,2 =21 +
ixo then the mapping is

Z =z — k {Re [F”(2))] = iag Im [F” (21)]} (13)

where k = (1 + ») pv2C.

As noted in the preceding section, the condition for the existence
of a caustic curve on the screen at x3 = —2q is the vanishing of the
Jacobian of the transformation (13). With reference to (2), the con-
dition J(x1, x2) = 0 specifies the initial curve on the plane of the
specimen, and the corresponding caustic curve on the screen is the
map of the initial curve according to (13) onto the place of the screen.
The condition that the determinant of the Jacobian matrix must
vanish is

J =14+ «k(1 — o}) Re [F4(z))] — a}x?|F4z)|2=0 (14)
where F* is the fourth derivative of F with respect to its argument.

The equations (13) and (14) together describe the caustic curves
formed by reflection of parallel light from the surface of any planar
elastic solid in which the elastodynamic stress distribution is steady.
For any particular case, the analytic function F which appears in these
equations must be determined from the geometrical configuration
of the body and the boundary conditions.

In the case of elastic crack propagation, the stress field has universal
spatial dependence in the vicinity of the crack tip. The only quantity
which varies from one specific case to another is a scalar amplitude,
the so-called elastic stress-intensity factor, which is often the pa-
rameter of fundamental interest in laboratory testing. In the context
of equations (13) and (14), the function F will be known up to a scalar
multiplier, the stress-intensity factor. If the crack speed, geometrical
parameters, and bulk material parameters are known, the equations
(13) and (14) then provide a relationship between a characteristic
dimension of the caustic curve and the corresponding value of the
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stress-intensity factor. Experimental measurement of this charac-
teristic dimension provides the instantaneous value of the stress-
intensity factor. The tremendous appeai of the method is due to the
fact that it povides a direct measure of the stress-intensity factor in
nominally elastic fracture. No measurement of boundary conditions
or field quantities is required. The optical singularity on the screen
provides the information necessary to determine the strength of the
mechanical singularity in the specimen (under the assumption that
the theory of plane stress provides an accurate picture of the three-
dimensional deformation field).

4 Caustic Curves for the Line Plastic Zone Model

Analytical crack-tip models of a one-dimensional zone of nonlinear
material response extending ahead of the tip have been proposed for
plane-stress fracture of ductile sheets by Dugdale [13] and for the case
of pure cleavage tensile fracture by Barenblatt, et al. [14]. The
Dugdale-Barenblatt model is analyzed as an elastic crack problem
in which the crack is made effectively longer by an amount R, the
plastic zone size, with cohesive forces in the plastic zone acting on the
prospective crack surfaces so as to restrain the opening. If small scale
yielding conditions prevail then the applied loading is completely
specified by an equivalent elastic stress-intensity factor, which is
denoted by K for the plane tensile fracture model.

The analysis of the strip yield model is outlined in [15]. The (x1, x2)
coordinate system is fixed at the tip which is moving with constant
speed v in the x1-direction. The plastic zone extends over the interval
0 < x1 < R. The derivation of the analytic function F, which is re-
quired to determine the caustic curves, follows closely the work of
Willis [16] and employs the asymptotic result of Freund and Clifton
[17]. For the case of small scale yielding and ideal plasticity, in which
the cohesive tractions which resist crack opening in the plastic zone
have the constant magnitude og, the analytic function F is given
by

200(1 + o2 /2
Py =2otted R (15)
ur z— R]
where
KZ
r=22) @=taa - (1+a2)2 (16)
80'0

The quantity o is identified as the uniaxial tensile flow stress of the
material. The branch of (z — R)!/2 which is positive as z — » along
the positive real axis of the z-plane is assumed. Note that the rela-
tionship (16) between the plastic zone size and the remote stress-
intensity factor is identical to the corresponding result for quasi-static
deformations [18]. However, the function F is different from the
corresponding quasi-static result.

Suppose now that a tensile crack is propagating in a polished plate
specimen, and that the specimen is illuminated by a beam of parallel
light as indicated in Fig. 1. The light will be reflected from the speci-
men surface and, under suitable conditions, will form a caustic curve
on a screen placed at a distance z¢ from the midsurface of the speci-
men. The size and shape of the caustic curve will be related to the
functional form of F in (15), and will depend on the parameters v, oy,
and K. In what follows, the nature of the caustic curves corresponding
to dynamic crack growth accompanied by a strip yield plastic zone
under small scale yielding conditions is investigated. The investigation
is based on the analytic function F given in (15) and (16), on the
equation of the initial curve (14), and on the equation of the optical
mapping (13).

Next, all lengths are normalized with respect to the plastic zone size
R, and a superposed caret is used to denote normalized values of the
length parameters, e.g., §; = 2://R = #; exp (i0;). If F is differentiated
and is substituted into the equation for the initial curve (14), then the
result in nondimensional form is

J@,0) =1—A(1 — o) Re [G(2)] — a? A?lIGE))12=0 (O
where J is now viewed as a function of the distorted polar coordinates.

In(17)
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Fig. 3 Initial curves at the tips of steadily propagating cracks for five values
of r/R
3z/2 -1 (14 »)pv2(1 + a?) oozord
Gy = 321 _ L0+ o) oegrd o
z2(z — 1)3/2 Q ER?

The mapping, which defines the caustic curves corresponding to the
solution of (17), is

A
(P} — 27 cos O; + 1)1/4

1 =Fcos 0+

1 7 sin 6

X cos lﬂz + = tan—! (;—I—M)] (19a)
2 1cos — 1

2
D([XZ = F;sin 0 + Py 14
Fi(FF ~ 2f cos O; + 1)V/4

1 7 sin 6

X sin |0 + —tan™1 (ﬂu)l (195)
2 frcos — 1

The limiting behavior of the foregoing equations as R — 0 and
v — 0 may be checked against the previously derived results for
R = 0and v = 0. It is easily shown that if R — 0 then (19) reduce to
the equations (2.9) of [10] which represent the caustic envelope for
a dynamic Mode I crack propagating in a linear elastic solid. For
R — 0and v — 0, (19) reduce to the equation of a generalized epicy-
cloid as predicted by the analysis of a stationary crack in a linear
elastic material [2].

5 Results and Discussion

Two parameters which seem to have fundamental significance in
analyzing the initial curves (17) and caustic curves (19) are the ratio
of crack-tip speed to characteristic speed of the material and the ratio
of initial curve “size” to plastic zone size. The former parameter
represents a measure of the inertial effects, while the latter parameter
represents a measure of the influence of the crack-tip plastic zone.
Furthermore, the two parameters are independent of each other, in
the sense that either may be varied without influencing the other.
Specifically, the inertial parameter is v/c; and the plasticity pa-
rameter is r/R, which is understood to be the solution of (17) for 6,
= 0. Thus /R is the quotient of the distance from the crack tip to the
extremity of the initial curve directly ahead of the crack tip and the
length of the plastic zone R.

The equation of the initial curve (17) was solved numerically by
means of the Newton-Raphson procedure. First, the value of §; was
fixed, and then all values of #; satisfying the resulting equation were
determined by Newton-Raphson iteration. This was done for a
number of values of ; sufficient to generate’ the initial curves.

The computed initial curves for the case of v/c; = 0.2 are shown in
Fig. 3 for a range of values of r/R. The geometrical features of the
initial curves are strikingly different from the features of an initial
curve for an elastic crack. For values of r/R near to unity (e.g.,7/R =
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Fig. 4 Caustic curves formed by refiection from the near tip region of steadily
propagating cracks corresponding to the initial curves of Fig. 3

1.2), the individual singularities in the deformation field at the crack
tip and the plastic zone tip dominate. The initial curve consists of two
disjoint lobes, each roughly circular and centered at these two
singularities. As r/R becomes larger, the shape of two lobes is distorted
and they tend to approach each other. As seen in Fig. 3, the two lobes
are almost in contact for r/R = 1.32. When r/R has increased to about
1.34, the two lobes have two common points. As r/R increases beyond
this critical value (e.g., to r/R = 1.35), the initial curve again splits into
two lobes. However, whereas the lobes are disjoint for /R < 1.34, they
are nested for r/R > 1.34. This nested structure is maintained as r/R
is increased. For values of r/R large compared to one, the shape of the
outer lobe is essentially the correct shape for a dynamic elastic crack.
The inner lobe becomes very small compared to R as r/R becomes
large, and is finally reduced to a point as r/R — .,

It is a simple matter to prove that the initial curve (17) intersects
the plastic zone at two points for any value of r/R in the range 1 < r/R
< e, OnIm (%) = 0 and 0 < Re (§;) <1, it is clear from (18) that
Re (G) = 0, and (17) takes on the simple form

(a1A)~2 = |G(2)|? (20)

The left side of (20) is, in general, a bounded positive real number.
From (18), it can be seen that the right side of (20) equals zero if
Re (£;) = £ Furthermore, the right side of (20) increases monotonically
from zero to arbitrarily large values either as Re (3;) increases from
2to 1 or as Re (¢;) decreases from % to 0. Thus (20) always has one, and
only one, root in the range 0 < Re (4;) <%, and one, and only one, root
in the range % < Re (4;) < 1. As r/R — =, these two roots coalesce at
2; = £ The coalescence of the two roots as r/R — o corresponds to the
reduction of the inner loop of the initial curve to a single point as the
effects of plasticity disappear.

The caustic curves corresponding to the initial curves in Fig. 3 are
shown in Fig. 4. If the initial curve consists of disjoint lobes, then the
resulting caustic consists of open curves (e.g., r/R = 1.2in Fig. 4). As
r/R approaches the transition value of 1.34, cusps are formed near the
ends of the open curves. When r/R reaches the critical value of 1.34,
the gap between the open curves which form the caustic closes, and
as r/R increases beyond the critical value (e.g., for r/R = 1.35), the
cusped portion of the curve splits off from the main caustic curve. A
detailed view of these cusps for r/R = 1.35 is shown in Fig. 5, where
the corresponding angle on the initial curve is identified for several
points on the caustic. Note that the ends of the caustic seem to cor-
respond to the points where the initial curve intersects the plastic
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Fig. 5 A detalled view of the cusped portion of the caustic curve for r/R =
1.35, v = 0.20 ¢, shown in Fig. 4
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Fig. 6 Variation of the dimensionless maximum transverse diameter of the

caustic curve, versus the normalized remote elastic stress-intensity factor,
presented for a range of crack velocities

zone. For r/R = 1.34, the cusped segment of the caustic arises from
the small inner loop of the initial curve, and the larger smooth portion
of the caustic arises from the outer loop of the initial curve. As r/R
increases, the small cusped segment of the caustic curve becomes
smaller and separates further from the main part of the caustic
curve.

6 Interpretation of Experiments

The following discussion is based on the assumption that, in the
interpretation of experimental data, the size of the caustic curve is
determined by the distance between the two points on the curve which
are furthest from the X;-axis on the screen. This distance will be
denoted by D. For a purely elastic Mode I crack under quasi-static
conditions, the relationship

E \i2 E \U4Kj)2/s
( ) D] = 2,5928 [ —
oovzod oovzed/ oo

between D and the Mode I stress-intensity factor Ky is well known.
Although the plastic flow stress oo appears in (21), it does so only
through a factor common to both sides of the equation. The form of
(21) was chosen because the results with plasticity effects included
could be expressed best in terms of the dimensionless quantities in
square brackets in (21).

For a given crack-tip speed v/c;, both of the dimensionless quan-
tities D(E/oor 26d)1/? and (K1/a0)(E/ oo v 2od)1/4 can be determined

(21)
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Fig. 7 Error introduced in the inferred value of K through neglect of both
material Inertia and plasticily effects in the analysis of experimental data

in terms of the parameter r/R, which is thus a parametric represen-
tation of the D versus Kj relationship. If the parameter r/R is elimi-
nated (a process which can only be done numerically), then the rela-
tionship shown in Fig. 6 for four crack speeds is established. It is im-
portant to note that r/R varies alone each curve in Fig. 6, in general
decreasing from left to right. The dashed curve in Fig. 6 is simply a
graph of (21) which is valid for v/¢; = 0 and r/R — «, As can be seen,
it fits very well with the computed result for v/c; = 0. It should perhaps
be restated here that D is assumed to be the observed caustic size, Ky
is the remote elastic stress-intensity factor within small scale yielding
theory, and the relationship shown in Fig. 6 is that predicted on the
basis of plane-stress theory, small scale yielding, and the Dugdale-
Barenblatt one-dimensional plastic zone model. It would appear from
Fig. 6 that if experimental observations are confined to cases for which
(K1/o0)(E/ 0o v 29 d)1/4 is less than about 1.0, then plasticity effects
need not be taken into account in the interpretation of the observa-
tions. The possibility of adjusting the value of this nondimensional
parameter simply by changing z¢ is only apparent because the value
of this distance is not completely arbitrary. In any experimental setup
for measuring stress-intensity factors by the method of caustics, the
distance zg must be chosen so that the initial curve lies in a region of
the specimen near the crack tip where the K-dominated small scale
yielding solution accurately represents the stress field. It is also ob-
served that the influence of inertia on the D versus Kt relationship
is not large if v/c; is less than about 0.2.

Suppose now that an observed caustic of size D is interpreted in two
ways. First, it is interpreted on the basis of an elastic crack model and
quasi-static conditions, and the inferred value of Mode I stress-in-
tensity factor is K. Alternatively, the caustic is interpreted on the
basis of a dynamic line plastic zone model, and the inferred value of
the Mode I stress-intensity factor in this case is simply K. The ratio
K/K, as afunction of r/R is shown in Fig. 7. This result suggests that,
as long as the extent of the initial curve ahead of the crack tip is at least
about twice the plastic zone size, the error introduced through neglect
of plasticity effects in the analysis of the data will be small. Again, this
observation is based on the condition that the initial curve lies in a
region of the specimen in which the K-dominated small scale yielding
solution accurately represents the stress field. A qualitative discussion
of this oint is included in {19]. For any extent of the plastic zone, in-
ertial effects seem to be important only for crack speeds in excess of
0.2 ¢;.

Finally, two photographs of caustic curves obtained in refiection
for running fractures in steel specimens are shown in Figs. 8 and 9.
These are preliminary photographs taken in the process of developing
an experimental apparatus, and a full quantitative interpretation is
not yet available. However, it does seem that the caustics are elongated
in the direction of crack growth, rather than circular as they would

Journal of Applied Mechanics

Fig. 8 Caustic formed in reflection at the tip of a propagating crack In a
metallic specimen using single phase, monochromatic light

- AV’

Fig. 10 Caustic at a stati y crack tip in the form of an epicycloid as
predicted by elastic static analysis

be for an elastic crack as in Fig. 10, The long tail behind the main
caustic curves is apparently due to the permanently deformed wake
left behind as the active plastic zone passes by a material point. The
Dugdale-Barenblatt crack-tip plastic zone model does not include a
plastic wake effect, and no quantitative estimate of the relative size
of the caustic associated with the wake region is yet available. The
fringes in the optical pattern of Figs. 8 and 10 seem to be due to phase
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interference, The light source used to produce the photographs shown
in Figs. 8 and 10 was a laser which emits monochromatic, single phase
light. The illumination outside the caustic curve results from a double
reflection or mapping. That is, light waves reflected from both inside
and outside the initial curve on the specimen strike the screen outside
the caustic. Because of the deformation of the specimen surface,
however, the light rays reflected from inside the initial curve travel
a distance different from that traveled by the rays reflected from
outside the initial curve. This difference in path length leads to a
difference in phase at the screen which results in the observed phase
interference pattern. Unlike Figs. 8 and 10, no fringes appear in the
photograph in Fig. 9 because the incident light in this case was not
single phase and no regular phase interference pattern could be
formed.

7 Summary of Conclusions

For the line plastic zone model, the geometrical features of the
initial and caustic curves are found to be strikingly different from the
curves corresponding to an elastic crack. In terms of the fundamental
parameters r/R and v/c, which were defined at the beginning of Sec-
tion 5, the following observations are made:

1 With reference to the initial curve for v/c = 0.2,

(i) For r/R near unit, two disjoint lobes centered at x; = 0 and
21 = R are found.

(ii) Asr/R increases from 1 to 1.34, the two lobes distort and
approach each other.

(iii) The two lobes make contact when r/R = 1.34 and as r/R
increases beyond 1.34, the initial curve takes the form of two nested
closed curves.

(iv) As r/R — o, the outer branch of the initial curve ap-
proaches the shape appropriate for a dynamic elastic crack and the
inner branch shrinks to a single point on the line plastic zone.

2 With reference to the caustic curve for v/¢; = 0.2,

(i) For 1 < r/R < 1.34, the caustic consists of two open
curves.

(if) Asr/R increases toward 1.34, cusps are formed at the ends
of the open curves and the separation distance between the two open
curves decreases. The separation distance vanishes when r/R =
1.34.

(i) For r/R > 1.34, the main part of the caustic is an oval curve
with its longer axis in the direction of crack growth. A small secondary
caustic, arising from the inner loop of the nested initial curve, splits
off from the main caustic.

(iv) Asr/R — «,the main part of the caustic approaches the
shape appropriate for a dynamic elastic crack and the secondary
caustic vanishes.

3 On the basis of the line plastic zone model, plasticity effects need
not be taken into account in analyzing experimental data for which
(E/oovz0d)1/4 (K1/oy) is less than about 1.0.

4 'The error introduced through the neglect of plasticity effects
in the analysis of data will be small as long as the extent of the initial
curve ahead of the crack tip is more than twice the plastic zone
size. .

5 Inertial effects appear to be significant for crack speeds ex-
ceeding approximately 0.2 ¢;.
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Stress-Intensity Factor for a Three-
Dimensional Rectangular Crack

An integral transform solution is developed to reduce the problem of determining the

stress-intensity factor of a narrow three-dimensional rectangular crack to the solution
of a Fredholm integral equation of the second kind. The crack is assumed to be embedded
in an infinite elastic solid subjected to normal loading. Numerical results are presented
to indicate a reduction in the value of the stress-intensity factor from the plane strain
case. For an elongated rectangular crack the plane-strain stress-intensity factor is recov-

ered.

Introduction

A problem of current interest in Fracture Mechanics is the deter-
mination of the stress-intensity factors of cracked structural com-
ponents. Confining attention to embedded cracks in three-dimen-

sional solids, analytical solutions are available to treat basic geome-

tries like the circular, elliptical, and half-plane cracks. They involve
solutions to certain half-space problems in the theory of elasticity with
emphasis placed on the state of stress near the crack border. An out-
line of these solutions and expressions of the corresponding stress-
intensity factors induced by various loading conditions are given in
{1]. For flat cracks occupying other regions analytical solutions are
not available and several attempts have been made to formulate the
problem in term of integral equations amenable to numerical treat-

ment (see, for example, [2-5]). Also, the nature of the singularity at -

the corner of & wedge-shaped crack (or punch) has been investigated
in [6-8]. However, there seems to be a conspicuous lack of information
in the literature concerning analytical formulation to determine the
stress-intensity factor along the sides of flat rectangular crack em-
bedded in infinitely extended solid.

It is the aim of this paper to develop an integral transform formu-
lation to reduce the problem of determining the stress-intensity factor
of a narrow rectangular crack subjected to normal loading to the so-
lution of a standard integral equation of Fredholm type. The formu-
lation consists of representing the components of stress and dis-
placement in the solid in terms of double integrals containing one
unknown function. By introducing the plane strain solution of a
Griffith crack [9], the unknown function is shown to be governed by
a Fredholm integral equation of the second kind. The example of a
crack opened out by constant stress is considered in some detail.
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Numerical results are obtained to indicate a reduction in the value
of the stress-intensity factor from the corresponding two-dimensional
case. This is in agreement with the results obtained in [4, 5]. For a
narrow rectangular crack the plane-strain stress-intensity factor is
reached asymptotically.

Basic Equations

Consider a flat rectangular crack of sides (2z) by (2b) embedded
in the midplane of a three-dimensional elastic solid. In terms of
Cartesian coordinates (x, y, z) centered at the midpoint, the crack
occupies the region |x] < a, |y| < b of the z = 0 plane. Let the crack
be opened out by the application of identical stresses to its surfaces.
Because of symmetry, it suffices to consider the half space z = 0 with
the following boundary conditions on z = 0:

T =Ty =0, allxandy, (1)
o = —oolx,y), [x]<ea, |y]<b, (2a)
u, =0, |x]>a, Jy|>b, (2b)

where (uy, uy, u.) designate the components of the displacement
vector, 7., T,y, and o, denote the stresses associated with the z-plane
and oo(x, y) stands for the prescribed stress inside the crack surface.
In addition to conditions (1) and (2), all components of displacement
and stress must vanish at the remote distances.

The complete solution of this class of problems can be represented

‘ by utilizing Boussinesq’s potential formulation

of 22
2puy =1 - 20)—~+2 )
* ox ox dz (3a)
d 02
2#uy=(1—2u)——}—c+z r, (3b)
oy oy0z
of o2f
2 = - —-p) — =1,
U, 2(1 - ») > +z 572 (8¢)

in which g and v denote the shearing modulus and Poisson’s ratio of
the material, respectively, and f(x, y, z) is a harmonic function sat-
isfying Laplace’s equation in three dimensions
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Vif =0, 4

Some of the relevant stress components are

o3f

et (5a)
o3f

Tzy =2 ayzaz ’ (5b)
02 23

0y == Ll i (5¢)

z »
022 028
which automatically clears the z = 0 surface from shearing
stresses.
By the usual method of separation of the variables, a sufficiently

general solution of equation (4) which is symmetric in x and y can be

taken as
/= J‘m f‘* A )
o Jo (£2+9?)

in which A(, n) is an unknown function and the factor 1/(£2 + 52) has
been introduced for convenience. For problems possessing skew-
symmetry in x and y, the cosine terms in equation (6) may be replaced
by sine terms. Across the plane z = 0, the normal displacement and
stress are

cos (x£) cos (yn) e~z dkdy,  (8)

1‘”}' f A(E ”) L5 o8 (x £) cos (yn) dEd, (Ta)

az=—f f A&, 1) cos (x§) cos (yn) dE dy, (7b)
0 4] .

Consequently, conditions (2) give rise to the dual integral equa-
tions -

x>a, y>b, (8a)
j;m j;m A(£, ) cos (x£) cos (y‘n) dt dy = oo(%, ),
x<a, ys<b, (8b)

for the determination of A(&, ).

Reduction to an Integral Equation

With a view toward establishing the integral equation governing
the unknown function, 4 (£, #), it is convenient to express the normal
stress across the crack plane in the form

= p{x) q(y), [¥] <, )

where p(x) and q(y) are arbitrary functions. Inside the crack region
these functions are specified (see equations (13)) while in the outside
region they control the stress-intensity factor. Making use of equations
(7b) and (9) and assuming the inversion of the double Fourier cosine
transform, the following result is obtained:

0.(x,y,0) 2] < e,

4 o e
Ahm === 7 f" p(x) a) cos (x8) cos (yn) dxdy,  (10)
which may be abbreviated to
4
A === pel® qc(n) (1) -
s

In equation (11), p.(&) and q.(y) designate the one-dimensional
Fourier cosine transforms of the functions p(x) and g(y), respec-
tively,

pc(£)=j;°°p(x)cos (x8) dx, (12a)

qe(n) = J;w q(y) cos (y1) dy, (12b)

By virtue of the fact that inside the crack region, the functions p(x)
and ¢(y) are specified
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px) =po(x), 0<x<xg, (13a)
gy)=qoly), 0<y<b, (13b)
it immediately follows that
j;m Pc(£) cos (x£) dE=gpo(x), 0<x<a, (14a)
j; qc(n) cos (yn) dy = ”725(10(}’), 0sy<hb, (14b)

The next step in the analysis is to determine the corresponding rela-
tions satisfied by p.(£) and g.(n) outside the crack region. Toward
this end, the relation (11) is inserted into equation (7a), and upon
setting! y = 0 (in order to compute the value of the maximum
stress-intensity factor), the normal displacement assumes the form

4(1 v) qc(n) dy
w==" [ peosepar [T AT
Applying relation (12b) to equation (15), interchanging the order of
integration and utilizing the result [10]

©cos{sp)dy _
j; W = Ko(sf), £€>0, (16)
it is found that
20l —v») =
e = === " po(Bau®) cos (x8) d, )
e 0
where ¢ (£) denotes the relation
2 )
a® == [ a)Kolsp) ds, (18)
T 0

In equations (16) and (18), K is the modified Bessel function of the
second kind of order zero. Condition (2b) when applied to the ex-
pression in equation (17) yields

5.7 pe(®ar(® cos cH dE =0, x>, (19)
which is the required relation outside the crack region. In exactly
similar manner, the corresponding relation for ¢.(n) along the y-axis
is
S acnputn cos o dn =0, y>b, (196)
where py (1) satisfies a relation identical to that expressed in equation
(18) except that q(s) in equation(18) should be replaced by p(s).
Equations (14a) and (19a) constitute a set of standard dual integral
equations with arbitrary weight function. They have the solution
PelDan® = " 90) Jalk e) e, (20)
where the auxiliary function, ¢(t), is governed by the Fredholm
equation

t polu) du

¢(t)+£ HOKO 0=~ BT )
whose kernel is given by
° [ 1
K@,1) =t j; quk (s)—l]Jo(st)Jo(sﬂ)ds, 22)

and Jg denotes the usual Bessel function of the first kind of order
zero.

It is convenient to nondimensionalize equation (21) by substi-
tuting

t=ar, 6=ap, A=as

Moreover, suppose that the crack is opened out by a constant stress,

! By writing y = 8b,0 < 3 < 1, other values of the stress-intensity factor along
the side of the crack can be obtained.
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polx) = po (constant), then, upon introducing a new function, ®, de-
fined by

#(t) = ¢lar) = ~ g poa/r &(r), (23)
the integral equation (21) assumes the standard form
1
&)+ @) Liar,ap)dp = V7, (24)
o .
in which the symmetric kernel is
L(ar, ap) = (rp)V/? fm A —L——1
A
g 5
a a
Jo(Ap) Jo(Ar) dX, (25)

The next step in the analysis is to determine the function gx (A/a).
This will be done in the next section by assuming the plane-strain
solution of a Griffith crack of length 2b [9].

Plane Strain Solution

A basic characteristic of any three-dimensional crack problem is
the fact that the state of stress in a normal plane near a smooth crack
front is essentially a plane-strain one [11]. Aside from the stress-in-
tensity factors ki, kg, ka, it can be expressed in a form independent
of the applied loading and shape of the solid. Thus, for rectangular
cracks with large aspect ratios, the function ¢(y) can be considered
as the normal stress, ¢, (y, 2) evaluated at z = 0. In the yz-plane, the
appropriate crack conditions are

Ty2(y,0) =0, all values of y, (26a)
a.(y,0) = qoly), 0=y <b, (26b)
u(y,0) =0, ly] > b, (26¢)

It is well known that the solution of this problem can be represented
by

2 puz(y, z) = fom [2 (1 — ») + s2] B(s) cos (sy) e~5% ds, (27a)
g (y,2z) = — j;mS(I-FSZ)B(s)cos (sy) e~s% ds, (27h)
Ty (¥,2) = —2 fomSQB(s) sin (sy) e 2 ds, (27¢)

where the unknown function, B(s), is found from the relation

2 ? ¢t qoly)dy
B(s)=—= f tJ, _doly) 0y
(s) - Js o(st) dt 0 2oyt (28)
It follows from equation (27b) that
q(y) = - j; sB(s) cos (sy) ds, (29)

Inserting equation (29) into equation (18), making use of the result
[10]

® i
j; Koléy) cos (sy) dy = W’ (30)
it is found that
_ = sB(s)ds
a®=- f T (31)

Applying the relation (28) to equation (81), making a permissible
change in the order of integration arid noting the result

f“’ sdolst) ds et
o (st4gR2 T

(32)

it is found that
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Fig. 1 Variation of K* with b/a

RN t go(y)dy
Qk(f)"rj; e tfdt‘I; m:

The relation (33) determines the transform function g, in terms of
the specified stress and eqables the integral equation to be solved. For
the example considered earlier, go(y) = 1, and equation (33) yields

(33)

an(8) = % [1 - e=t¢], (34)

The integral (25) now takes the form
@ A
L(ar, ap) = (rp)1/2 j; mJo()\r)Jo(Ap) dX, (35)

which is convergent throughout its range and can be evaluated nu-
merically.

Stress-Intensity Factor
In order to compute the stress-intensity factor, the relation (23)
is inserted into equation (20) and after performing an integration by
parts it is found that
T apo

e(§) = — ———19(1)J
pelf) 25%(&2’ (1)J1(af)

d
+ j;l sJ1(s§) o [s=1/2 d(s)] dS}, (36)

and since
2 w
) == {7 pu(®) cos (xB) df; (37)
i 0
it follows that
@ J1(af) cos (x£)
(x) = — poad(l R il T , (38
P@) = = poad (D) f PRI @9

where terms which are finite as x — a have been neglected. Since the
singularities of the integral in equation (38) occurs at the upper limit,
and as evident from equation (34) that £ g, (£) — 1 as £ — o, it follows
that the integral in equation (38) yields:

plx) = — pod(1) [1 - (39)

—r |4
(x2 = g2)1/2
The normal stress outside the crack can be obtained from equations

(9), (28), (29), and (39). Near the crack edge it can be expressed in the
standard form

Ry
(27r)1/2
where r is a small distance measured from any point on the side x =

a of the rectangle (except the corner point) and the stress-intensity
factor, ki, is given by

o:(x,y,0) = (40)

k1= ®(1) povza, (41)

The factor k1 is nondimensionalized with reference to the plane-strain
factor and the variation of the factor

ky

o
polwa)l/2

ky (42)
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with different aspect ratios of the crack sides is shown in Fig. 1. It is
evident that there is a reduction in the stress-intensity factor for the
rectangular crack. For an infinite strip crack (b — =), the integral (35)
vanishes, (1) = 1, and the plane strain factor is reached. It should
also be mentioned that the results shown in Fig. 1 agree with those
obtained in [4, 5] by other methods.

Conclusion

An integral transform technique is presented to treat the problem
of determining the stress-intensity factor of a three-dimensional
rectangular crack embedded in an infinite elastic solid. The crack is
assumed to be subjected to normal loadings. By introducing the plane
strain solution across the width of the crack the stress-intensity factor
along the crack length is shown to be governed by a standard Fred-
holm integral equation. For the particular case of constant loading,
the integral equation governing the maximum value of the stress-
intensity factor is solved numerically and the result indicates a re-
duction in the three-dimensional stress-intensity factor from the plane
strain solution. As expected, for a rectangular crack with large aspect
ratio (infinite strip crack), the integral equation degenerates and the
stress-intensity factor becomes identical to that of the plane-strain
geometry. The technique employed in this paper may also be adopted
to the case of shear loading on the crack surface. However, this is left
for future study.

312 / VOL. 48, JUNE 1981

References

1 Kassir, M. K,, and Sih, G. C., Three-Dimensional Crack Problems,
Noordhoff International Publishing. Leyden, The Netherlands, 1975.

2 Martynenko, M. D., “Some Three-Dimensional Problems on the
Equilibrium of an Elastic Body Weakened by a Crack,” Prikladnaya Me-
khanika, Vol. 6, 1970, pp. 84-88 (English translation, 1970; pp. 1107-1111),

3 Andreikiv, A, E., and Stadnik, M. M., “Propagation of a Plane Crack
With a Piecewise Smooth Contour,” Prikladnaya Mekhanika, Vol. 10, 1973,
pp. 50-56 (English translation, 1974, pp. 1078-1083).

4  Weaver, J., “Three-Dimensional Crack Analysis,” International Journal
of Solids and Structures, Vol. 13, 1977, pp. 321-330.

5 Mastrojannis, E. N., Keer, L. M., and Mura, T., “Stress-Intensity Factor
for a Plane Crack Under Normal Pressure,” International Journal of Fracture,
Vol. 15, 1979, pp. 247-258.

6 Borodachev, N. M., “Contact Problem for a Stamp With a Rectanguiar
Base,” Applied Mathematics and Mechanics (PMM), Vol. 40, 1976, pp,
554-560.

7 Keer, L. M., and Parihar, K. S., “A Note on the Singularity at the Corner
of a Wedge-Shaped Punch or Crack,” Journal of Applied Mathematics, SIAM,
Vol. 34, 1978, pp. 297-302.

8 Pu,S.L., and Hussain, M. A, “Note on Apex Singularities of a Wedge-
Shaped Crack Under All Modes,” ASME JOURNAL OF APPLIED MECHANICS,
Vol. 46, 1979, pp. 705-707.

9 Sneddon, I. N., and Lowengrub, M., Crack Problems in the Classical
Theory of Elasticity, Wiley, New York, 1969.

10 Erdelyi, A., Tables of Integral Transforms, Vols. 1 and 2, McGraw-Hill,
New York, 1954.

11 Kassir, M. K., and Sih, G. C., “Three-Dimensional Stress Distribution
Around an Elliptical Crack Under Arbitrary Loadings,” ASME JOURNAL
APPLIED MECHANICS, Vol. 33, 1966, pp. 601-611.

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



C.-F. Sheng

Ingersoll-Rand Company,
Terry Division,

Windsor, Conn. 06095
Assoc. Mem. ASME

' L. Wheeler

Professor,

Department of Mechanical Engineering,
University of Houston,

Houston, Tex. 77004

Medium

Crack Path Prediction for a Kinked
Crack in the Neighborhood of a
Circular Inclusion in an Infinite

In this paper, we study the effects of the elasticity and proximity of a circular inclusion

“ upon the fracture angle of a bent crack in the surrounding matrix. The medium is as-
sumed to be in plane strain, and loaded in uniaxial tension by stresses acting perpendicu-
lar to the main branch of the crack. A comparison is made of fracture-angle predictions
based upon current theories governing the initial fracture angle.

Introduction

Problems concerned with the branching and kinking of cracks have
attracted considerable interest in recent years. Among the early
publications, a key investigation is Sik’s [1] work on the kinked (bent)
crack in an infinite medium subject to antiplane shear deformation.
For further discussion of this problem, see references [2-4] and for

the related plane strain case, which is the context of the present dis-

cussion, see [3,4,5-20].

The mathematical techniques applied to these problems can be
grouped into four categories. The first, and most commonly used is
the Kolosov-Muskhelishvili potential formulation [5-10], where a
mapping function derived by Darwin is used to transform the star-
shaped crack geometry on to the unit circle. The solution is then found
either by solving an integral equation or using series expansions of
the complex potential functions and the mapping function.

Bilby, Cardew, and Howard [12] used an approach due to Khrapkov
[11] to evaluate the stress intensity for kinked and symmetrically
forked cracks. Their results agree with Chatterjee’s work [8], but an
incorrect comparison made by these authors led them to a 20 percent
difference between their findings and those of [9]. However, the results
of the present paper show them ({8, 9]) to be in agreement.

Theocaris and Ioakimidis used a method proposed by Datsyshin
and Savruk [13] to solve the problems of the symmetrically branched
crack [14], asymmetrically branched crack [15], and kinked crack [16].

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS, and presented at the 1981 Joint ASME/ASCE
Applied Mechanics, Fluids Engineering, and Bioengineering Conference,
University of Colorado, Boulder, Colo., June 2227, 1981.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 Bast 47th Street, New York, N. Y.
10017, and will be accepted until September 1, 1981. Readers who need more
time to prepare a Discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division, July,
1980; final revision, November, 1980. Paper No. 81-APM-31.

Journal of Applied Mechanics

This approach, which does not make use of conformal mapping, is
applicable to problems involving essentially arbitrary crack shape.

Over the past 10 years a fourth method has come into prominence.
In this approach, a crack is viewed as the locus of a dislocation pileup
and the problem is reduced to the consideration of singular integral
equations involving the dislocation density, which are usually solved
numerically. We were led by the results in [18-20], which deal with
crack branching, to employ this approach in the present investiga-
tion.

Another advantage of the method just mentioned is that it lends
itself to a convenient determination of stress-intensity factors, which
are needed in connection with certain of the criteria for determining
fracture angle. We turn now to a discussion of these criteria.

Criteria for Mixed Mode Fracture
The current criteria can be summarized as follows:

Maximum normal stress criterion [21],

Maximum normal stress at a critical distance [22],
Minimum strain-energy density [23],

Minimum strain-energy density at a critical distance [24],

CUon oo

Maximum energy-release rate.

For an inclined straight crack in a homogeneous isotropic solid, we
can find the fracture angle through

Kisinf + Kip(8cosf—1) =0 1)

when Theory 1 is applied [21], whereas the second criterion gives

1 .
o (— 3) cos g— {Kisin @ + K11(3 cos 6 — 1)}

+24sinfcosf=0. (2)

The stress-intensity factors Ky and Kyp are regarded as known and
the constant A comes from the second-order term in the Williams
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Fig. 1 Geomelry of the kinked crack in the vicinity of a circular inclusion

crack-tip stress field. (The first term is of order O(r—1/2), the second
term is a function of §, but not r, and the third term of order O(r1/%).)
Equation (2) is obtained by setting (dag/df)(ro, 8) = 0, where o4 de-
notes the circumferential stress, as calculated in [24]. The critical
distance ro can be found experimentally and it was suggested by both
Williams [22] and Sih {29] that ro = 0.00787 mm for polymethyl-
methacrylate.

Another controlling factor, the critical energy-release rate S, is
used in Theory 3 [23]. The energy-release rate, 3, is a direction-sen-
sitive quantity, and the expression relevant to the present analysis
is, from [23].

S = ayK;? + 201K1K 11 + a0Kn? 3

The explicit formulas for a;; (i, j = 1, 2) are given in [23] and will not
be reproduced here. The initial fracture angle is found by setting
dS/df# = 0. The resulting expression is
Ki?[sin 20 — (x — 1)sin 0] + 2K1K11[2 cos 26 — (x — 1) cos 0]

+ Ki?2[-3sin20 — (1 —x)sinf] =0 (4)
where « is given in terms of Poisson’s ratio as k = 3 — 4».

The strain-energy density function is related to S near the crack
tip through

W = (S/r) + C1(6) + O(r). 5

It is clear that sufficiently near the tip, S furnishes the information
needed to find the direction of minimum W.

In the criterion which we designate as Theory 4, the effect of C1(8)
in (5) comes into play. Rather than attempt to find this term, our
approach is to resort to the expressions

1
W= 5—}5 [62x2 = 200,60y + 032 + 2(1 + V) oy ?) 6)

for plane stress, and
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Fig. 2 Edge dislocation in the neighborhood of a circular inclusion (from

17

1+v»

W= 7 [~ )02+ 0yy2) — 20045 0yy + 204y7] (7

for plane strain. We evaluate W(rg, #) numerically by carrying out the
appropriate calculations for oy, 0, and o,,. We then search out the
value of § which minimizes W(rq, 6).

The final principle is a two-dimensional version of the Griffith-
Irwin “Maximum Energy-Release Criterion.” The energy-release rate
is given by

G=01—-¥)K2+ KiD/E (plane strain) (8)

where K1(0) and K11(f) are stress-intensity factors for the limiting case
where the length of the propagation branch goes to zero.

Formulation

The crack shown in Fig. 1 is situated in an elastic material (the
“matrix”) characterized by the constants (g1, 1), which is loaded at
infinity by uniaxial tension perpendicular to the main branch of the
crack. Near the angled tip is a bonded tubular elastic inclusion, cir-
cular in cross section and of constants (g, x2). Here, 1 and ue denote
the shear moduli, whereas k3 = 3 — 4v; and x = 8 — 4vs, vy and v being
Poisson’s ratios.

The problem just stated will, for convenience, be solved by super-
posing the solutions of two problems. The configuration and loading
for the first problem (Problem I) is as in Fig. 1, but without the
crack.

In the second problem (Problem II), the geometry is the same as
the main problem, but instead of loading at infinity, surface tractions
are prescribed along the crack surfaces. If we require these surface
tractions to be equal in magnitude and opposite in sign to the tractions
obtained in Problem I, then it is clear that the stresses for the main
problem result from summing those of Problems I and II. Further-
more, Problem II gives the same stress-intensity factors as the main
problem.

Consider now another problem, Problem II', having a continuous
distribution of edge dislocations spread along the crack locus. If the
dislocations are so distributed that the surface tractions induced along
these segments are equal to what we specified in Problem II, then
these two problems have identical solutions.

As a prerequisite to Problem II’, we consider the stress field pro-
duced by a single dislocation in the présence of a circular inclusion.
This problem, whose configuration is shown in Fig. 2, was solved in
[17]. We here cite the solution in the form given by Erdogan and
Gupta [19]:

Oxx = [.U'I/W(KI + 1)](Hxx1bx + Hxeby)-
Tyy = [“1/7‘7(’(1 + 1)](Hyy1bx + HyyZby)y )]
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Fig. 3 Geometry showing the dislocations b, and b, in x-y coordinate, and
a curved crack In the vicinity of a circular Inclusion

Oxy = [/"I/T(Kl + 1)](ny1bx + nyZby)- (9)
(Cont.)

The quantities Hyv1, Hxx2, Hyy1, Hyy2, Hyy1, and Hyy are written
in full in [19], and b, by denote the components of the Burger
vector.
The surface tractions along the crack locus which result from the
foregoing stress field are
[W(Kl + 1)/#1]Tnb = Antbt + Anwbw
[wlks + 1)/p1] Teb = A, + Agwbu (10)

where b; and b,, are the components of the Burger vector in the (¢, w)
coordinate system (see Fig. 3). The coefficients Ap¢, Anw, Ase, and Ay,
are given by
Apt = (Hyyy 8in @ — Hyya cos ) cos? ay + (Hyy sin o
— Hyyg co8 @) sin? oy + (Hyyq 8in o — Hyyo cos @) sin 20,

Apw = (Hyy1 cos a + Hyyg sin @) cos? ay + (Hyy1 cos a
+ Hyys sin o) sin? oy + (Hyy1 €08 o + Hyyg sin o) sin 20,

Apr = [(Hyx1 — Hyy) sin o — (Hex2 — Hyya) cos ] (sin 201/2)
—~ {Hy1 sin o — Hyys cos a) cos 20y,
w = [(Hyx1 — Hyy1) cos o + (Hyxp — Hyyg) sin a)(sin 2011/2)

— (Hyy1 cos a + Hyyo sin @) cos 21, (11)

The x — y and ¢ — w coordinates and the geometric meaning of « and
o are shown in Fig. 3.

Using (10) as a Green’s function, we obtain four integral equations.
They relate the surface tractions to the dislocation densities along the
kinked crack locus.

Introduce the notation f1(¢) = —b.(t), fot) = —by(t) for dlslocatxon
densities on line OA; fa(t) = —bt(t) fa(t) = =by(t) for densities on
line OB; and define

Journal of Applied Mechanics
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ki kigkiskig

ko1 koo kos Raog

kay k3o kaz Rag

kaikao kaz Rag
[—Anelaa [mAwlaa [Andas [—Awlas
[~Aulaa [“Awlaa [—Aulap [—Awlas (12)
[~Antlsa [~Amolpa [~Anles [-Auwlss |
[~Aulpa [—Awla [—Awulep [—Awlss

where [~Apeluo [=Anwlae [~Att]aa and [~ Apwlaq (@ = A or B) are
regular parts of [—Ant]ae [—Anwlem [—Att]ae and [—Au]a,e The
notation [ ]4,p, for instance, stands for the effect at a point of line
OA of a continuous distribution of dislocations on line OB.

The four equations we just mentioned can be written as
(k1 + 1)

[31
pilt) =2 f fa
Hi tg Lo—t

t1
dto + j: (R11f1 + kiofo)dto
2

t2 dt
+ j: (Raafa + k14f4) 2

+1
matl) =2 f —dto + f (kmif1 + kaaf2)dto
t2 h 0
+ f (kaafs + koafs) o
(k1 +1 i
0y - (BRI
dt 1
0y f (karfs + Rasfo)dto
cos ¥ t
w(ky+ 1) t2| {cos ‘Yfa —~sin fyf4) ]
N — = 2 |—2 +
" pa(t) j:a [ ( to - to— kasfs + Raafs
— 4 f (Ratfy + kasf)dto  (13)
“cos ¥ ¢

where —p;(t) (i = 1, 2, 3, 4) are surface tractions from the corre-
sponding crack locus of Problem I.

In order to complete the formulation, we require that f1dw =0
where w denotes the relative displacement across the crack locus [28].
This condition, which is a single-valuedness condition, assumes the

form
t 2
f ' filto)dto + J: 3 ) 4 =0

cos y
5 fteordeo+ fi(:(;) (14)

in the present problem.

Stress-Intensity Factors and the Standard Form of a
System of Singular Integral Equations

Following the standard procedure for dealing with singular integral
equations, we first define

gi(to) = (ko — £2)P(t1 — t)2fi(t0) (0 =1,2)
gi(to) = {ta — to)P(to — ta)/2f;(te) (i =3,4)

so that g;(fo) (I = 1, 2, 8, 4) is Holder continuous. The exponent
represents the strength of the corner point singularity {26]. The
change of variables

(15)

260 — (t1 + to)

&= PR
2o =~ (Lo + ¢
o= _[_0_(_2.__32 (16)
to— i3
in (15) furnishes
K1+ 1 hi(£1) (=19 (an

fi(&1) = 21 (1— E)V(L+ £1)F
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+1 hi
£k = K12 (£2)

=3,4
1 (1= E)12(1 + £9)f )

(n
(Cont.)

where h; and g; are related through
k1 + 1 gi{tol£1)
241 (d1/2)1/2+6
k1+1 gi(to(£2))
h
2u1 (&) = (dg cos y/2)1/2+8

By a simple manipulation, (12) becomes

hi(§) = (t=1,2)

(18)

{(i=3,4)

- TR
wp1§) = j:l ‘E“_l‘g‘ + Ki1hy + Kjohs + Kizhs + K14h4]

__df
(1—8Y2(1 4+ &)F
mpalf) = j:ll ‘g‘}l_}? + Koih1 + Kozhe + Kaghg + K24h4]

_ 4k
(1- 5;.)1/2(1 + E)ﬂ
~-sin "yhg cos 'yh4
£-¢ £E-¢
+ Kashg + Kashyg
- 1 [—cosvhs sinvyh
i = [ P
+ Kyshs + K44h4]

———=+ Kath1 + Kasho

¢
(1= 51+ 5)F

woo® = | 11

+ Kyhi + Kyoho

dt
- 5)1/2(1 + g)ﬂ

(19)

where

dikyy dikyg dokiz dakyg
Ky _1| dikar dikes dokaa doka
4| diks1 dikss dakss dokss
diky dike doksy doky

With d1 = (¢ — £9), d2 = (t2 — t3)/cos 7.

Similarly, the single-valuedness condition takes the form

d§ B
d§ _
(1—-9YL+HF

As for the stress-intensity factors, it follows directly from the for-
mulas for the crack-tip stress field that

1
‘[_1 [d1h1 + d2h3]

1
‘[_1 [diha + dahy] (20)

Ki(t1) = lim[2(t — t)]V2py(2)

t—ty

Ku(t) = lm[2(t — ¢1)]Y2pa(t)

t—iy

Kilts) = lim [2(t3 — t)/cos v]/2ps(t)

t—t3

Knl(ts) = lim[2(¢3 — t)/cos v]V2p4(t) @1)
frt

By using the procedure found in [19], we arrive at

Kl(tl) - hz(l)

o(dy)12 YR

Kiltg) 1 .

o) 2 28 (sin Yha(1) + cos vha(1)).

Ku(ty) _ (D)

o(d)V/? 28

Kults) 1 _ ‘

o(dn)/2 2F (cos Yhs(1) ~ sin yhy(1)). (292)
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. 2,83, 4] are of the order (¢t — t5)#, where 0 < 8 <

Fig. 4 Stress-intensity factors for the kinked crack tip B (y = —45°, dy =
1,d>=0.1,R=1)

Numerical Methods and Results

After examining the various numerical methods, we deCIded onthe
closed-type (Lobatto) quadrature suggested by Ioakimidis and
Theocaris [27]. This approach avoids extrapolation procedures for
the estimation of the stress-intensity factors at the crack tips.

The numerical counterparts of {19) and (20) consist of (4n — 2)
linear equations with 4n unknowns (n is the number of abscissas for
the integration formula). We thus require two more equations. Our
scheme is to define a new function &; (£) through [16]

Ri() = hi(§) A+ HV2F (i,=1,2,3,4) (23)

and then replace k; (£)/(1 — £)V/2(1 + £)fin (19) and (20) by &; (£)/(1
~ £)V2(1 + £)V/2, This weight function (1 + £)~1/2(1 —~ £)~2leads us
to use the Lobatto-Chebyshev numerical integration formula of [27]
to solve the present problem.

The singularities of the dislocation density functions f;(¢) [i = 1,
1[26]. Therefore, the
exponent (3 — ) in (23) is always greater than or equal to zero. At the
corner point where £ = —1, (23) gives

Ri(-D=0 (i=1,238,4). (@)

The two equations needed to solve the new form of (19) and (20) (i_zi(E)
is the unknown function) may be selected from among (24). Table 1
illustrates the results for different choices of conditions in (24) in
solving (19) and (20). Minor differences in stress-intensity factors
occur in Cases 2 and 5. The results for other cases are indistinguish-
able.

The reason is simple. By requiring f1(—1) = h3(—1) = 0 (Case 2),
we lose control over the values of dislocation density functions with
the burgers vector in the —w-direction. In any of the four other cases,
say Case 3, since we pin down the exact values of k1(—1) for burgers
vector in the —t-direction and fis(~1) in the —w-direction, better
results are anticipated.

Fig. 4 shows the effect of the proximity of an inclusion on the
stress-intensity factors of a kinked crack having d; = 1, dy = 0.1,
R =1, and vy = —45°. Two different kinds of inclusions are considered,
the first being a comparatively stiff inclusion, with material constants
po/iy = 23, k3 = 1.6, and kg = 1.8, The second is the special case when
the inclusion becomes a hole (uz = 0).

The results for the stress-intensity factors plotted against vy for
various inclusions are shown in Fig. 5. The point (5, ¢) is chosen close
enough to the inclusion to sense its influence.

Table 2 shows the comparison among most of the results for the
kinked crack problem (without inclusion) available in the literature.
The present findings agree with the work of Kitagawa [10], Chatterjee
[8], and Toakimidis [16] to within 0.05 percent.

The results for normal stress oy and strain-energy density W ata
critical distance r* = 0,002 from the crack tip are plotted as a function
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Fig. 5 Variation of the stress-intensity factors at the kinked crack tips for | R ; . ) \ ) ) ) ) )
the angle y varying between —75° and 75° (1, = 0.75, ¢ = 0.80, d, = 0.001, =75 -0 -45 =30 -15 0 15 30 45 60 75 0
di=1R=1) Fig. 7 Variations of the strain-energy density w at a distance r* from the
crack tip of a straight crack for § varying between —75° and 75° (1, = 0.75,
¢ =0.80,r" =0.002,dy=1,R =1,k = 1.6)
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Fig. 6 Variation of the normal stress g at a distance r* from the crack tip
of a straight crack for § varying between —75° and 75° (t, = 0.75, ¢ = 0.80,
r*=0.002,dy=1,R=1)
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Fig. 8 Varlation of the strain-energy release rate at the kinked crack tip for
the angle 7 varying between —75° and 75° (t, = 0.175, ¢ = 0.80, d, = 0.001,
dy=1,R= 1)

Tablel y=15°%d;=dx=1

Case Conditions imposed (Kpa (KiDa (Ky)B (Km)g
1 hi(-1)=hy(-1) =0 1.75115 0.02867 1.66188 -0.471767
2 hi(=1) =hs(~1)=0 1.73282 0.02787 1.64393 —0.47128
3 hi(=1) =hy-1)=0 1.75115 0.02867 1.66188 ~0.47767
4 ha(—1) =hs(~1) =0 1.75115 0.02867 1.66188 —0.47767
5 ho(=1) =h4(-1) =0 1.75124 0.03054 1.66221 ~0.47589
6 Ra(—1) =h4(~1) =0 1.75115 0.02867 1.66188 —0.47767

of angle # and shown in Fig. 6 and Fig. 7. In these figures, a softer in-
clusion with material constants us/u; = 0.2, k1 = 1.6, k2 = 1.8 is added
to the aforementioned two types of inclusion for the purpose of
comparison. : ’

The fracture angles as obtained by using the mixed-mode criteria
2 and 4 are easily inferred from Figs. 6 and 7. The results are sum-
marized in Table 3.

Fig. 8 shows the variation of G when v is varied from —75° to 75°.
Here G is related to the energy-release rate G by

G=a

E
TR

All the calculations related to criterion 5 are accomplished by as-
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suming da = 0.01. As one can see in Fig. 8, the peaks shift to the right
as the relative stiffness pg/u; is raised.

There is thus a tendency of soft inclusions to attract cracks, whereas
a hard one tends to divert them.

In all of the work done here, we are able to infer that the softer an
inclusion, the greater its tendency to serve as a crack termination site.
Thus, in Fig. 5, we see the peak values of (K1) and the zeros of (K11)g
shift to the left with decreasing relative stiffness. In Fig. 6, the angle
of maximum normal stress decreases with uz/u1, and in Fig. 7 we see
decreasing angles of minimum strain energy.

When Theories 1 and 3 are applied, it should be noted that K1 and
Ky are associated with the tip of a straight crack, not the tip of a
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Table 2 Comparison of present work with results in the literature (d2/d; = 1)

[/ 15 30 45 60 75
Ref [10] 1.6129
(KDa Ref [8] 1.7512 1.6930 1.6127 1.5283 1.4547
Ref [16] 1.7511 1.6928 1.6124- 1.5282 1.4556
Present 1.7512 1.6929 1.6125 1.5282 1.4551
work
Ref [10] 0.0262
(Kma Ref [8] 0.0287 0.0407 0.0261 —0.0145 —0.0701
Ref [16] 0.0287 0.0406 0.0258 —-0.0149 -0.0706
Present 0.0287 0.0407 0.0259 —0.0147 —0.0703
work
Ref [10] 1.6618 1.3573 0.9324 0.4867
(K1B Ref [8] 1.6619 1.3573 0.9322 0.4865 0.1203
Ref [16] 1.6619 1.3571 0.9319 0.4866 0.1210
Present 1.6619 1.3572 0.9320 0.4866 0.1209
work
Ref [10] —0.4776 —0.8527 —1.0501 —1.0399
(Km)a Ref [8] -0.4777 ~{(.8528 -1.0499 —1.0392 —0.8429
Ref [16] —0.4777 —0.8528 —1.0498 ~1.0396 —0.8455
Present -0.4777 -0.8528 —1.0498 —1.0394 —0.8446
work
Table 3 Initial fracture angle obtained by applying different theories for two cases
to =075 ¢=0.8" te =095 ¢=06
foluy 23 0.2 0 23 0.2 0
Theory 1 +14° —-17° ~23° 11° —9° —12°
Fracture Theory 2 9° ~11° —16° 4° —6° ~5°
angle Theory 3 14° —17° —22° 11° —~9° —12°
[/ Theory 4 3° ~17° —21° 20 —11° —~12°
Theory 5 14° —-17° ~24° 12° -10° -13°

kinked crack. The fracture angle § for these two theories is also listed
in Table 3.

Although an approximation (a finite length of 0.01 for the branched
crack) is involved when Theory 5 is applied, the results are in good
agreement with those obtained by applying Theories 1 and 3. The
fracture angles predicted by Theories 2 and 4 disagree with each other
and deviate a lot from the values given by applying the other three
theories. Therefore, the use qf Theories 2 and 4, which consider the
second-order term in the crack-tip stress field in determining the
initial fracture angle, is not promising here.
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The exact value of Sanders’ path-independent, energy-release rate integral I for an infi-
nite, bent elastic slab containing an elliptic hole is shown to be approximated by its value
from classical plate theory to within a relative error of O(h/c)F(e), where h is the thick-
ness, ¢ is the semimajor axis of the ellipse, and F is a function of the eccentricity e. This
result is based on Golden’veiser’s analysis of three-dimensional edge effects in plates, as
developed by van der Heijden. As the elliptic hole approaches a crack, F(e) ~In (I — e).
However, this limit is physically meaningless, because Golden’veiser’s analysis assumes
that h is small compared to the minimum radius of curvature of the ellipse. Using Know-
les and Wang’s analysis of the stresses in a cracked plate predicted by Reissner’s theory,
we show that the relative error in computing I from classical plate theory ts only O(h/c)
In (h/c), where c is the semicrack length. Our resulis suggest that classical plate and shell
theories are entirely adequate for predicting crack growth, within the limitations of
applying any elastic theory to an inherently inelastic phenomenon.

Introduction

One computes stress-intensity factors for loaded, cracked elastic
solids in the hope that, if the material is brittle, these factors may serve
as a measure of the likelihood of crack growth. For infinite, elastically
isotropic plates containing straight, through cracks and under simple
in-plane or bending loads at infinity, stress-intensity factors may be
computed from the classical two-dimensional theories of plane stress
or plate bending, either as a limiting case of solutions for elliptic holes
[1, 2] or directly, via singular integral equations [3].

Clearly, within the immediate vicinity of an edge, we cannot expect
to infer accurately the true state of three-dimensional stress from a
two-dimensional theory. This shortcoming is particularily acute in
the classical theory of plate bending where imposition of the two
contracted boundary conditions of Kirchoff at a free edge implies,
except in special cases, that the twisting couple at the edge does not
vanish, but is of the order of magnitude of the stress couples in the
interior of the plate [4].

There have been two distinct approaches to correcting the defi-
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ciencies of classical bending theory. The first is due to Reissner [5-7]
who has developed an improved two-dimensional theory wherein the
classical fourth-order biharmonic equation for the midplane normal
deflection w is supplemented by a second-order Helmholtz equation
for a stress function . Reissner’s theory should predict significantly
better values than the classical theory for the actual stress resultants
and couples in the edge-zone because

1 It can satisfy, at a free-edge, the three conditions that the
transverse shear stress resultant, the twisting couple, and the bending
couple must vanish.

2 There are solutions that decay rapidly outside an edge-zone of
width O(h), where h is the plate thickness.

(Note that we refrain, as does Reissner, from suggesting that predic-
tion of the thickness variation of the three-dimensional stress is im-
proved in the edge-zone.) For the special case of beinding of an infinite
plate with a circular hole, Reissner’s later plate theory agrees well
numerically with the essentially exact three-dimensional solution of
Alblas [8].

The other approach to correcting the deficiences of classical plate
theory is to recognize the three-dimensional nature of the stress dis-
tribution in the vicinity of an edge but to attempt, by a proper scaling,
to reduce the governing equations to two-dimensional ones in a strip
formed by the intersection of the plate with a plane perpendicular to
the edge and to the midplane. The solutions to these equations as one
moves toward the interior of the plate are then matched to the solu-
tions of the classical plate equations as one moves toward the edge of
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the plate. This approach was pioneered by Friedrichs [9] and elabo-
rated upon by Golden’veiser (see [8] for a list of references). Fortu-
nately, this rather tedious work has been given a simple physical in-
terpretation and variational formulation by Koiter and van der He-
ijden [8, 9].

Beginning with Knowles and Wang [10], a number of authors
[11-14] have computed “improved” stress-intensity factors for
cracked plates and shells using some version of Reissner’s plate theory
or its shallow shell analog. In contrast to the classical theory, Reiss-
ner’s refined theory predicts an angular variation of the stress couples
around the tip of the crack that agrees with the exact theory of anti-
plane strain. And in contrast to the classical eighth-order theory of
shallow shells, the refined, tenth-order theory predicts identical an-
gular variation near a crack tip for the stress resultants and couples.
The bending stress-intensity factors computed from thege refined
theories differ significantly from those of the classical theory and thus,
presumably, indicate the importance of thickness effects on crack
growth predictions.

1t is our contention that, insofar as it is possible in a purely elastic
theory to predict crack growth—an inelastic phenomenon—the most
meaningful number to compute is the value of Sanders’ path-inde-
pendent, energy-release rate integral I for the expected crack growth
path. As we shall argue, the exact, three-dimensional expression for
I for a cracked, bent plate is approximated by the value of I from
classical plate theory to within a relative error of O(h/c) In (h/c), where
¢ is the half crack length. Moreover, for an infinite plate with an el-
liptical hole, we shall show that classical plate theory approximates
1 to within a relative error of O(h/c)F(e), where F(e) is a shape factor
that approaches In (1 — ) as the eccentricity e of the ellipse ap-
proaches one.

We arrive at our conclusions by evaluating I over a path lying at an
arbitrarily large distance from the crack. We begin with the results
of a recent paper by Cheng [15] who has shown that the solution of
the three-dimensional Navier equations for the bending of an elastic
slab free of body forces and face tractions can be reduced to the sum
of the solutions of two distinct types of two-dimensional problems.
The first type involves the solution of two infinite sequences of
Helmholtz equations, each admitting solutions that decay over a
length equal to some numerical factor times the slab thickness. These
may be called edge-zone solutions. The second type of two-dimen-
sional problem involves the single-biharmonic equation

V2V = 0, (1)

where V2 is the Laplacian in the midsurface of the slab. The solutions
of (1) may be called interior solutions and are discussed in detail in
the books by Love [16, pp. 473-487] and Lur’e {17, pp. 199-230].

In circular eylindrical coordinates (r, 8, z), the associated three-
dimensional displacement components (U{, V¢, Wi) and stress
components (o, oiy, o&,) are given by [15, equations (39) and

(40)]

R S 2 (2-
Ui =—2 —[1—u+[h——(——’2z2]v2}w @)
1-vor 4 6
-z 102 2 (92—
Vi= Z ———[1—v+ h——(—2——y—)z2]V2}w (3)
1—vrof 4 6
Wi=|1+ 2y2 4
[ et ]w @
. Ez (22 (1o 1 22 h2 92—y
- AT A | M 2|v2 5
o 1—V2[br2 (rar rZaHZ)[” (4 6 Z) ”w ®
, —Ez of1\ o h?z 2-—v
boee e — | = —[(1 = 4 = sz 6
7o l—vzbr(r)aﬂ [( ) (4 6 z) ]w ©
. E (k2 d
L = — 22| = w2y, 7
7 2(1—-1/2)(4 z)br v @

We emphasize that (2)-(7) are exact solutions of the Navier equations.
We also emphasize that the boundary conditions at the edge of a hole
involve all of the separated solutions of the Navier equations, so that
the determination of w involves the simultaneous consideration of
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the edge-zone solutions. This is a key point and we shall return to it
momentarily.

Sanders’ energy-release integral I [18, 19] evaluated over the
truncated cylinder r = R, |z| < 4 takes the form

[=1 ihopoe . A
=z ) f (U + 006V + 0, W
-3n Jo

= 60U — 614V — 6,,W)RdOdz, (8)

where the dot denotes the derivative with respect to some parameter
that characterizes the shape of the hole. (For a hole whose cross section
is always an ellipse of the same area, aligned with the x and y-axes,
we shall take the parameter to be the length [ of the ellipse.) In (8),
arr = 6t + 08, U = Ul + Ue, etc., where the superscript e denotes
an edge-zone contribution. As B — «, the edge-zone contributions
will make a transcendentally small contribution to I. But as I is
path-independent, it follows that I is determined by the interior-zone
contributions alone.

Substituting the right sides of (2)-(7) into (8), and carrying out the
z integration, we obtain an expression of the form

2n
I=1% ‘I; (= mpb, — mrﬂr_lwyﬂ + Qb
+ w4 mier~lw g — Qw){1 + O(h2/L2)IRdE.  (9)

Here L is the wavelength of w, defined so that L2V2w, L3(V2w,,
V2w g), LAV?w 1, r =1V g, 12V 2w gg) = O(w),

my == Dwqr + v(r~lwg + r=2w p)] (10)

mpg = —D(1 — V)(r—lw,(}),r (11)

Qr = -D(Vw), (12)
Eh3

D= a—m )

E is Young’s modulus and » is Poisson’s ratio. For conciseness, we have
indicated partial differentiation by a comma. Note from equation (41)
of [15] that the actual bending couple acting along a circle in the
midplane of the slab is given by

M, = m, + h2D[(8 + »)/40)[r ~1(V2w)  + r~2(V2w) gg].  (14)
If the loading on the infinite slab is such that
Viw=c+ 0@ 2asr — o, (15)

then as R — =, the O(h2/L2)-terms in (9) disappear, and I reduces
to precisely the form it takes in classical plate theory. This happens,
for example, if the slab is subject at infinity to a pure stress couple M
turning about the y-axis, in which case

w = —(6M/Eh3)(x2 — vy?) + O(1),

and ¢ = ~12(1 — »)M/Eh3.

It remains to investigate the influence on w of imposing exact
boundary conditions at the hole rather than the approximate
Kirchhoff conditions. Fortunately, Golden’veiser has carried out the
rather tedious analysis that is required [20]. When all is said and done
it turns out that, to a first approximation, the necessary corrections
to classical plate theory are obtained merely by solving the classical
plate equations subject to slightly modified Kirchhoff conditions.
(Golden’veiser’s results were given a simple energetic interpretation
and derivation by Koiter and van der Heijden [8, 9]. Moreover,
Reissner has shown that his latest refined two-dimensional plate
theory [7] implies a set of modified Kirchhoff boundary conditions .
for the classical plate equations that involve a numerical constant that
is remarkably close to the one coming from Golden’veiser’s three-
dimensional analysis. For an explanation of Golden’veiser’s method
in a simple nontrivial context see [4].)

The modified classical solutions for a bent, infinite plate containing
an elliptic hole have been computed analytically by van der Heijden
[8]. His results are expressed in terms of the two standard complex

(16)
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functions of classical plate theory [21]. Our first task is to express /
in terms of these. :

I for Plate Bending in Terms of Complex Variables. There
exists a well-known duality between the theories of generalized plane
stress and classical plate bending that we summarize in the following
table:

Plane stress —F. , u IN , E Il/Eh l v

Platebending w |G |K |[-M | D |-»
Here F is Airy’s stress function, u and G are, ljespéctively, tangential
displacement and moment stress function vectors, N, M, E, and K
are, respectively, stress resultant and bending couple tensors and
extensional and bending strain tensors, and £ = trace (E)I — ET, etc.,
where I is the identity tensor and the superscript T denotes the
transpose.

1n

In the theory of plane stress,

I=éj;(T-a—'i'-u)ds, (18)
where C is a smooth closed curve and T is the traction vector acting
across C [18]. This equation, as it stands, is not the dual of the coor-
dinate-free form of (9). However, if the net force and moment acting
over C are zero (so that F and G are single-valued), then by introducing
stress functions and integrating by parts several times, it may be
shown that (9) and (18) are indeed duals.

The theory of plane stress may be formulated in terms of complex
variables. In the absence of body forces, Airy’s stress function has the
representation {22, equation (70.5)}

F=—1[F¢(2) + 26 () + x(2) + x()], (19)

where ¢ and x are analytic functions of the complex variable z = x +
iy. (2, of course, no longer stands for the third Cartesian coordi-
nate.)
Sanders has shown [18] that in terms of ¢ and ¢ = ¥/,
I=-2ERT [ @)+ o, (20)
where 7 denotes “the imaginary part of.” It now follows immediately
from the duality expressed by (17) that Sanders’ integral for classical
plate bending has precisely the same form as (20) provided that the
solution of (1) is represented in the form

w=3z6(2) + 26 @) + x(z) + X ()]
and (Eh) 1lis repléced by D.

(21)

Summary and Extension of van der Heijden’s Results. The
function

2= w(§) = R+ m), 22)
where
R=2F8 n-o=?b (23, 24)
2 a+b

maps the interior of the unit circle in the complex {-plane onto the
region in the complex z-plane exterior to the ellipse

x2  y?
a? b7
The inverse of (22) is given by

2 — (2% — 4R?m)1/?
= Q —_—
{=9G) 2Rm

=Rz + R3mz~3+ 0(275),

1. (25)

(26)

where Q(z) is analytic in the z-plane with a cut joining the foci of the
ellipse (25).

van der Heijden considers an infinite plate with an elliptic cylin-
drical hole with cross section (25). A uniform stress couple of magni-
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tude M acts at infinity about the y-axis so that (16) obtains.? To an-
alyze the resulting stresses van der Heijden sets

B(w($) = K[¢1(D) + (h/R)¢1($)] (27)
YD) = Klyi($) + R/RWA(D), (28)

where [8, equations (2.2.13) and (2.2.18)]

1 1 1-m
¢1(§)—m(}+ mf) Py § (29)
~m=1m+ 1 1
\1/1({)—3_“/ Cm—1 +1_,,(§+§-)’, (30)
and

= — MR/2D. (31)

¢1 and Y5 represent the classical plate theory solutions and ¢ and ¥
represent the corréctions to classical plate theory that result when
increments are added to the Kirchhoff boundary conditions to make
them agree with Golden’veiser’s modified conditions. Since ¢} and
¥} correspond to self-equilibrated loads along the hole, they have
series representations of the form

S = 7_1: and®, YD = ; Bat™ ¢l <L (32,33)

It turns out that all we need from (32) and (33) in the evaluation of
Sanders’ integral are expressions for a; and (1. We shall compute
these coefficients after we have verified this statement.
Substituting (29)-(33) into (27) and (28), we obtain, for 0 < ||
<1, .

p(w()) = Kla-11 + a1 + O($9)] (39)
Y(wl()) = K[b_181 + b1$ + O(83)], (35)
where
1 m 1-m
@17 21 +»)’ “= 20+ ») + 3+v + (h/R)ey (36, 37)
| b=, b1=I—i—V+m31':2+(h/R)ﬂl. (38, 39)

With (22) and (26), (34) and (35) take the following form outside
the ellipse (25) in the z-plane:

#(z) = K[A1z + A_1271 + 0(z7%)] (40)

Y(z) = K[Byz + B_1z71 4+ 0(z79)], (41)
where

Ai=a R~ A =a R —a-1mR (42, 43)

By =b_1R~!,B_1 = biR — b_1mR. (44,‘45)

Computin,t,‘r the residue of ¢’ (z)\]/(z) + éS(z)l//’(z) from (40) and (41),
we find that Sanders’ integral (20) with (Eh)~! replaced by D is given
by

I=— 47TDK[A1(KB_1) - A._l(KBl)'

+ Bi(KA-1)' — B-1(KAy)']. (46)
But from (31), (36), (38), (42), and (44),
M M
K== pa-n " e “n

These quaﬁtities are independent of the parameters R and m that
characterize the ellipse (25). Thus (46) reduces to

2 The standard orientation, as used by Knowles and Wang [10], for example,
is with the stress couple at infinity turning about the x-axis. However, for ease
of transcription from and comparison with [8], we have retained van der He-
ijden’s convention. The value of [ is, of course, independent of our stress con-
ventions.
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I=_7I'M2 Rzlbl—mb_1+2(11 ma 1)] (48)
oD |\ 1+ 11—
It is useful to set
M2R
I=-220 0+ (WRICG, (49)

where I, is the dimensionless value of I from classical plate theory and
(h/R)IS (the G is for Golden’veiser) represents the correction due to
edge-effects. From (36)~(39) and (42)-(45)

_21-m) (2+m)+v(2—m)]R
T 12 3+ |
_ R [1+1+2m+v(3—2m)]m (50)
1—v2 3+v
u?=(—ﬁ4 2a1)R+R(61 —‘) (51)
1+v 1-—v» 1+ 1-

Determination of a; and 8;. van der Heijden has shown that

(8]

¢t = C.I.(;m). (52)
Here
384 = 1
L 3) .
B+»2C, Z(Zk— e 1.26049 (53)
g(o; m)do
AR Aadd 4)3
L(gm) = fuﬂ P (54)
where
—_ 4 _
gloymy = 222D, oy, (55)
T o{o2—m)
and
h(o;m) == 7 =h(c-Lm).  (56)

2 (0% — m)V2(1 — mo?)12

The function h(g; m) is analytic in the complex ¢-plane, cut along the
three segments (—=, —1/v/m], [-v/m , V'm], [1/v/m , =) of the real
axis. For simplicity, we assume, initially, that 0 < m < 1. However our
final results are valid for —1 < m < 1. This is important because with
van der Heijden’s loading convention, whereby the uniform stress
couple at infinity turns about the y-axis, the nontrivial limiting case
of a crack is obtained as m — —1. That is, the ellipse approaches a slit
of length 2b along the y-axis. The branches of h{s; m) are chosen so
that (1 ~ m)¥2 = /T — m . [,({; m) is analytic in the complex ¢{-plane,
cut along the segments (—», —1/y/m] and [1//m , ©) of the real axis.
van der Heijden has shown that I,({; m) may be expressed in closed
form [8, equation (II1.2.13)] in terms of the complete elliptic integrals
of the 1st, 2nd, and 3rd kinds:

1 dx
Kim) = f 3/1—x2\r— m?x? (67
E(m) = - xz (68)
IO m) = f dx
’ 0 (1-A2%2)1-xZy/1—-m%?
= K(m) + (\2/m?)[K(m) —E(m)] + O(A\Y).  (59)

II(A\% m) is analytic in the complex A\2-plane, cut along the segments
(—, —1} and [1, =) of the real axis. For future reference, we note that
(23]

3 In van der Heijden’s notation [8], I, = (1 — m)I. We have introduced I, in
place of I so that the dependence on m may be displayed explicitly.
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E(m)

K(m)=-3In (1 — m? + O(1), mK’(m) = ——————K( ) (60)
- m?
E(m)=0(1), mE'(m)=E(m)— K(m). (61)
1t follows from (32), (52), (59), and equation (2.2.35) of {8} that
o = CL0m) = 252120 ~E(m).  (62)

van der Heijden did not derive an express for /1, but from equation
(2.1.38) of [8] and equation (79.10) of {22] we have

pi=C R ey~ ram) (63)
1—-m¢?
where & = (3 + »)/(1 — v) and
glo; m)
Jufim) = ﬁal R 2 dg (64)
From (33), (63), and (64),
By = C.[mI,(0; m) — &J,(0; m)], (65)
where
1 g(o;m)
J.(0;m) = 27 ﬁ¢r|=1 o2 d (66)
On the unit circle || = 1, (55) and (56) imply that
gloym) glo™hm) 2(0-m)1—-ga¥)
== = = - o) h{o; m). (67)

As h(o; m) is analytic in the annulus v/m < |6} < 1/v/m , it may be
represented as the sum of a function h <(¢; m) analytic for |o| < 1/vVm
and a function ~>(c;m) analytic for |o] >+/m . Explicitly, [23,
equation (117.01)], [8, equation (II1.2.18)],

h{o; m) = [Il(me?% m) — K(m)] + H(moc~% m)
= h<(a;m) + h>(0; m). (68)
The function
—m)(1-c%
gu(oym).= Wmhda; m) (69)

is analytic in the disk |o| < 1/4/m , save for a simple pole at ¢ = 0.
With the aid of (59) and (68),

21—~
Res [g%(0; m)) = = — [K(m) = E(m)]. (70)
7(" m
The function
2(1 - — gt
gomy=2LomA=a), (71)

a3(1 — mo?)

is analytic for |o] > +/m , save for simple poles at ¢ = +1/vV/m
where

. 11-m
Res [g5(£1/v/m; m)} = = ———E(m), (72)
T m

where we have used the fact that (1 — m2)I1(m?2, m) = E(m). Fur-

thermore, as ¢ — =,
21—-m
g3(o;m) ~———K(m). (73)
Te m

Thus, from (66)-(73),

1
J.((?;.m) = Py [fq|=1 gi(o;m)do + ﬁd:l g4 (o; m)da]

41-m
=== [K(m) - E(m)]. (74)

Finally, inserting (62) and (74) into (65) and recalling that & = (3 +
»)/(1 = v), we have
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_8(1+u)C*1-—m

B = —— [K(m) — E(m)}. (75)
1-v) m
This result, combined with (62), yields
81 2  8C, (1- m)Z _
1+v 1-v (1-v)7w ( m (K(m) = E(m)], (76)
so that, with the aid of (60) and (61),
( B1 20,1 ) 8C, (1 - m)
+ =
1+v 1—v @A—=—w»)7w\ md
2
[(ﬁm) E(m) - 2K(m)]m. 7
1+m

Consider a class of movements in which the elliptical hole in the
midplane distorts, without rotating, into another elliptical hole of
equal area and take ( )* = d( )/dl, wherel is the length of the el-
lipse. (This is only one of many possible movements that, in the limit
as m — —1, yield the uniform extension of a crack. As equation (84)
shows, (h/R)I¢, the correction to I, is independent of the movement
of the hole.) Then

/2
=4 j; VaZsin?f + b2 cos? @ df

= 4bE(k), (78)
where
b2—aqa?2 4m
k2= = - . 79
b2 (I —m)? (79)
With mab a constant, it follows readily from (23), (24), (78), and (79)
that
. m \db 1+m\db
R=-—"-2, m=-—"Z= 1
(1—m)dz’ " ( R )dl’ (80,8D)
where
-1 1+ 2
‘113) =4 [E(k) _ M — K(k)]}. (82)
dl 2m

Substituting (76), (77), and (80)-(82) into (50) and (51), we obtain
_ 401 -m) iiﬁ

= 83
C @B+ - dl (83)
283 + »)C.,
19 = 28XDC: 154 o — ma)K(m)
Tm
—2(1+m)E(m)] = (3 + »)"1F(m) = (34 »)"1F(e), (84)
where
9. /=
e=2Y"" _1<m=o, (85)
1-m
is the eccentricity of the ellipse.
As m — —1, we have, with the aid of (60),
3+ r)C.
6= BF0C ). (86)
T

This limiting behavior is meaningless, however, because Golden’-
veiser’s modified boundary conditions assume that the plate thickness
is small compared to the minimum radius of curvature of the ellipse.
Fig. 1 is a graph of F(m) which is independent of v, as a glance at (53)
and (84) shows.

I for a Cracked, Bent Plate Via Reissner’s Theory. Knowles
and Wang [10], Wang [11], and Hartranft and Sih [12] have all used
Reissner’s plate theory [5] to compute stresses and stress-intensity
factors along and at the tip of a crack in a plate.

The crack is represented by the segment (—1, 1) of the x-axis and
its edges subject to a uniform bending couple M. To compute the re-
sulting stress field is the so-called residual problem, The stress field
for a plate with a stress-free crack subject to a uniform stress couple
M at infinity turning about the x-axis is obtained by adding the stress
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Fig. 1 Correction factors for I, from Golden’veiser’s and Reissner’s theo-
rles

field for an uncracked plate to that for the residual problem. The
numerical results of [11, 12] show that there are pronounced bound-
ary-layer effects that lead to significant differences from the classical
values of some of the aforementioned quantities as h/c — 0. Despite
this, we shall show that Reissner’s theory leads to a correction to I,
that is only of relative order (h/c) In (h/c).

Knowles and Wang reduced Reissner’s equations for a bent, cracked
plate to the following singular integral equation [10, equation
(3.23)]:

1 -
f 1 [1 _ 2 F (lx £ I)
-1x —§ 3+ €
Here € = h/c/10, v(£) is an even function, § denotes the Cauchy
principal value, and

v(E)dE = mx, |z} <1. (87)

4
F(x) = — — 2K5(x), (88)
x
where Ky(x) is the modified Bessel function.
The bending moments may be expressed in terms of v(£) in the form
[10, equation (3.17)]

M, M L[ — &)
My | =g [ mte - ) [o@dz, 60
Mxy mxy(x - E» y)

where the kernels m,, etc., are given by equations (3.16), (3.19), and
(3.20) of [10]. These formulas are for the residual stress couples. The
associated residual complex potentials ® and ¥ may be computed
from the formulas '

My ~ M, + %M., = 2D(1 - »)[58" (z) + ¥'(2)]
M, + M, == 2D(1 - »)[¥(z) + T ().

(90)
(91)

To compute I we need only the dominant terms in the expressions
for the residual stress couples as r2 = x2 4+ y 2— o, Withx = r cos 8,
¥ = r sin #, we find, from (89) and equations (3.16), (3.17), (3.19), and
(320) of [10], that

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



M, (1 ~ »)(sin* 0 + cos* @ — 6 cos? @ sin? §)

M, |~ M % (3 + v)(sinZ 0 — cos2 @) — 2(1 — v)(sint  — 3 cos2fsin?6) |, (92)
<y 2B+ w)r \ 4 cos 0 sin 6 — 2(1 ~ »)(3 cos 0 sin® § — cos® O sin 6)
where
1
= @/m | v (93) awo= £ vi-P 52 0 (s 9dg (105)

Thus we do not need the complete solution of (87) but only its integral
from —1 to +1.

Adding the stress field for the uncracked plate, My = M, M, = M.,
= (), we readily deduce from (92) the following asymptotic behavior
for the associated complex potentials ® and y:

poM[ 2 P ] (94)
4D|11+v (B+v)z
- [2 _ (1+v)e?p ) (95)
2D(1 —v) B+ v)z ]

1t then follows from (20), with D = (Eh) land ( ) =d( )/dl =

1d( )/dc,that
M2cP
I=— __W_c____~ . (96)
2D(3 + v)(1 ~ »)
Remarkably, Knowles and Wang [10] were able to obtain all their
analytical results using only the classical plate theory solution
volx) = v1—x2, 97
which satisfies (87) if one formally sets ¢ = 0. Thus we must extract
more information from (87). We shall proceed formally with what we
hope are convincing arguments.
It is convenient to integrate both sides of (87) with respect to x,
thereby obtaining the equivalent integral equation.

£ e — g+ G+ 0160z - /0]

Xv(E)dE =7w@Fx2+C). (98)
Here, C is an unknown constant,
4 4
G(x) =—2——K1(x), (99)
x2 x
and K is the modified Bessel function. From the Appendix,
j; " G)dx =27 (100)
Hence, as ¢ — 0,
G(|x = E|/e) — edmd(x — £), (101)
where 6 is the Dirac §-function.
Let
1
3+ »)mh(x, €) = f Gll= = El/0v(@)dE. (102)

Then the solution of (98) may be expressed in the form [24, equation
(8-191)]

21 VIi—E [z — G aldg 7
v(x;€) 1—x2{f —x P( )}
e fﬂfl_\/l_g__%ﬁﬂ (103)
where

eQe) = (2/x) j‘_ll [v(& e — V1= E]dE=P(e) -1, (104)

and
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(The constant C is hidden in Q.)

Because v(x) represents the slope of the deformed midplane normal
to the crack along the crack, v(x) — 0 as x — +1, Therefore, the term
in brackets in (103) must vanish as x — £1, i.e.,

Q) =limQ(x;e) as x — £1. (106)

This value of @ leads, via (96) and (104), to the correction predicted
by Reissner’s theory to the classical value of I.

To see how the limit in (106) occurs, first note that the structure
of (87) and the graphs of various numerical results obtained by Wang
[11] and Hartranft and Sih [12] indicate that as e — 0, v(x; €) exhibits
a boundary layer at the crack tips. Simple order of magnitude argu-
ments imply that the width of the boundary layer is O(e) and that, in
the boundary layer, v is O('/2). We therefore assume that the solution
of (87) has the form

v(x; € =+/1—x2+ Ve [Vis;e) + Vit; €] + eVix; €), (107)
where
x=—1+es=1—¢t. (108)

We further assume that V(s; ¢) and all of its derivatives are O(1) for
s 2 0 > 0 and vanish sufficiently rapidly as s — .

To see the interior and boundary-layer structure of #(x; €), rewrite
(102) as follows: -

€3+ )wh(x; €) = f_laqx — £)/0[V1— £ + V(L )]dE

+\f(f_1+\/_ fm/‘ j:\/é_G(Ix-H/é))
X [V (ﬁ : e) +V (1—_—5 ; e”dg. (109)
€ €

Upon introducing the change of variables (108) and

f==1l4+ecc=1—en, (110)
and noting (101), we see that 0(x; ¢) takes the form '
B(x; €) = 4/T=x%(8 + v} + VelO(s; € + 6(2; 6)]

+eO(x;¢). (111)

This expression for 8(x; ¢), substituted into (105), yields, to lowest
order,

Q(x;0)= ln(1+x)+x/—f V5 8/(;0)da
ag—s
=y/70(r;0)dr 8
+V2 N Po (112)

To evaluate the integrals in (112) assume that (o) = \/EEA)’ (o, 0) can
be extended to be an analytic function of the complex variablev = o
+ i7 in a neighborhood of the positive -axis. Furthermore, assume
that as ¢ —> =, f(o) In1*¥(g) — 0, 6 > 0. (This is a sufficient condition;
for example, for the integrals in (112) to converge.) Defining

1 r=flode

2mi Jo

Fu) = , u¢ [0, ), (118)

g—u

where u = s + it, we have, by the well-known Plemelj formulas {24
equations (8-130) and (8-131)].

> f(o)da

ag—s

Fals) + F_(s) = hﬁ (114)
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Fi(s) = F_(s) = f(s), (115)
where Fy(s) = lim F(s + it) as t — 0.
By inspection, .
F(u) =3{1 + (i/7) log ulf(u), (116)

where F(u) is defined in the complex u-plane cut along the positive
s-axis and logu = In |u| +i6, 0 < # < 27. Thus, from (114),
=+/60/(a;0)do _
0 o—s
Asx ——1,5 —0,and In (1 + x) = In (es) ~In 5. Thus, if Q(x; 0) is
to have a finite limit as x — —1, we must require that

~ 2
lim 1/50/(s; 0) = — 22 .
>0 3+v

~/50(5;0) In . arn

(118)

By symmetry, the same conclusion holds as x — +1. It then follows
from (106), (112), and (117) that

Q(e)~—4lne~\/161’} In (h/c), (119)
3+v
and from (83), (96), (107), and (119), that
2,
I =M 1 11 4 IR /e In (W), (120)

4D
The value of I% is indicated in Fig. 1.

Conclusions

Our results, derived within the framework of linear theory for the
special case of bent, infinite plates, show that Sanders’ energy-release
integral I may be computed using classical plate theory to within a
relative error of O(h/R) In (h/R) where R is some typical geometric
length associated with the undeformed midplane. The path-inde-
pendence of I was crucial to our arguments. Edge-zone layers of width
O(h) are characteristic of shells as well as of plates. As I may be
evaluated along a contour lying totally in the interior of a shell, clas-
sical shell theory—linear or nonlinear—can be expected to be entirely
adequate for computing energy-release rates for slowly moving voids
or cracks.
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APPENDIX

The integral in (100) is improper, but it is only the behavior of the
integrand near x = 0 that must be treated with some care. The fol-
lowing steps, that employ an integral representation for K» [25,
equation 9.6 23] and a change of variable, should be self-evident.

1 pw ®
Zf G(x)dx = lim l—KZ—(x)}dx
L]

0 € .‘C2 X
1 @ @
=lim [— - f f Viti—1 e"“dtdx]
0 | € € 1
= lim [fm e~¢dt — fw Viz—1 fm e~ *tdxdt
0 0 1 €
1 - JiZ =
= lim U' eetdt + f (1 ——tt—l) e“"dt]
=0 0 1

=1+ fm (sechs — e—%)ds = 3 7. (121)
0
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"Boussinvésq-Papkovich Functions for
Creep Around a Spherical Cavity or
a Rigid Inclusion in a Gravity-

Loaded Half Space

Boussinesq-Papkovich stress functions are used to determine three-dimensional closed
form solutions for steady creep around a spherical cavity or rigid inclusion in a half space
under gravity loading. The ratio of cavity depth to radius is assumed to be greater than
5, and the flow law of the half space is linear, which allows for solution in terms of a finite
number of spherical harmonics. Numerical results are given to show the influence of the
lateral stress component at infinity, the stabilizing effect of internal cavity pressure, and
buoyancy forces associated with the motion:of a rigid inclusion.

Introduction

In recent years much interest has been focused on the use of un-
derground caverns for storage of gaseous and liquid hydrocarbons and
radioactive wastes. Relatively pure deposits of halite (salt) have been
approved for cavern construction in certain instances, and, because
of the compliant nature of the material at relatively low temperatures
and stress levels, questions of creep around the cavern have arisen.
Since the creep law for halite is a nonlinear (usually taken as a power
law) function of the driving stress, numerical methods must be re-
sorted to for investigation of creep and cavern stability [1,2]. Confi-
dence in these calculations would be greatly reinforced if closed-form
solutions to even the linear problem could be developed and used for
comparison purposes. It is the purpose of this paper to provide such
solutions for deep cavities using the elastic analogy for steady creep
[3] and the Boussinesq-Papkovich stress function approach. A related
problem, the motion of a rigid spherical inclusion embedded in a half
space, is also studied using this method, and the Stokes solution for
viscous flow about a sphere is obtained.

In the present paper we treat an idealized problem of a semi-infi-
nite, linearly creeping body containing a spherical cavity of radius a
and loaded by gravity and uniform pressure on the cavity surface. The
center of the cavity is located at a depth H, and the ratio H/a is as-

Contributed by the Applied Mechanics Division of THE AMERICAN SOCIETY
OF MECHANICAL ENGINEERS, and presented at the 1981 Joint ASME/ASCE
Applied Mechanics, Fluids Engineering, and Bioengineering Conference,
University of Colorado, Boulder, Colo., June 22-27, 1981.

Discussion on this paper should be addressed to the Editorial Department,
ASME, United Engineering Center, 345 East 47th Street, New York, N.Y.
10017, and will be accepted until September 1, 1981, Readers who need more
time to prepare a Discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division,
February, 1980; final revision, October, 1980. Paper No. 81-APM-30.

Journal of Applied Mechanics

sumed to 5 or greater, whereupon stresses applied to the cavity wall
are little felt on the planar boundary. The assumption is consistent
with construction practice for caverns in sait domes. This considerably
simplifies the analyses of Tsuchida and Nakahara [4, 5] as applied to
a semi-infinite elastic body with an embedded cavity where traction
boundary conditions on both the planar and cavity surfaces are sat-
isfied exactly with the aid of Hankel transforms and relations between
spherical and cylindrical harmonics.

As mentioned, the elastic problem of a spherical cavity in a half
space has been treated in references [4, 5] for uniform tension applied
at infinity and for the case of uniform pressure on the plane boundary
or the surface of the cavity. Mitchell and Weese [6] used spherical
dipolar coordinates to treat the same problems, but their results ap-
pear to differ significantly from those of [5] for the case of uniform
pressure on the plane boundary. Atsumi and Itou [7] gave the elastic
solution for the transversely isotropic half space under a uniform
tension at infinity. Finally, there appears to be no exact solutions as
yet for the case of the elastic half space with spherical cavity and
loaded by a gravitational body force field, but it is clear that the
mgthod of Tsuchida and Nakahara could be used to supply such a
solution.

Basic Equations

The origin of a spherical coordinate system (R, 8, ¢) is located at
a distance H from the planar surface of the half space as shown in Fig.
1. The spherical cavity is of radius a as shown, and is loaded by a
uniform pressure p. The half-space material is linearly viscous with
constant viscosity G. The density of the half space is p and under the
action of the gravitational force a far field equilibrium system of
stresses

or =00 =—~M\pgz, 0,=-pgz, T, =0 (1)
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Fig. 1 Geometry of the spherical cavity problem

is developed.! Here, the stress components are taken with respect to
a cylindrical coordinate system (r, 8, z) with origin /. This stress field
will put tractions on the cavity surface, which will be removed by the
system of stresses developed below using the Boussinesq-Papkovich
stress function representation and outer spherical harmonics.

The basic equations for steady creep of a linearly viscous material
are the equilibrium equations, the strain rate-velocity relations, and
the constitutive equation. Under the “elastic analog” [3], these
équations become the equations for linear incompressible elasticity
where the elastic Poisson’s ratio is taken as one half to reflect in-
compressibility of the creep strain rate, the viscosity becomes the
shear modulus, and velocities and strain rates become displacements
and strains, respectively. Elasticity solutions then carry over to linear
steady creep solutions.

A general solution of the displacement equations of equilibrium
for the case of axisymmetric elasticity without torsion is given in terms
of Boussinesq-Papkovich stress functions x and ¢ [8]. Taking Pois-
son’s ratio equal to one half, in spherical coordinates the velocities
(up, wy) are given by

Pe)
2Gug =9~X+Rcos¢a—;’—cos¢‘ll

OR
2Gw, =-1-%+ cos¢a—‘1/+sin oV ()
R 29 o
while the stresses (ar, o0, 04, Try) are given by
%y 2 oV  sing oV
oR =E+RCOS¢—6—I—€;_COS¢SE+_R_S—(;
_10ox  cotddy 1 ov
“TRoR" R® 24 Rsing o
1 9% 10x  cos¢pd?¥  singo¥ @
% Riog "RoR' R o0’ R op
1 9%y 1 ox ?W  cos ¢ oW
TRe =~ ———-—+cos¢ —_——
RoRdp R204 2Rd¢ R ¢

1 X is a parameter that reflects the magnitude of the lateral stress, which is
also proportional to distance from the planar surface. If, for instance, A = #/(1
~ p) where v is the elastic Poisson’s ratio for the half-space material, then the
lateral stress would enforce a zero lateral displacement at infinity.
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and where, in the absence of body forces, x and ¥ satisfy
V2 =0, V2V =0Q. (@)

Solutions to equation (4) for the spherical cavity problem are given
in terms of outer spherical harmonics possessing singularities at
R = 0 and being regular for R > qa,

Pm(#)
Rm+1

P
™ pm+1’

¥v=3 B,

m=0

x=73 A »)

m=0
where u = cos ¢ and P,, is the Legendre polynomial of order m.
Our objective is to produce a solution for the half-space problem
that contains a cavity with no traction on the cavity boundary. This
requires that we superimpose on the stress solution, equation (1), a
complementary stress distribution, which annihilates the stresses on
the cavity boundary produced by the solution represented by équation
(1). To do this we expand the tractions (or, 7r¢) on the cavity surface
caused by the stress field equation (1) in terms of Legendre polyno-
mials and then to use the negative of the tractions as boundary con-
ditions to determine a solution of equations (3) and (5); i.e., determine
the constants Ap, By, m =0, 1, 2, .... Converting the stress state,
equation (1), into spherical coordinates and spherical stress compo-
nents and then expanding in Legendre polynomials gives the unique
finite series representation,

orla) 1 K
P, —3(1+2)\)+5(3+2)\) P1(u)
2 2K
+§(1 —A) Pa(p) + E(l — N) Py(u)
Trela) _ o {1 P
oaH sin (1-x) 5KP1 (u)+3P2 (w) + 5 Py (). (6)

In equation (6) k = a/H. Substituting equation (5) into the first and
last of equation (3), setting R = a in the resulting equations, and then
equating? to equation (6) gives a set of equations for the coefficients
Am,Bn,m=0,1,2,....

1
Ag=—(~T+16)\) By=
0 18( ) By

O wx

5
Ar==—(1-MNk By=-(1-\
19 9 @

2 14
A2=—Z(1-)) Bp=—(@1—-X\
2 9( ) 2 5,7( )k

2
Ag=—=(1-X By=
3 19( )k 3=0

The sum of this solution given by equations (2), (3), (5), and (7) and
the solution given by equation (1) will correspond to the half-space
solution under gravity loading and proportional lateral stress at in-
finity and with no traction on the cavity surface. There will, however,
be traction on the planar surface. For H/a = 5 this traction will be
shown to be small.

When an infinite elastic body is subjected to a uniform pressure s
on the wall of a spherical cavity of radius a, the Boussinesq-Papkovich
functions take the simple form

_pa?
2R’
from which the stress components and velocities in spherical coor-
dinates can be derived. On the plane boundary of Fig. 1 the stress

components 7,;, ¢, are
g, ad { 1 3H? ]
2 (H2 +r2)32  (H2 + 12572

V=0 8)

adHr
(H? + r2)5/2 .

T3 )
r 2

2 Recurrence relations between Legendre polynomials and their derivatives
must also be used to arrive at a form consistent with the representation in
equation {B).
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Fig. 2 Velocity field around a stabilized cavity (p = pgH) in a half space
under hydrostatic loading (A = 1)

For H/a > 5 the stress components at the planar surface are less than
one percent of the applied pressure on the cavity wall.

Numerical Results

The velocity components (u, w) corresponding to the stress state,
equation (1), for a linearly viscous material of viscosity G can be shown
to be (in cylindrical coordinates)

1
2Gu = % (1= M) pgrz, 2Gw = —-g(]. — A pg (2224 r2). (10)

When A = 1, the state of stress is hydrostatic and the velocity field is
identically zero. Also, referring to equation (7), we see that the solution
around the cavity is particularly simple since Ao = §and By = «/3 are
the only nonzero coefficients in the polynomial representation. For
definiteness we display this solution for pressure s on the cavity
surface and a hydrostatic gravitational loading pg:

2Gun _ _1(1 __ﬂ_) (EJZ_E (ﬁ) cos b

pgHa 2 pgHI \R 3 \R
2Gw(,, 1 ((1) .

=—Kk|=]sin¢
pgHa 3 \R

(an

cos ¢
a

A
1+ «k|—|cos¢

o (1= <)

a
3

o -
pgH pgH a 2 pgHI \R

’TR(/,=0.

and

Inspection of the radial velocity component of equation (11) shows
that for deep cavities (k = a/H « 1) and g < pgH the deformation
is essentially a uniform collapse of the cavity. Of greater interest,
however, is the case when the applied cavity pressure equals the
overburden pressure at the cavity equatorial plane. Here, the velocity
field on the cavity wall is given by

2Gug 2 2Gw, 1
= ——K COS ¢, =~ K 8ln ¢
pgHa 3 pgHa 3
and is a volume preserving rise of the cavity as shown in Fig. 2. This
buoyancy effect had been observed previously in numerical investi-
gation of nonlinear creep around a cavity in halite [1].

Setting k = 0 in equation (7) gives the solution for cavity under
biaxial compressive stress field pgH and ApgH at infinity. With Ag
= (7 + 16M\)/18, Ag = —2 (1 — N)/9, and B; = 5 (1 — A\)/9 being the only
nonzero coefficients, the following stress components are obtained:

(12)
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1.00

i

@ IN DEGREES

-1,00

2,00

F}\lg. 3 Variation of hoop stress on the cavity surface for various values of
,K=0 '

AX1S OF SYMMETRY

Fig. 4 Contour values of hoop stress around the cavity for x = 0.2 and A =
0.5

= —cos? ¢p — AsinZ ¢ +

pgH 3 0

oOR (142N (a)3 p

2 {al3 al2
+ g (E) [(—7 + 16M) (E) + 5(1 - )\)]Pz

AR R ELTE MY

pgH sin ¢ 9 R R (i9)
e _ -\ = (_1_41» (2_)3 Py + g,(l - (ﬁ)5 Py
pgH 6 R 9 R

— 18 3
—G'/—’-=—(sin2</>+)\cos2</;)+(4)\1—8122(%) Py

alb (I=ANfa® _,
O PR ELT
Fig. 3 illustrates the variation of ¢,/pgH around the cavity surface
for A =0,% % 3 and 1. The case A = 0 agrees with the well-known so-
lution (see reference [8], for instance) for a spherical cavity in an in-
compressible elastic material submitted to uniform axial compression
at infinity. The stress concentration factor is 39/18 as determined by
the value of o, at the equator of the cavity.
Fig. 4 illustrates a contour plot of the hoop stress gy around the
cavity for k = 0.2 and A = 0.5, and in Fig. 5 the values of o5 on the
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DISTANCE FROM AXIS OF SYMMETRY

Fig. 5 Values of hoop stress on the plane surface of the half space for K =
0.2and A = 0.5

planar surface are shown. Legendre polynomials and their derivatives .

up to and including order 3 are present in this solution. As can be seen
from Figs. 4 and 5, the hoop stress along the planar surface is less than
one percent of its maximum values on the cavity surface. Fig. 6 illus-
trates the deformed shape of the cavity surface for the case x = 0.2 and
A = 0.5. The deformed shape was produced from displacements found
by applying the velocity field over a time period At where At is used
for scaling the resultant deformation. )

The Boussinesq-Papkovich functions can also be used to obtain
the solution for slow, viscous flow about a spherical inclusion in a
gravity loaded half space. Here, we take A = 1 and, hence, the velocity
field away from the inclusion is identically zero. Presuming that the
inclusion is rising with a velocity ug because its density, py, is less than
that of the surrounding medium and that the inclusion is bonded to
it, we must have the boundary conditions,

UR = —UgcCoS¢, wy=upgsing on R =a.

Substituting equations (5) into equations (2) and setting equal to the
foregoing velocity boundary values at R = a then gives all zero coef-
ficients except for Bo = 3Guoa/2 and A1 = —Guoa3/2. The velocities
and stresses in spherical coordinates are then found to be

2
Uup = % (%) (%) - 3] cos ¢

2

Wy = l—;—o (%) (%) + 3] sin ¢ (14)
IR —-(1 + E cos </>) + 3 (2]2 F - (3)2 —GUO cos ¢
psH H 2\R} 12 \R pgHa
TRy _ _3_(2)4 Gugsin ¢ (15)
pgH 4\R pgHa

3 4G

&=_"1’,=_(1+ﬁcos¢)+_(ﬁ) Gugcos ¢
pgH  pgH H 4\R pgHa
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Fig. 6 Deformation of the spherical cavity, x = 0.2 and A=05

We can calculate the force on the inclusion from the stress field,
equation (15) evaluated at R = a as

2ra? j;r [cos ¢ o — sin ¢ TRe] sin ¢ do.

Equating to the weight of the spherical inclusion then gives a

relation between the velocity of rise and the density contrast
p—pras

_2a%

“T9G

This formula can be reduced to the classical Stokes formula for the

drag on a sphere moving slowly through a linearly viscous fluid [9].

(16)

(p = p1).
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Viscoelastic Analysis of Adhesively
Bonded Joints

In this paper an adhesively bonded lap joint is analyzed by assuming that the adherends
are elastic and the adhesive is linearly viscoelastic. After formulating the general problem
a specific example for two identical adherends bonded through a three parameter visco-

elastic solid adhesive is considered. The standard Laplace transform technique is used
to solve the problem. The stress distribution in the adhesive layer is calculated for three
different external loads namely, membrane loading, bending, and transverse shear load-
ing. The results indicate that the peak value of the normal stress in the adhesive is not
only consistently higher than the corresponding shear stress but also decays slower.

1 Introduction

In its simplest form an adhesively bonded structure consists of three
components of different mechanical properties, namely, the adhesive
and the two adherends. Because of the nonhomogeneous nature and
of the geometrical complexity of the medium, even for the linearly
elastic materials the exact analytical treatment of the problem re-
garding the stress analysis of the structure is, in general, hopelessly
complicated. The existing analytical studies are, therefore, based on
certain simplifying assumptions with regard to the modeling of the
adhesive and the adherends. The adherends are usually modeled as
an isotropic or orthotropic membrane (e.g., [1}), a plate (e.g., [2,3]),
or an elastic continuum (e.g., [4~6]). The primary physical consider-
ation used in the selection of a particular model is generally the ratio
of the thickness of the adherend to lateral dimensions of the bond
region. For example, for adherends with a very small relative thickness
the bending stiffness may be neglected whereas if the thickness of the
adherend is not small even the plate assumption may be erronepus.
As for the adhesives, generally the thickness variation of the stresses
is neglected and the adhesive layer is modeled as a linear shear or a
tension-shear spring.

In most applications of structural adhesives the operating tem-
perature is such that the adhesive remains in its initial glassy stage
through the entire loading period and hence it is not necessary to
consider the time-dependent behavior of the stress-strain relations
in performing the stress analysis of the joint. However, in certain

1 This work was supported by NASA-Langley under the Grant NGR 39-
007-011 and by NSF under the Grant ENG 78-09737.

2 Permanently, Faculty of Engineering and Architecture, Technical Uni-
versity of Istanbul, Macka, Istanbul, Turkey.
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10017, and will be accepted until September 1, 1981. Readers who need more
time to prepare a Discussion should request an extension from the Editorial
Department. Manuscript received by ASME Applied Mechanics Division, July,
1980; final revision, October, 1980.
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applications, the temperature and the load duration may be such that
the rheological behavior of the adhesive may no longer be negligible.
In this paper the adhesively bonded joint problem is considered by
assuming that the adhesive is a linear viscoelastic material.

2 Formulation of the Problem

In formulating the adhesively bonded joint problems unless the
thickness of the adherends is at least two orders of magnitude smaller
than the length characterizing the bond region the generalized plane
stress or the membrane assumption does not seem to be very realistic.
On the other hand in an adhesive joint between relatively thin ad-
herends, even if it were possible to formulate the problem by assuming
the adherends as elastic continua, the numerical analysis involve such
severe convergence problems that the accuracy of the results may be
highly questionable [5]. In such problems the plate assumption in
modeling the adherends appears to be a fairly good compromise. Thus,
in this paper, the problem will be formulated under the following
primary assumptions: (a) the adherends are treated as linear elastic
plates and the transverse shear effects are taken into account; and (b)
the adhesive is considered as a viscoelastic solid in which the in-plane
strain as well as out-of-plane strain and shear strain are assumed to
be nonzero. The secondary assumptions under which the specific
problem is formulated and solved simplify the analysis quite con-
siderably but do not affect the character of the solution. These as-
sumptions are: (a) the problem is one of plane strain, that is, the
bonded joint is very “wide” and undergoes cylindrical bending; (b)
the adherends have the same thickness and are made of the same
material; and (c) the structure is a single lap joint. The elastic version
of the problem neglecting the transverse shear effects in the adherends
was considered in [2]. The solution of, again, the elastic problem for
different adherends with a somewhat simpler adhesive model may
be found in [3].3

3 Needless to say, the problem has been very widely studied. Some references
to further analytical work and to finite-element-type solutions may be found
in [3].
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It should be pointed out that at present the continuum elasticity
solution of the problem appears to be intractable. To appreciate the
difficulties involved, one may refer to [4] where the elastostatic
problem for a “lap joint” is considered. In [4] the problem could be
solved only under rather severe simplifying assumptions. The. two-
dimensional elasticity problem formulated in [4] is actually that of
an infinite strip (—o < x < o, —h <y < h) containing two semi-in-
finite cracks in the midplane (y = 0, |x| > a) of the strip. Uniform
tension is applied at infinity to the lower half on one side (at x = o,
—h <y < 0) and the upper half on the other (x = —»,0 <y <h). The
problem is then solved basically as a crack problem.4

The geometry of the problem under consideration is shown in Fig.
1(a). From the equilibrium of the plate elements for the adherends
1 and 2 the following differential equations may be obtained:

ale _ anx aMlx hl + hO
—E =y g = Qi — 7, (la—c)
ox ox ox 2
ON o oM. he+ h
2 _ _ , Qox =—g, 2 _ Qo — 2 01_’ (2 a—c)
ox ox ox 2

where” Niz, @ix, M,
transverse shear, and moment resultants, the index i = 1, 2 referring
to the adherends 1 and 2, k1, hg, and hg are the thicknesses of the
adherends and the adhesive as shown, and a{x, t) and 7(x, t) are the
interface normal and shear stresses. In modeling the adhesive it is
assumed that the stress components oy (x, y, t) = o(x, £} and 7,y (x,
¥, t) = 7(x,t) in the adhesive layer are independent of the y-coordi-
nate.

Assuming cylindrical bending, €1, = 0, €2, = 0. The stress resul-
tant-displacement relations may then be expressed as

oy bﬁlx ouy Q1+
—= = C{N1,, =DMy, —+B1.=— (8a—c
on Wi, WM, — Bie B ( )
bu aﬁzx al)z %
—= = C9Nq,, = DoMo,, —+ — {da—c
o Now, Moz, Bax = B, ( )

4 On the other hand in this paper the lap joint problem is formulated as a fi-
nite plate problem under certain boundary conditions. Nevertheless, qualita-
tively the elastic results found in this paper {(equations (71) and (73)) agree with
that given in (4].
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iz are, respectively the standard membrane,

where

1—p2
Ci=—, D;=
Ehi

12(1 — »;?) .
ng—, By =—wh;, (i=1,2)
i

(=2 R

(5 a—c)

E;, i, vi, (i = 1, 2) are the elastic constants, u;(x, t) and v; (x,t), (i =
1, 2) are x and y-components of the displacement vector and By, (i
= 1, 2) is the rotation of the normal to the midplane of the adher-
ends.

It may be seen that as stated the problem has 14 unknown func-
tions, namely, o, 7, u;, Vi, Bix, Nix, Qix, Mix, (i = 1, 2). Equations
(1)-(4) provide 12 relations. The remaining two relations necessary
to complete the formulation of the problem are obtained from the
continuity conditions for the displacements in the bond region. To
do this the mechanics of the adhesive layer, specifically its constitutive
relations need to be considered.

Referring to Fig. 1(b) the average strains in the adhesive may be
expressed as

h h
Yxy = {ul - '2—'1 ﬁlx —Ug — '—22 ﬁZx)/hO’

&y = (v1 —~v2)/ho,
(aul hi10f1x buz hz 0f32:
€ = [ — =01, 02
ox 2 ox ox

Noting that all the remaining strain components in the adhesive are
zero and defining

)/ 2 (6 a—c)

e =(ex+ ¢)/3, 7)

the strain tensor for the adhesive may be decomposed as follows:

€ Yzy/2 0O e 00 —e yx/2 0
Yi/2 & 0f=]0 e O]+ 'yxy/2 &—e O 8)
0 0 0 0 0 e —e

Similarly, noting that ¢y = 0, 7.y = 7, the stress tensor for the adhe-
sive may be decomposed as

Oy s 0 0 x — 8 T 0
T 0 s 0]+ c—s 0
0 0 o, 0 0

where, the hydrostatic component of the stress tensor s is defined
by

(9

z — S

s=(ox+ 0+ 0,)/3 (10)

The constitutive equations of linear isotropic viscoelastic materials
may be expressed in terms of either hereditary integrals by using creep
compliance or relaxation functions, or differential operators® [7-9].
In this paper the latter approach is adopted and it is assumed that

Pl(sij) = Ql(eij)r (")]) = 1, 2! 3, (11)
Po(s) = Qqle) (12)

where s;; and e;; (i, /,) = 1, 2, 3, are the deviatoric components of stress
and strain tensors, respectively, as given by (8) and (9), s and e are
defined by (10) and (7), and Py, @1, Py, and @2 are differgntial oper-

n
ators of the form Y ay (¢) 9%/dt*, the coefficients ay, being generally
0

& The two formulations are, of course, related through Laplace transforms.
For example, the creep compliance J{t) is the inverse Laplace transform of
P(s)/sQ(s) where P and @ are the related differential operators operating on
o and ¢, respectively, and s is the transform variable.
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functions of temperature. More explicitly, from (7)—(12) it may be seen
that

P1(2qx -0~ 0;) =12 ~ ¢), (13)

Pi(20 — 04 ~ 0,) = Ql(zey - €), (14)

P1(20; — 0. — 0) = —Q1lex + &), (15)
1

Pi(7) = 5Q1(wy), (16)

Py(ox + 0+ 0;) = Qolex + €y). amn

3 3
Since 3~ sii = 0 and Y ¢; = 0, equations (13)-(15) are not linearly
1

1
independent. Equation (14) may be obtained by adding (13) and (15)
and will, therefore, be ignored in the remainder of the analysis.

Practical experience indicates that under a hydrostatic stress state
most viscoelastic materials behave elastically. Hence, it may be as-
sumed that

Py=1, Qy=3K, (18)

or

ox+ o+ 0, =83K(e; + ¢y) (19)

where K is the bulk modulus of the adhesive. Eliminating ¢, and a,
from (13), (15}, and (19) and using (6 a-c), the constitutive equations
may now be written

19u; hpd 10ug hed ~
3Pl{K_ﬂ___l ﬁu+__g+_2 52x+u]_,,]
20x 4 ox 20x 4 ox ho
1du; hyd 10 ho d 2
_ [___1__1 51x+__”2+—2—ﬂ—21———<ul—m] (20)
20t 4 ox 20x 4 ox  ho

h
- ?2 /32x)/hol (21)
Equations (20) and (21) with (1)—(4) provide the system of 14 relations
necessary to solve for the unknown functions o, 7, u;, v;, Bix, Nix, Qix,
and My, (i = 1,2).

1
Py(7) ='2“Q1[(u1 “%ﬁu — U2

3 Example

As an example we consider a single lap joint which consists of two
identical adherends bonded through an adhesive layer which may be
represented by a three-parameter viscoelastic solid (Fig. 1 (¢)). For
the adherends we have

1-p?
hi=he=h, Ci=Cy=C= s
1 P i 2 Zh
_ _ 120 -9 . _ b
DI_DQ_D_——Eh_?*—’ Bl—Bg—B—gyh. (22)
For the adhesive, referring to Fig. 1(c) it may be shown that
Ie) [}
Pi=1+4+a;—, =by+ by — 23 a,b
1 as Qi=bo+ b > (28 a,b)
where
oy = 2 LU LI (24)
kit ke ki+ ks’ ki + ko

For a nondecreasing strain under sustained load the following in-
equality must be satisfied:

by > ajbe. (25)

Generally, the coefficients ay, bg, and b are functions of temperature,
hence implicitly, functions of time if the temperature does not remain
reasonably constant during the period of loading. In the example
considered, it is assumed that these coefficients are constant.
Through a relatively straightforward elimination, the governing
equations (1)-(4), (20), and (21) can be reduced to a pair of differential
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equations in the unknown functions ¢(x,t) and 7(x,t). By carrying
out this elimination, using (22) and the operators defined by (23) we
obtain

oir %7 bo
—+ 2C +—— h+h
ox? | ox2at  2he [ th + holj7
by bohD bihD on
-2 2C+—h+h LA £) - 26
2ho ( °)] sho 0" Th a0
Ao dbg
3——— 3 D(3K - bg) — —= (3K + 2bo)| —;
oxd albx“a [ ( 0) ( , 0)]

B o8
+ |-D(BKa; ~ b)) — —— (3Ka; + 2by)] ——
[2 (3Ka1 ~ by) hoB (3Ka, 1)} et

9 2 >
+ = DK + 2b)a + — D(3Kay + 2b1) — = 0. (27)
ho ho ot

Assuming that no external transverse shear load is applied to the
composite plate in —I < x <[ and noting that 7(x,t) is the average
shear stress acting on the adhesive, referring to Fig. 1(a) the equi-
librium of transverse shear resultants gives

Q12 (x,£) + Qax (x,t) = Qolt),

Equation (28) has been used in deriving (26).

The differential equations (26) and (27) are uncoupled and may
easily be solved by first reducing them to ordinary differential
equations through the use of Laplace transforms. Assuming that the
bonded joint is initially stress-free, the functions o(x,t) and 7(x,t) are
zero for t < 0 and from (26) and (27), we find

(=l <x <) (28)

—— o = 29
il B (29)
d4G d2G
— - 2y2 4+ 0!G =0 30
dx4 2y dx? T (30)

where F(x,s) and G(x,s) are the Laplace transforms of 7(x,t) and
o(x,t), respectively, and

[4C + hD(h + ho)}(bo + bis)

o= (31)
4h0(l + als)
g= hDQo (bo + bla) 32)
4hos(1 + ays)
2= -—1—[——-(3K+ 2b)—'—lD(3K bo)
YT 8L+ ars) lhoB o °

+ s[-}—l:é (8Kaq + 2by) — ED(SKal - bl)”, (33)

2D
w = ————[3K + 2b¢ + s(3Ka; + 2b1)].
3ho(1 + GIS)
In the example it is assumed that the external loads are given by (see
Fig. 1(a))

No(t) = NoH{t),

(34)

Ma(t) = M2H(0),
Qa(t) = QOH(t)

where H(t) is the Heaviside function. For example, the nonhomo-
geneous term 8 which appears in (29) and which is given by (32) is
obtained by using (35d).

The general solution of (29) and (30) may be written as

M, (t) = M H(1),
(35 a-d)

F(x,s) = A sinh (ax) + A cosh (ax) — %r (36)
o
G(x,s) = Agsinh (¢1x) + A4 cosh (¢1x) + A5 sinh (pox)
. + Ag cosh (¢ax) (37)
where

(38)

= [.),2 + (74 — w4)1/2]1/2, (,Y4 _ w4)1/2]1/2’

be= [y~
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and the unknown functions A,(s), ..., Ag(s) are determined from the
boundary conditions.

The problem is solved under three separate loading conditions
shown in Fig. 2. )

(a) Membrane Loading (Fig. 2(a)).

For this case the boundary conditions for plates 1 and 2 are given

as follows:

Nu(h) =0, M) =0, Qut)=0,  (3%ac)
Ny (=1t) = NoH(t), M. (=Lt)

=Nt h°H(t) Qu(=Lt) =0, (40a—c)
Nax(ht) = NoH(®), Max(t)

AL J;'“’H(t), @ulli)=0,  (dlac)
Nos(=0,6) =0, Max(=Lt) =0, Qox(~1t) =0, (42a—c)

Considering the symmetry of the problem in geometry and materials,
after some lengthy manipulations it can be shown that (39)-(42) are
equivalent to the following conditions:

F(x,8) = T(=x,t), f’l F(x,t) dx = —=NoH(t),  (43a,b)

{
o(x,t) = o(=x,b), f Jolet)dx =0, (44a,b)

h h [¢)
—D@BK — bg)a(l,t) + —D(38Ka, — by) — a(l,t)
2 2 ot

1
- — (3K + 2b
ho( o)

2 D
B a(l,t) + Py (h+ ho)NoH(t)]

1(31(a +2b)[26 (lt)+D(h+h)N(S(t)]
—— 2L, =z
b 1 1 RN 3 0)No

2

d 3
+ 3—— o(l,t) + 3a; —— d cr(l t) = (45)
ox? ox2

In this problem since §p = 0, 8 = 0 and substituting from (36) and
(37) into (43)—(45) we obtain

(IN()

As(s) =0, Agls)= ———-20—,

16s) 28) == enh (al)

(h + ho)Now? sinh (pal)

A =0, A = —

3(s) 4(s) PR

(h + ho)N0w4 Sinh ((/)11)

A, 8)= 0, A = ’ 4

5(s) 6(8_) 4510 (5) (46)

where
Ay (s) = ¢g cosh (¢1l) sinh (p2l) — ¢1 sinh ($11) cosh (¢al).  (47)

(b) Bending (Fig. 2(b)).

For this problem the nonhomogeneous boundary conditions are
M (—1,t) = MoH(t), Mz (l,t) = MoH(2), (48a,b)

and the remaining stress and moment resultants at x = +/ which

appear in (39)-(42) are zero. Again, considering the symmetry of the

problem these conditions may be shown to be equivalent to the fol-

lowing:
T(x,t) = —71(~x,1), (49)
) o2
“a—T(l ) +a1b T(,t) = Mo[boH(t)+b16(t)], (50)
olx,t) = ~o(—x,t), (61)
! .
f_l o(x,t)x dx = MoH (), (52)
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(c)
Fig. 2 The loading conditions

D o

hD h
(3K — bg) Y a(l,t) + (3Kaj — by) —2—5 a(l,t)

1 2
- ;l_o (3K + 2bg) [E a(lt) + DMOH(t)]

1 20
— —(8Kay + 2b1) |=— o(l,t) + DMy6(t
ho( ay 1)[Bbt0( ) 0()]

2

+ 325 5(Lt) + 80y —— Lol =0. (53)
dx2

0
2x2d
In this problem, too, 3 = 0, and substituting from (36) and (37) into
(49)—(53) we obtain

hDM()(b() + bls)

A == , A =0,

ils) 4hoas(l + a1s) cosh {l) 2(s)
w*M cosh (¢p2l)

Ag(s) = — L0 02 Adls) =0,

3(s) 25 had(5) 4(s)
wiMpy cosh (¢1l)

A = —— A =

5(s) SWWWE &(s)

Ay (s) = ¢ sinh (¢1l) cosh (¢al) — ¢y cosh (¢1l) sinh (pal). (54)

(¢) Transverse Shear (Fig. 2(c)).
For the loading given in Fig. 2(c) the nonhomogeneous boundary
conditions are

My (=Lt) = =QolH(¢), Qi (~1,t) = QoH(t),
Mo, (LE) = QolH(t), Qa: (Lt) = QoH (),

(55a,b)
(56a,b)
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and the remaining stress and moment resultants at x = £/ are zero.
It may again be shown that these boundary conditions are equivalent
to

rt) = T=x.0), j:'[ r(x,t)dx =0, (57 a,b)
1
o(x,t) = o(=x,t), f [o(0)dx = ~QeH(),  (58a,b)

hD <]
P—-D— (BK = bo)a(l,t) + —(3Ka; — by) — a(l,t)
2 2 ot

1 2
- h_o (3K + 2by) [B a(lt) + DQOZH(t)]

1 20
- h_o (3Ka1 + 2b1) [E_b—t O'(l,t) + DQolé(t)]

o2 o3 )
+3—o(l,t) + 3a o(l,t) =0. (b9
2t T B0 ®9)
In this case § is given by (32) and the functions A;(s), . . ., Ag(s) are

obtained as follows:

Bl
=0, Ag(s) = —P1
Al 2ls) « sinh (al)
As(s) = 0, Ayls) = Qolw?$1 cosh (dal) = wh sinh (#2D)]
23(/)2Ac (S)
As(s) =0, Agls) = — Qolw?p2 cosh (1) — w!l sinh (</>1l)]’
28“blAc (S)

Ac(s) = g cosh (p1l) sinh (¢al) — ¢ sinh (p1) cosh (¢al). (60)

4 Solution and Results

After determining the functions 4;(s), (i = 1,. .., 6) the unknown
functions 7(x,t) and o(x,t) may be obtained by substituting from_(36)
and (37) into the inversion integral. In each case the constant ¢ giving
the line of integration is determined by analyzing the singular be-
havior of the functions F(x,s) and G(x,s) in the complex s-plane.
Because of the existence of a number of branch points in the complex
plane the exact inversion of F and G becomes very complicated and,
in light of the fact that the inversion integrals can be evaluated in a
straightforward manner numerically, does not seem to be worth the
effort. Thus making the following change in variable

s=c+iy, —o<y<w (61)

the functions 7 and ¢ may be expressed as
7(x,t) = -;—ﬂ_ j:: Flx, ¢+ iy)etlctivdy, (62)
(e, t) = 51; I "G, ¢ + iy)erierindy, 63)

It can be shown that the imaginary parts of the integrands in (62) and
(63) are odd functions in y and therefore the integrals give real re-
sults.

Examining the functions F and G in the complex plane it is found
that s = 0 is a simple pole and all the remaining singularities lie in the
left-hand plane. Hence c is a positive constant. To evaluate the inte-
grals in (62) and (63) first they are expressed in (0, «) as follows:

S rordy = 710 + F=ylay.

Even though there are routine techniques for evaluating infinite in-
tegrals, it is generally a good practice to obtain the asymptotic be-
havior of the integrands for large values of the argument before se-
lecting a particular technique. In the problem under consideration
the integrands do not decay exponentially. Consequently, the nu-
merical integration requires more care. One way to insure that no
significant accuracy is lost due to the slow decay of integrands is to
evaluate the integral in closed form for large values of the argument.
For example, in the lap joint under membrane loading N (Fig. 2(a)),

(64)
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after analyzing the asymptotic behavior of the function F, the shear
stress 7 may be expressed as

1 A R . . .
T{x,t) = o f [F(x,c + iy)etc+d) + F(x, ¢ — iy)etc—)dy

T Jo

; cosh (xv/m/ay)

= gin (¢ty)

No )0 .
2w mfaye sinh (Iv/m/a;) Ja dy  (85)
where
m = b([4C + h(h + ho)D]/(4hg) (66)

and A is a “large” number. The second integral is known in closed
form and the first is evaluated numerically. The proper selection of
A requires some trial calculations. In this problem 4 selected in 20
to 30 range gives good results. It may also be pointed out that the
numerical calculations show the results to be insensitive to the choice
of the constant c.

In the numerical example considered it is assumed that the ad-
herends are aluminum alloy plates with the following elastic constants
and dimensions (Fig. 2):

E =107 psi = 6.895 X 101 N/m?2, »=0.3

h =0.09in. =0.229 X 1072m, [ =0.5in. = 1.27 X 10~2m.

In the three parameter viscoelastic solid adopted for the adhesive the
coefficiénts which appear in the operators P; and @, (see equations
(23a, b)) are related to the constants shown in Fig. 1(c) by (24). To
relate these constants to somewhat more conventional material
properties consider the response of the model given in Fig. 1(¢) to an
input 7 = 7gH(¢) which is found to be

1 ‘ T0 b1 )\2
—y(t) == [to(l — e~t/%) + ae~tt0), fo=—=, (67
2’)’() b1[0( )+ ax } b ko (67)
where t¢ is called the retardation time. Now defining
T0 T0
Mo = ) Mo = (68)
) (=)
from (67) it is seen that
b kik
o=~ = ki, po = by =2 (69)

ai —h1+k2

Thus the moduli go and p. and the retardation time to may be se-
lected as the three parameters representing the viscoelastic solid.

For the particular epoxy used as the adhesive the properties at
t = 0 are assumed to be

ho=0.004in. =1.016 X 10™4m
Eo=5.797 X 10% psi = 39.968 X 108 N/m?
po = 2.225 X 10% psi = 15.341 X 108 N/m?

The bulk modulus K is assumed to be constant and may, therefore,
be calculated in terms of Eg and the shear modulus g as

__ Eopo

= 70
3(uo — Eq) (70

In the example it is also assumed that

fe = uo/3, to=4hr

If it is assumed that the adhesive layer is linearly elastic having the
constants E, and »,, with the adhesive model used in this paper the
solution may be obtained in a straightforward manner. For example,
in the case of membrane loading described by (39)-(42) the adhesive
stresses are found to be

_ Noa, cosh (oex)

Tel®) = T cinh () 7
E
2= [4C+ :
o TR [4C + hD(h + hy)] (72)
ge(x) = By cosh (mx) + Bg cosh (mox), (73)
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Fig. 3 The shear stress 7,, = T(x, t) in the adhesive layer
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Flg.4 The normal stress o, = o (x, t) in the adhesive layer

Table 1 Variation of 7(x, t)/(Ny/1) for the case of tension (¢ in hr)

x/e t 0 0.01 0.1 0.5 1.0 2.0 4.0 >
0 |-2.20x107" | -2.26x107" |-2.73x10"" |-5.29x107" |-9.12x10"" |-1.84x1073 |-4.02x1073 |-0.012
0.1 |-3.67x10" | -3.71x107" [-h.42x10™" [-8.15x107" [-1.35x1073 [~2.61x1073 [-5.40x1073 [-0.015
0.2 |-9.81x10"" | -9.95x10"" |~1.16x1073 |-1.98x1073 [-3.10x107> |-5.53x10"3 | -0.010  |-0.023
0.3 |-2.85x107> | ~2.89x1073 [-3.20x1073 |-5.24x107> |-7.78x1073 | -0.013 | -0.022 _|-0.041
0.h_|-8.36x1073 | -8.48x1070 |-9.45x1073 | -0.014 | -0.020 -0.030 | -0.048 [-0.075
0.5 -0.026 -0.025 -0.027 ~0.038 ~0.050 -0,07) ~-0.101 ~0.139
0.6 -0.072 =-0.073 -0.078 -0.100 =-0.125 -0.164 -0.213 -0.258
0.7 | -0.212 -0.213 -0.224 -0.266 | -0.309 -0.373 | -0.441 _|-0.481
0.8 -0.624 -0, 624 -0.641 -0.702_| -0.759 -0.833 | -0.891  |-0.896
0.9 | -1.834 -1.828 -1.838 -1.843 | -1.839 -1.816 | <l.757 _|-1.670
1.0 | -5.39] -5.351 -5.265 -L812 | -h.382 -3.838 | -3.866  |-3.112

Table 2 Variation of a(x, t)/(No/1) for the case of tension (t in hr)

x/t * 0 0,01 0.1 0.5 1.0 2.0 4.0 ®
o 11.01x107 | 118105 2.05x107° 5.80x107%| 9.57x107% t.48x10™*| 1.99x107( S or0
0.1 [-4.61x107%|-4.33x1073] -3.01x107°| 2.77x1073| 8.59x1073| 1.67x10"%| 2.46x107%| 2. 92x10 " |
0.2 |-b.45x10""[-4.38x10""] ~4.12x10" -2.90x10"" —|.69x|o'“ -8.28x1077| 1.61x107" 2.50%10""
0.3 |-2.45x1073]-2. bix1073| -2.40x1073] -2.20x1073] -2.00x1073] -1.73x1073] -1.49x1073|-1.38x10"3
0.4 | =-0.011 -0.011 -0.011 -0.01] -0.011 -0.011 -0.011 -0.011
0.5 -0.044 -0.044 _~0.04k4 ~0.045 -0.046 ~0.048 -0.043 -0.050
0.6 | _-0.153 | -0.152 -0.154 -0.158 -0.163 -0.169 -0.174 -0.177
0.7 |_-0.457 -0.456 -0, 460 -0.469 -0.478 -0.489 -0.498 -0.502
0.8 | ~1.052 -1.048 -1.052 -1.050 -1,048 -1.045 -1.040 -1.037
0.9 -0.882 | -0.876 -0.866 -0.808 -0.755 ~0.630 -0.639 -0.621
1.0 | 9.017_| 897 8.938 18,656 8.397 8.096 7.872 |_ 7.801 |
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o (£,1)/(Ng/d)

-t (£, 1)/(Ng/4)

I | |
0] ] 2

t (hrs)

Fig. 5 Variation-of maximum shear and normal stresses in the adheslve as
functions of time

I N B
3 4

B4 = —614N0(h + ho) sinh (mzl)/(4m2A),
Bg = e1*Ny(h + hg) sinh (myl)/(4m1A),
A = my cosh (m4l) sinh (mgl) — my sinh (m1l) cosh (msl),
i 2DE;(1 — v,)
ho(l — vy — 2042%)

mi=[y2+ (vt — VY2 mg = [y12 = (71t — Y V2)1/2,

9 (1 —v)E, _1__ hDv, ]
41 - »,)f

On the other hand, in the case of viscoelastic adhesive the elastic
response for { = +0 and t = « may also be determined by using the
limit theorems for the inversion of Laplace transforms, For example,
again for the case of membrane loading, from (36) and (46) the shear
stress in the adhesive may be obtained as

€1

Y1 (74)

Noag cosh (agx)

L +0) = — , 75
(x+0) 9 sinh (aol) (75)
b
a2 = ——[4C + hD(h + ho)], (76)
(i3]
and
Noows -
71, w) = — Yoo cOsh (@) o
2 sinh (!}
b
0?2 =~ [4C + hD(h + ho)]. (18)
4hy

Note that at t = +0, u, = Eo/2(1 + v,) = po and E, = Ey, and from
(69), (72), and (76), it follows that og = cv. Hence, the initial response
given by (75) is the expected elastic solution given by (71). Similarly,
at £ = ®, ug = pa, and (69), (72), and (78) show that a. = «,, and
hence 7(x, ») = 7.(x). Also, it can be shown that ¢(x, <) corresponds
to the elastic solution obtained by using pa = p and the bulk modulus
of the adhesive which is assumed to be a time-independent con-
stant.

Journal of Applied Mechanics

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm

Table 3 Variation of 7(x, t)/(Mo/12) tor the case of bending (1 in hr)

e | o0 0.1 0.5 1.0 2.0 4.0
0. 0. 0. 0, 0. 0. 0.
0.1 |-2.38x10"3 |-2.81x1073 |-5.01x1073 |-8.00x1073 | -0.015 -0.029
0.2 |-7.82x10 > |-9.07x10"3 | -0.015 -0.024 -0,042 -0.077
0.3 | -0.023 -0.026 -0.042 -0.062 -0.103 -0.175
0.4 -0.068 -0.076 -0.113 -0.159 -0.245 -0.382
0.5 | -0.200 -0.219 -0.303 -0.401 -0.573 -0.818
0.6 | -0,587 -0.629 -0.808 -1.005 -1.324 -1.720
0.7 | -1.720 -1.803 -2.143 -2.495 -3.010 -3.553
0.8 | -5.036 -5.171 -5.658 -6.123 -6.718 -7.185
0.9 | -.7n -14.82 -14.86 -14.83 -14.64 -14.17
1.0 | -43.15 k2,46 -38.8) -35.34 -30.95 -27.14

Table 4 Varlation of a(x, t)/(Mg/1?) for the case of bending (f in hr)

xt L 0.1 0.1 0.5 1.0 2.0 4.0
0. 0. 0. 0. Q. 0. 0.
0.1 [-5.9%x10™" |-4.84x107" | 5.50x107° | 5.00x10™0 | 1.19x1073 | 1.88x107)]
0.2 |-b.72x1073 |-4.45x1073 [-3.19x1073 -1 93107 [-1.85x107" | 1.51x1073
0.3 | -0.02 -0.026 -0.023 -0.021 -0.019 -0.016
0.4 | -0.118 -0.118 -0.117 -0.116 -0.116 -0.115
0.5 -0.465 -0.469 -0.480 ~0.491 -0.508 -0.521
0.6 | -1.62] -1.638 -1.686 -1.733 -1.79% -1.852
0.7 | -4.817 -1.891 -5.991 -5.084 -5.205 -5.301
0.8 | -11.15 -11.19 ETIY: -11.15 -11.11 -11.06
0.9 -9.318 -9.,209 -8.599 -8.031 "7.3‘0] -6.802
1.0 95.43 95.09 92.09 89.33 86.13 83.75

Table 5 Variation of 7(x, {)/{Qo/1) for the case of shearing (# in hr)

x/e t 0.0l 0.1 0.5 1.0 2.0 4.0
0. 4.030 4.030 4,028 4.025 4,017 4,000
0.1 4.029 4,029 4,027 4,021 4,011 3.989
0.2 4,024 4.023 4,016 4,007 3,988 3.949
0.3 4,009 4.006 3.990 3,969 3.928 3.854
0.4 3.964, 3.956 3.919 3.873 3.787 3.649
0.5 3.832 3.813 3.729 3.631 3.459 3.214
0.6 3,445 3. ok 3.225 3.027 2,709 2.312
0.7 2.312 2.229 1.890 1.537 1.022 0.479
0.8 | -1.004 -1.139 -1.626 -2.091 -2.686 -3.153
0.9 | -10.71 -10.79 ~10.83 -10.80 -10.61 -10.14
1,0 | -39.12 ~38.43 -34,78 -31.31 -26.92 -23.11

Table 6 Variation of a(x, t)/(Qq/1) for the case of shearing (! in hr)

xe * 0.01 0.1 0,5 1.0 2.0 4.0
0 1.37x10°° | 2.25x107" | 6.02x10" | 9.78x107" | 1.50x10™3 | 2.00x1073
0.1 |-3.86x10™" f-2.53x10™" | 3.33x10™% | 9.21x107 | 1.73x1073 | 2.53x1073
0.2 |-4.21x10 2 [-3.93x1073 [-2.68x1073 [-1.42x1073 | 3.10x107" | 1.98x1073
0.3 -0.024 -0.023 -0.021 -0.019 -0.016 -0.014
0.4 -0.109 -0.109 -0.107 -0.106 -0.105 -0.104
0.5 -0.433 -0,438 -0.h4S -0. 454 -0. 466 -0.479
0.6 -1.521 -1.538 -1.578 -1.619 -1.674 -1.724
0.7 ~4.595 -4.635 -h.726 4,811 -4.921 -5.009
0.8 -10.79 -10.84 -10.83 -10.81 -10.79 -10.75
0.9 -10.47 -10.38 -9.832 ~9,.322 -8.707 -8.225
1.0 82.09 81.77 79.09 76.62 73.76 71.63

For the three types of loading shown in Fig. 2, the calculated results
for 7(x,t) and o(x, t) are shown in Tables 1-6. To visualize the vari-
ation of the stresses in time and along the bond region some sample
results are also given in Figs. 3-5. Figs. 3 and 4 show the distribution
of shear and tensile stresses in the bond region in a single lap joint
under membrane loading for some fixed values of time. As expected,
there is a certain redistribution of stresses with increasing time. This
may also be seen in Fig. 5 where the variation of the maximum values
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of T and ¢ is given. From Figs. 3-5 and Tables 1-6 it may be observed
that the peak values of the tensile stress ¢ in the adhesive are not only
higher than the corresponding shear values but also decay slower, The
values 7 and o given in Tables 1 and 2 for t = 0 and ¢ = « are obtained
from the elastic solutions (71) and (73) by using the bulk modulus K

which is assumed to be independent of time and the corresponding
1o and fe.
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A Micromechanical Description of
Granular Material Behavior

Considered is a sample of cohesionless granular material, in which the individual granules
are regarded rigid, and which is subjected to overall macroscopic average stresses. On the
basis of the principle of virtual work, and by an examination of the manner by which adja-
cent granules transmit forces through their contacts, a general representation is estab-
lished for the macroscopic stresses in terms of the volume average of the (tensorial) prod-
uct of the contact forces and the vectors which connect the centroids of adjacent contact-
ing granules. Then the corresponding kinematics is examined and the overall macroscopic
deformation rate and spin tensors are developed in terms of the volume average of rele-
vant microscopic kinematical variables. As an illustration of the application of the gener-
al expressions developed, two explicit macroscopic results are deduced: (1) e dilatancy
equqtion which both qualitatively and quantitatively seems to be in accord with experi-
mental observation, and (2) a noncoaxiality equation which seems to support the vertex
plasticity model. Since the development is based on a microstructural consideration, all

material coefficients entering the results have well-defined physical interpretations.

1 Introduction

Suppose a medium consisting of rigid cohesionless granules carries
a set of overall macroscopic stresses through forces transmitted across
contact points on the microscopic scale. It is natural to expect that
the overall macroscopic mechanical properties of this material are
expressible in terms of the coefficient of contact friction, and pa-
rameters such as size and shape distributions, and the void ratio (the
ratio of the void volume to the solid one). Many authors have dealt
with various aspects of this rather intriguing and fundamental
problem. For example, the dilatancy induced by shearing in granular
masses examined by Reynolds [1], has been studied from various
points of view over the past decades; see, e.g., Newland and Allely [2],
Rowe [3, 4], Horne [5, 6], Satake [7}, Oda [8], Matsuoka [9], and
Nemat-Nasser [10], for treatments involving particulate approaches,
and Drucker and Prager [11}, Shield [12, 13], Drucker, et al. [14],
Jenike and Shield [15}, Nemat-Nasser and Shokooh [16] for a phe-
nomenological plasticity approach, and finally see Cowin [17] for a
review of microstructural continuum theories.! In addition, it has been
experimentally verified (see, e.g., Drescher and de Josselin de Jong
[19], Oda and Konishi [20], and Drescher [21]) that during the de-
formation of granular materials, the principal directions of the overall
macroscopic stress tensor at each instant are not, in general, coinci-

1 The book edited by Cowin and Satake [18] contains a large number of rel-
evant references. .
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dent with the principal directions of the corresponding macroscopic
deformation rate, This property is usually referred to as noncoaxiality
in the literature; for theoretical treatment of this property, see, e.g.,
Mandel [22], Spencer [23], de Josselin de Jong [24, 25], and Mehrabadi
and Cowin [26]. All plasticity theories which are based on a smooth
flow potential that depends only on the basic stress invariants (as well
as some measures of the deformation history) yield coaxiality of stress
and plastic deformation rate, the exception being vertex models re-
cently discussed by Rice [27], Christoffersen and Hutchinson {28],
and Mehrabadi and Cowin [29].

In this work we shall consider a sample of cohesionless granular
material, in which the individual granules are regarded rigid, and
which is subjected to overall macroscopic average stresses, oyj, i, J =
1, 2, 3, where a fixed rectangular Cartesian coordinate system, x;, is
employed. On the basis of the principle of virtual work, Hill [30], and
by an examination of the manner by which adjacent granules transmit
forces through their contacts, we shall establish a general represen-
tation for the macroscopic stresses, oy, in terms of the volume average
of the (tensorial) product of the contact forces and the vectors which
connect the centroids of adjacent contacting granules; see equation
(12). We shall then examine the kinematics in an effort to obtain the
overall macroscopic deformation rate and spin tensors in terms of the
volume average of relevant microscopic kinematical variables. For
simplicity in presentation, this last program is carried out for two-
dimensional problems only, although, like stresses, the deformation
rate and spin tensors can be given a complete microscopic represen-
tation in three dimensions. As an illustration of the application of the
general expressions developed, we shall deduce two explicit macro-
scopic results:

1 A dilatancy equation which both qualitatively and quantita-
tively seems to be in accord with experimental observation.
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Fig. 1

2 A noncoaxiality equation which is in accord with the vertex
plasticity model.

Since the development is based on a microstructural consideration,

all material coefficients entering the results have well-defined physical
interpretations.

In developing our kinematical relations, we are led to distinguish
between contacts which are instantaneously inactive in the sense that
instantaneously no sliding takes place at these points and the critical
contacts at which instantaneous sliding occurs. It has been known—
see, for example, Rowe [4] and Davis and Deresiewicz [31, p. 80] —that
at each instant, groups of instantaneously mutually immobile granules
are formed in the course of the deformation of granular masses. This
is required by compatibility of the deformation, and is expected to
occur even in the case of a collection of spherical granules. At each
instant the groups move relative to adjacent groups, while trans-
mitting forces through a finite number of active critical contacts with
their neighbors. The structure, size, and shape of these instanta-
neously rigid groups change with deformation, and therefore both the
density of the critical contacts and the distribution of the orientation
of unit normals on these contacts change, as new critical contacts are
continually developed, while some existing ones are rendered inactive.
To obtain a complete solution to the problem stated at the beginning
of this section, namely, to express the macroscopic deformation rates
as functions of the corresponding macroscopic stress rates using a
microscopic model, we first need to establish the manner by which
the density of active contacts and the distribution of their unit nor-
mals evolve with deformation. The results presented in this paper,
however, do not depend on this evolution, and are valid at each instant
during the course of flow.

2 Representation of Stress in Granular Materials

Consider a macroscopically homogeneous element of a granular
material consisting of rigid granules. The material is carrying an
overall macroscopic stress g;; through internal forces f; acting at the
contact points. We set out to find a representation for the overall stress
in terms of these contact forces.

Consider two granules, labeled A and B, with centroids at x4 and
x B and contacting each other at x45; see Fig. 1. Let f#% and f#4 de-
note, respectively, the forces exerted on grain A by grain B and vice
versa. Thus

FA 4 A =, SN
Balance of forces acting on grain A requires
> =0, ()
p=1

where « is the coordination number for grain 4, i.e., the number of
grains contacting A. Balance of moments requires

S FA i —xf) = 3 8 (28— ), @)
g=1 g=1 :
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Summing over all grains interior to the surface of the material, and
noting that each contact point contributes with terms such as

A (2B = xf) + B4 (o — xB),

we obtain

N
2 frdy, (4)

where o stands for contacts such as AB, N is the total number of
contacts in the considered volume, and where

dff = xf —xf ’ (5)

is the vector connecting the centroid of A to that of B. Note that from
each pair of contact forces at a given contact point, only one enters
the summations in (4) according to the choice of the vector d§, that
is, fAB is chosen when df = d#5,

Equation (4) also holds when A and B represent two instanta-
neously rigid groups (clusters) of grains. In this case d¥ should be
interpreted as the vector connecting the centroids of the two rigid
groups. Note that then « will represent the instantaneously critical
contact between the two rigid groups, and N will be the number of
critical contacts in the considered volume. This interpretation is ad-
vantageous in two respects. First, it is generally believed that during
the deformation of granular materials, at each instant granules form
rigid groups (i.e., groups of mutually immobile granules) and that the
overall deformation occurs by instantaneous sliding of these rigid
groups against one another before they reform into new groups; see,
e.g., Rowe [4] and Davis and Deresiewicz [31]. Second, the interpre-
tation of N as the number of critical contacts will facilitate the for-
mulation of the constitutive relations in that the overall (macroscopic)
kinematical quantities involve summations over the critical contacts
only.

To relate the contact forces to the overall stresses, we employ the
principle of virtual work in the manner discussed by Hill [30]. Let the
granular body be subjected to overall tractions T on its boundary S,
ie.,

on S, (6)

where v is the exterior unit normal to S. Consider a suitably smooth
overall virtual displacement, u;, which results in the virtual dis-
placement (separation) A¥ of the ath contact forces. If the tractions,
T;, are in equilibrium with the contact forces f¢, then the virtual work
principle requires

T; = aijv;

N 1
L frar=y f Twds @
Let the boundary displacement u; be chosen to be linear so that
u; = ¢iix;+¢; on S, 8)

where ¢;; is an arbitrary constant tensor, and ¢ is a constant vector.
It can be shown (see Appendix) that, to a first order of approximation,
it is reasonable to set

AY = ¢;d5. (9)
Substituting (8) and (9) into (7), and employing the divergence the-

orem, we obtain

N
bij (Fij - X d}") =0, (10)
a=1

where

_ 1
ai,-=vaaijdv (11)
is the volume average of stress. Since ¢;; is an arbitrary tensor, we
conclude from (10) that

(12)

- N1
oij = Zlg(ff'd}'+f}’d§'),

a=
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where we have used the balance of moments, relation (4). It should
be remarked that the virtual work principle, in the context of granular
materials, has also been employed by other workers in this field. For
example, Satake [7] employed this principle to define an “anisotropy
tensor,” and Kishino [32] used it to obtain the average stress as
1 M

%=y El i (13)
where M is the number of contacts on the boundary. We note, how-
ever, that (13) can be obtained (without using the virtual work prin-
ciple) by considering the relation between the volume average of stress
and the integral of tractions over the surface of the body; e.g., Drescher
and de Josselin de Jong [19] and Cowin [33].

Summarizing the results so far, we have obtained a relation for the
balance of moments, equation (4), and a relation for overall stresses
in terms of the contact forces, equation (12). These relations can be
written as :

{fidj — f;d;) =0, (14)
Gij = § N{fid; + fidi), (15)

where ( ) denotes the average over N critical contacts in a (suitably
large) unit volume.2 These relations hold in three as well as two di-
mensions.

For simplicity, however, we shall, from now on, restrict our attention
to the two-dimensional problems. Also it is advantageous to represent
(14) and (15) in terms of the unit vectors n¥ and s{ which are, re-
spectively, normal and tangent to the contact «. These unit vectors
are defined by

n® = gin 3%V + cos fe(®

and s® = cos e — sin Beel®, (16)

where el and e® are orthogonal unit vectors in the direction of fixed
rectangular Cartesian coordinate axes. In terms of n and s%, the in-
terparticle force f* and the vector d* have the form

(17a)
(17b)

¥ = f2 (cos ¢ n¥ + sin $*sY),
df = d*(cos #n¥ + sin 6=57),

where f is the magnitude of 1, ¢ is the angle between f* and n%, d¢
is the magnitude of d%, and 0 is the angle between d* and n*, see Fig.
2. Substituting from (17) in (14) and (15) we obtain

{fd sin (¢ — 0)) =0, (18)
g;; = N {fd[sin ¢ sin 00;; + cos (¢ + O)nyn;
+ %sin (¢ + Hngsj + njsp)])y,  (19)

where §;; is the Kronecker delta. These relations are the two-dimen-

2 Henceforth, N will refer to the number of contacts per unit volume.
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sional version of the balance of moments, relation (14), and the av-
erage stress, relation (15). Some results based on (18) and (19) will be
discussed in Section 4.

3 Kinematies

As mentioned earlier, the overall (macroscopic) deformation of the
granular mass results from instantaneous sliding of rigid groups (or
clusters) of grains. At each instant, each group consists of a collection
of mutually immobile grains, which moves relative to its neighboring
groups. Since a relative movement of these clusters causes changes
in the magnitude and direction of the vectors d*, we make the fol-
lowing simple assumption concerning the rate of change of d* and the
resulting overall average velocity gradient tensor:

df = 18ds, (20)
- 1N
Lij= N ;1 L, (21)

where superposed dot denotes the rate of change, and L;j is the av-
erage overall (macroscopic) velocity gradient. We further assume that
the vectors n® and s® remain orthonormal, and that the vector (1/d®)d¥
remains a unit vector after an (infinitesimal) increment of deforma-
tion has taken place. With these assumptions, (17b) and (16) yield

. (de

d¥ = (E; 5,‘j + Rﬁ'j)d?’, (22)
where R, the spin of df, is given by

R§ = (B + fo)(sgng — sSnf). (23)

Substituting for d;-" from (22) into (20) and rearranging, we obtain

de
d;'(lﬁ, — ; 5,‘_,‘ - RS) ={, (24)
Thus I§; has the form
de . .
I = 2 8;j + R + y~(cos Bs§ — sin §*n§)«{ (25)

for some scalar 4~ and some unit vector «¥. We define the angle «
by

Kk§ = cos k*nf + sin k87, (26)

substitute from this and (23) into (25), and enter the result into (21)
to obtain

D= <-3 + 4 sin k cos 0) 0ij = (¥ sin (8 + K)ninj)
+ % (¥ cos (6 + k) (nis; + njsi)),

Wi = ([B+ 0 — 34 cos (0 ~ ©)}(sin; ~ s;m)), 27
where, by definition, the overall deformation rate and spin tensors
are

Dij=3%@y+Li) and Wy=4(Ly-L).

Equations (27) represent these average macroscopic kinematical
quantities in terms of the microscopic kinematical variables for the
considered two-dimensional model. Note that the inclusion of the as
yet unknown quantities ¢ and «; is essential, as it bears on the com-
patibility of the overall deformation of the granular mass.

Before closing this section let us examine the rate of energy dissi-
pation. To this end we assume that, at each instant, energy is being
dissipated only by frictional sliding of rigid clusters of grains as they
move relative to one another. A similar hypothesis has been used by
others; see, e.g., Horne [5]. For the model considered here, this as-
sumption results in

— N v
GemDpm = 20 {17+ 89)(d™* s%), (28)

a=1

where dot denotes the scalar product, and where d* defined by
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v .
df = dy — Rgds, (29)

is the (objective) rate of change of d* as measured by an observer ro-
tating with d~ Substituting from (17a) and (29) into (28) we ob-
tain

TkmDem = N{{f sin ¢ sin §)d ), (30)

where (22) has been used. This is an interesting equation as it shows
that frictional sliding must be accompanied by changes in the mag-
nitude of vectors which connect the centroids of adjacent clusters of
mutually immobile grains. Since this observation applies indepen-
dently of shape of individual grains, it is seen that compatibility in-
deed requires formation of noncircular (in the two-dimensional case)
groups even when the granular mass consists of a collection of cylin-
drical rods with circular cross sections.

4 An Example

The equations obtained in the preceeding sections for the overall
stress and kinematical quantities, are rather complicated. Therefore,
further insight into their physical implications requires additional
simplifying assumptions. To this end consider equation (18) which
is obtained from the balance of moments, and let all averages be taken
over only the critical contacts; this implies that the angles ¢, o = 1,
2,..., N, equal the average frictional angle ¢ (= constant). Then (18)
becomes

_ (fd sin 8)

p=tand {fd cos 0) )

Now, assume further that f* and d=, the magnitudes of the contact
forces and the vectors d* connecting the centroids of adjacent groups,
are not statistically correlated with the angles #* which define the
orientation of d* with respect to the corresponding contact normals;
see (17). Then the foregoing equation becomes

p=tan ¢ = :Z: z)) (31)
admitting the following solution:
acos ¢ = (cosf), asin¢ = (sinf), (32)
for some scalar a. A more restrictive solution, of course, is
0% =g =¢ (33)

which states that at each critical contact the contact force is parallel
to the line which connects the centroids of the corresponding con-
tacting adjacent groups. For our purposes we shall consider the more
general solution (32) and then later on seek to explore results
stemming from assumption (33).

Let us now make a further assumption, namely, that the quantities
feand d* are not correlated with n® (and, hence, also with s*). Then,
with the aid of (32), from (19) we obtain

7 = 2p {sin® ¢6;; + cos 2¢ (min;) + & sin 2¢(ns; + nys;d),  (34)

where

P =%Tr =3 aN{fd) (35)

is the mean pressure.

Before discussing the kinematics, we pause briefly to examine some
features of equation (34). Employing (186}, it can be shown from (34)
that

R=1=((sin 28)2 + (cos 26)22, (36)
p
_ (sin 28) cos 2¢ + {cos 23) sin 2¢= .
tan 2¢ = {cos 2f3) cos 2¢ — (sin 20) sin 2¢ tan2 (= ¢),
(37)

where R is the stress ratio; and 7, ¥, and {/ are defined by
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2r2=G; 0, or T=4%(G1 5w, (38)
27
tan 2 = ——"—, (39)
o11 — 022
(sin 206}
tan 2y = — ——,
4 {cos 2(3) (40)

where in (38), ,, = g;j — % 8;;Gxs is the average deviatoric stress, and
o1 and 77 are, respectively, the major and the minor principal stresses,
In the terminology of Curray [34], used by Oda [35] and Konishi [36],
the quantity in the right-hand side of (36) is the “degree of concen-
tration” or the “vector magnitude” of the contact normals (n¥), and
¥ defined by (40) is their preferred orientation. Konishi [36] reported
measured values of the degree of concentration and the preferred
orientation of the contact normals, n{. His consideration, however,
is based on all contacts rather than only the critical contacts which
enter our work. In other words, the averages measured by Konishi are
defined by (for some quantity f)

= f E@rBB, (41)
in terms of the probability density distribution of contact normals,
E(B); Oda [35]. The averages appearing in (36) and (37), on the other
hand, have the form

= j; E(B) PB)f(B)dB,

where P(f) is the probability of sliding; Oda [8]. In (41) and (42) Q
represents a unit circle. We recall that the macroscopic stress may be
formulated either in terms of averages taken over the critical contacts
only, or in terms of the averages taken over all contacts. In the former
case we observe that the quantity d* then represents the vector which
connects the centroids of two adjacent clusters of muiually immobile
grains, whereas in the latter case all individual grains are included;
see the discussion after (5). The two formulations are of course,
equivalent.

Returning to the example, we assume that 4 sin k* and ¥ cos k*
appearing in (27) are not correlated with either 8« or the unit vector
n®. Employing this assumption together with (32) we reduce (27)
to

{42)

D= [(3—} + cos ¢ (% sin k) ]6;; — [cos ¢ (7 sin k) + sin ¢ (¥ cos k)]

X {n;n;) +4% [cos ¢ (¥ cos k) = sin ¢ (¥ sin &))(nisj + njsi), (43)

OWio= 2(B + ) — [cos ¢(¥ cos k) +sin (¥ sink)].  (44)
- Similarly, employing (32) and the assumption that f*d* and de/d~
are uncorrelated, it follows from the energy dissipation relation (30)
that
— d . d

TrmDrm = aN sin? ¢(fd) E) = 2p sin? ¢ 2 R (45)

where (35) has been used to obtain (45).
Now components of (n;n;) and (n;s;j + njs;) are not all indepen-

dent, as can be seen from (16). Noting this, it follows from (34) and
(43) that :

]

_ T

Thm Dhm =;[sin ${7 cos k) — cos ¢{ sin k)], (46)

2
716 Dk2 — 52xDk1 = — — [cos ¢(% cos k) + sin (¥ sin k)] (47)
P

The rate of volume change is obtained from (43),
Dyp = 2{d/d) + cos ${¥ sin k) — sin ${7 cos k). (48)

~ Employing (44), (45), and (48), we eliminate the average quantities
appearing in the left-hand sides of (46) and (47). The final result can
be written as
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1., —, —
(sin? ¢ — R?) =G pmDym = R cos? ¢ Dy, (49)
) T
-4 LA 27 _ — —
TikOkj— TikOki = (@ikDrj — Dirarj), (50)

corresponding, respectively, to (46) and (47). In these relagions R
denotes the stress ratio defined by (36), and the stress rate, g, is de-
fined by

gij =5 — Qindhj — Lrlhi, (51)
where § is a skew-symmetric tensor with components
Qua=— Qo= Wi —(B+0) — . (52)
In component form, (49) and (50) are
(sin? ¢ — RH[(Dy11 — Dagy cos 2y + 2D 14 sin 2¢]
~Rcos?¢ (D11 + Dgg) =0, (53)

(D11 — Dag) sin 24 — 2D 19 cos 2 + 2R (Wi — (B + 8)) = 0.
(54)

These relations are similar in form to the relations developed by de
Josselin de Jong [24, 25], Spencer [23], and Mehrabadi and Cowin [26,
29|, using a completely different approach. In particular, de Josselin
de Jong’s idea of “free rotation” is clearly expressed by the quantity
—(B + #) in (54). It is interesting to note, however, that under a
steady-state circumstance when the statistics of the critical contacts
remain time-invariant3 so that ({f})' = (/), and when 6 and 8 are
uncorrelated (e.g., when R = constant), then (37) yields

b= —(B).

If, in addition, the more restrictive assumption (33) is used instead
of (82) then it follows from (52) that Q5 = W1 and the stress rate in
(51) becomes the Jaumann rate.

Relations (49) and (50) are similar in structure to those proposed
by Rice [27] for the rigid plastic yield-vertex model. However, the
coefficients and the stress rate involved are different in the two
models. The advantage of (49) and (50) over their counterparts in all
the aforementioned works is that, due to the microstructural approach
adopted here, all the macroscopic material coefficients are determined
explicitly in the present work in terms of the average friction angle
¢ and the stress ratio R.

For example, since the rate of plastic work is positive,

(65)

Ekmﬁkm > 0, (56)
it follows from (49) that
Dpp <0 (dilatation) for R >sin g,
D=0 (no volume change) for R =sin ¢,
Dip >0 (densification) for R <sin ¢,

which are in accordance with the experimental results.

5 Summary of Assumptions and Discussion

Based on the principle of virtual work, a relation for average stresses
in terms of the contact forces and vectors joining the centroids of
granules (or mutually immobile clusters of granules) is derived in
Section 2; see equation (12). The major assumptions used to obtain
this result are: (i) the virtual separation of two contacting granules
at a typical contact point « resulting from a prescribed virtual dis-
placement field (equation (8)) can be written by equation (9) where
¢;j is the constant virtual displacement gradient; and (i) the contacts
do not transmit moments (equation (3)). This last assumption yields

3 In general the density of the critical contacts as well as the density function
defining the distribution of the critical contact normals changes with the de-
formation; e.g., new critical contacts are continually formed while some existing
critical contacts are rendered inactive. Therefore, in general, ({(f)) = (/).
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(4) which in turn leads to a symmetric overall stress field. Of course,
without this assumption, couple stresses would be present.

The “microscopic” description of the overall stress field given by
(12), which holds in two as well as three dimensions, seems to be of
a fundamental nature in the sense that it relates the macroscopic
stress field to the microstructure (or the “fabric”) of the granular
mass.

In Section 3, kinematic relations for the plane deformation are
developed. The involved basic assumptions are: (f) the rate of change
of d (the vector joining the centroids of two contacting clusters) gives
rise to a microscopic (local) velocity gradient [§; whose average taken
over all critical contacts results in the average overall macroscopic
velocity gradient for the sample; and (if) the unit vectors n® and s*
(the contact normal and the sliding direction at contact «) remain
orthonormal. Under these assumptions, expressions for the rate of
deformation and the spin tensors are obtained in terms of the contact
normals and tangents; equation (27). Also in Section 3, an hypothesis
is made with regard to the rate of energy dissipation: it is assumed that
energy is dissipated only by frictional sliding of rigid clusters of
granules as they move relative to one another; this is given by equation
(28).

Finally, an example of the class of constitutive equations which
emerges from the development of Sections 2 and 3, is given in Section
4. This example is concerned with the case where the quantities of the

type

(Anng)  or  (Blns; + njsi))

which appear in the stress equations (19) and the kinematic relations
(27), can be written as

(AY{n;nj) or (B){ns;+n;s;).

It is shown that under this assumption, the resulting constitutive
relations resemble those of de Josselin de Jong [24], Spencer [23], and
Mehrabadi and Cowin [26]. Of course, more general constitutive
relations can be obtained by assuming that A and B statistically de-
pend on n{n§; see Mehrabadi, Nemat-Nasser, and Oda [37].
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APPENDIX

To calculate AY in equation (7), consider two rigid granules, denote
their respective centroids by A and B, and assume that they are in
contact at point C. Consider a virtual displacement field which in-
troduces the relative displacement A¢ at contact C, i.e.,

Af =y B — b4 (57

where uC4 and u®B are the displacements of the contact point C when
viewed as belonging to grains A and B, respectively. Since the grains
are rigid, we can write, for example, for grain 4,

uft = uf + WS — 1, (58)

where w#¢ = —w{* is the rotation of C relative to A, and uf is the
displacement of centroid A; a similar equation applies to grain B
(replace A with B in equation (58)).

Equation (57) is now written as

Af = WP —uf) - Wi —uf)
+ 08 (2§ —xH) — 0P f— 2P, (59)

where (58) is also used and £ is to be defined next, and then it is as-
sumed that the displacements and rotations, uf, @ = 4, B, and w{?
and w&P, conform to some smooth fields u; and w;j, and that uf =
u; (x€) is the value of u; at the contact point C. Then we have wf}c =
w8 = w;;(x€), and
ou;
uf —uf =— O -« +..., (60)
Xj
with a similar expression corresponding to grain B. Hence (59) be-
comes
c_ {9 cy| 748
A = j— (x )—w,-j(x )dj +...,
ox;

(61)

where d4f = x2 — x4 To the first order of approximation, this is
identical with equation (9), provided that we identify the quantity
inside the brackets with ¢;;.
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On Thermodynamics and Kinetic
Theory of Ideal Rubber Membranes

Based on experimental evidence and thermodynamics it will be shown that the stored en-

ergy function of an ideal rubber membrane is determined by the entropy alone. The mem-
brane is represented by a two-dimensional surface for the purposes of thermodynamics,
and its thickness is taken into account by a scalar parameter so that incompressibility
of the membrane can be described. The entropy of the membrane is calculated from a ki-
netic model and hence results the surface stress as a function of temperature and defor-
mation for arbitrary shape of the membrane.

1 Introduction

The subject of this paper is the application of thermodynamics of
two-dimensional surfaces to ideal rubber membranes. Just as in bulk
rubber the thermodynamic theory is supported by arguments from
the kinetic theory of rubber.

A continuum theory of bulk bodies has been applied to ideal rubber
membranes by Kubo [1], Adkins and Rivlin [2], et al., with good results
for spherical and cylindrical membranes. However, it seems impos-
sible to extend those approaches to arbitrary shapes of the membrane
because of the difficulty of determining the hydrostatic pressure in
the membrane. This difficulty is explained in Section 2.

The present approach is given entirely in terms of thermodynamics
of two-dimensional surfaces and there is no problem in considering
membranes of arbitrary shapes. The formulation of a thermodynamic
theory of a two-dimensional surface implies the definition of a surface
entropy, which must be determined by a constitutive relation. This
constitutive relation is derived here from a variant of Kuhn’s [3] ki-
netic theory of rubber. It seemed necessary at the beginning to modify
Kuhn’s theory to take care of the fact that in a thin membrane the
rubber molecules are strung out along the membrane. It turned out
in the end that the effect of curvature was minimal. This is explained
in Section 4.

The concept of two-dimensional surfaces is familiar in thermody-
namics of thin bodies (e.g., see Wang and Cross [4, 5], Green, Naghdj,
and Wainwright [6]). In particular the paper of Green, Naghdi, and
Wainwright deals with an elastic Cosserat surface. The authors assign
a director to every surface point, so that the surface can support couple
stresses.

Rubber membranes do not support couple stresses and therefore
director fields are not needed. What is needed in rubber is a scalar
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thickness parameter among the state variables, because otherwise the
incompressibility of rubber would not reflect itself in the two-di-
mensional theory.

However, if the director field in the Cosserat theory is replaced by
the scalar field of the thickness parameter, the present theory can be
classified as a spherical case of a Cosserat surface (e.g., see [6]).

2 Phenomenology and Existing Theories of Rubber
Membranes

Rubber is an isotropic incompressible material, distinguished from
other such materials by the fact that its stress is proportional to the
temperature.

The pecularities of the stress-strain relation of a rubber membrane
are best illustrated by the dependence of the pressure difference [p]
= pr — pe between the interior and exterior of a spherical rubber
balloon on its radius r. Qualitatively this dependence is plotted as the
solid curve in Fig. 1 where R is the radius of the balloon in the un-
loaded reference configuration.

Attempts to describe this curve include those by Kubo {1] and
Adkins and Rivlin [2], both of which approach the problem by use of
the ideas of continuum mechanics of bulk bodies, but in a different
manner.

Both approaches start from the momentum balance in equilibrium,
viz.,

t;nidF = 0 (1)
and from the representation
tij = — Pd;; + aBi; + b(B?);; (2)

of the stress ¢;; in an isotropic incompressible body. P is the hydro-
static pressure which must be calculated from the balance of mo-
mentum and the boundary conditions and B;; is the left Cauchy-Green
tensor, while a and b may be scalar functions of temperature 7. The
dotted line in Fig. 1 results from setting b = 0. Kubo has only con-
sidered the case b = 0, but in principle his method would also work
for the general case. Rubber with b = 0 and a = constant is usually
called ideal rubber.
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Kubo’s method starts by considering the membrane first as a bultk
body and calculates P from 0t;;/9x; = 0 in the body and from (¢;n;);
= —(pn;)r and (¢;jn;)g = —(pn;) g on its surfaces. Subsequently Kubo
lets the width of the membrane tend to zero. This method is excellent,
except that it turns out to be extremely difficult to determine P in the
case of complex shapes of the membrane,

The method of Adkins and Rivlin avoids the aforementioned dif-
ficulty of Kubo’s approach, because they determine P from the re-
quirement

tr—0 as 6—0, 3)

where ¢, is the normal stress and § is the thickness of the balloon.
Thus Adkins and Rivlin obtain

P=aB.,+ b(BZ)" (YR
and they proceed as follows:

1 They define a surface stress
. [ .
tt= [t (A=0,9),
0

2 They integrate dt;;/0x; = 0 over the width of the membrane and
obtain

ti8 + tir(8) — tir(0) = 0, (5
3 With the boundary conditions
(tiind)p = — (pn);, (tni)g = — (pni)e (6)
they get
ti’;lA - [plni=0. (7

Thus Adkins and Rivlin start out with arguments from the theory
of elasticity of bulk bodies and they arrive at an equation of balance
of momentum for a two-dimensional surface in equilibrium (see,
equation (11)).

However, the approach by Adkins and Rivlin is not without prob-
lems, because the boundary conditions (6) will not in general be
compatible with (3).

Even so the assumption (3) may be justified in approximate form
as follows. From Kubo’s arguments we may determine ¢, and ob-
tain—in the limit of a thin membrane—the value t,. = % (p; + pg).
Setting ¢, equal to zero, Adkins and Rivlin neglect the effect of (py
+ pg) on the deformation of the membrane; indeed, in most cases the
values of t,, are small as compared to the coefficients ¢ and b in

(2).

17,0, ® are the polar coordinates appropriate to a spherical balloon.
2 A semicolon denotes the covariant derivative with respect to the surface
coordinates © and .
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3 Thermodynamics
(a) Fields of Thermodynamics in an Incompressible Mem-
brane. For the purpose of thermodynamics we represent the mem-
brane by a two-dimensional surface whose particles are characterized
by the surface parameters UT (I" = 1, 2).
The objective of thermodynamics of membranes is the determi-
nation of the fields

Surface Mass Density

ps(UT, 1), 8
Motion

2i(UT, t), (8)2
Absolute Surface Temperature

T (UT, t), (8)s

for all times. x° determines the position of a surface particle in a
Cartesian frame.

Experience shows that incompressibility of a body, i.e., constancy
of volume and density, strongly influences its mechanical behavior
and that is true for membranes as well as for bulk bodies. However,
the two-dimensional surface has no volume and therefore it would
seem impossible to describe the influence of incompressibility in a
thermodynamic theory of two-dimensional surfaces. We can get
around this difficulty, by introducing an additional surface field,
called

Thickness Parameter

o(UT, t) (8)4

such that

ps = p0, 9

where p is the volume density within the membrane. Thus incom-
pressibility of the membrane is expressed by setting p,/8 constant,
and the model of a two-dimensional surface is preserved.

For the determination of the fields (8) it is necessary to have field
equations and these are derived from the equations of balance of
mechanics and thermodynamics which we proceed to write down
next.

(b) Egquations of Balance. We consider the membrane im-
mersed in an inviscid heat-conducting fluid. The membrane is im-
permeable and moves with the velocity V,(UT, t) and its mean and
Gaussian curvatures are ky and kg, respectively. While x{(UT, ¢)
determines the position of the membrane in its present configuration
k; we introduce X A(UT) for its position in a reference configuration
Ko.

The equations of balance of mass, momentum, and internal energy
read?

)
2P+ (V= 2kaVidps = 0, (10)
ot
Ps Ué—tffA—[—pVi] =0, (11)
FY R
0¢, . ok
s — + qia + [qivi] =t —=
P, T asat a7l SUb
1 3gar ( bV,,)
= ————§Al + §ApApVT + . (12)
2 ot AT T aus

The field equations for the determination of the thickness pa-
rameter & follows from (9) and (10), because the volume density is
constant. It reads

1)

— 4+ (VT — 2kyqV,)6=0
o Vi mVy)

The newly introduced notation in (10)-(13) and further quantities

(13)

3e.g., see [7, p. 233}
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relevant to the future development of the theory may be read off from
the following list:

,_ o . .
TaA= Ua Tangent vector in k; to coordinate
° lines U2 = constant
elikrirk .
= -..k—:k Normal vector to the surface in «;
feikriTd]
A oX4 . .
T4 = Ua Tangent vectors in kg to coordinate
o lines UA = constant
ABCPBmC
€ T T2 .
N4 = —;‘m Normal vector to the surface in kg
I € Tl Tz |

AT = T)Th Metric tensor in «;

o7t
bar = 4 v Curvature tensor in x;
oUT
Gar = TﬁT? Metric tensor in ko
aT4 .
Bar = a_JAf‘ Curvature tensor in kg
. oxiUT, ¢ . L
vi = -—g Decomposition of the velocity v of a
o¢ _ surface particle
=VIiri+
Vi
£id = SATrE 4 Decomposition of the surface stress ¢34
Sapi
[p] Pressure jump across the surface
€ Specific internal energy of the surface
A
qs Normal component of the heat flux

[g/vi] across the surface

For later use we list the identity (e.g., see [8, p. 500])

19
V= 2kyV, = —2

14
28 at’ (14)

where g is the determinant of gar.

(¢) Constitutive Equations. To obtain field equations the
equations of balance must be supplemented by constitutive relations
for the following quantities:

SAT, S8, g2, €, p*, g/
These are constitutive quantities and they can be split into two
groups:

The first group consists of SAT, S8, g2, ¢; and we assume that in
a homogenous, isotropic, thermoelastic, incompressible membrane
these quantities are related to the fields ps, x%, Ty, and & by the

equations
oT.
sAl = SAF(PE, 0, 843 Gasz, baz, Bas, Ts, s),
2UA
where sAT = g4 (15),
SA = 09 (15)2
oT,
g5 =qs (Ps, 3,843, Gaz, basz, Baz, Ts, "—1), (15)3
oU
oT,
€ = Gs(Ps, 0,843 Gas, baz, Bas, T, a_Uj‘) (15)4

84 = 0 and the symmetry of SAT are typical for a membrane theory
and they distinguish this theory from a shell theory. The metric
tensors g,z and G > together form a measure for the deformation of
the membrane from its reference configuration.

Journal of Applied Mechanics

The second group of constitutive equations consists of p* and g%,
These quantities may depend on the same variables that occur in (15)
and, in addition, on the variables that determine the state of the fluid
on side + or —, respectively, of the surface.

Insertion of the constitutive equations into the equations of balance
leads to a set of six field equations for the six fields ps, x?, T, and 8.
A solution of these field equations is called a thermodynamic pro-
cess.

However, the explicit form of the constitutive equations is not
known and we rely upon the entropy principle to introduce restric-
tions on the generality of the constitutive functions.

(d) Entropy Principle and Its Consequences. The entropy
principle used here is an adaption to two-dimensional surfaces of the
one proposed by Miiller [9] for bulk bodies. It reads

() The entropy of a membrane—represented as before by a
two-dimensional surface—is an additive quantity so that it obeys an
equation of balance

(16)

(i)} The specific entropy 7, and the surface flux ¢2 of the entropy
are constitutive quantities. In particular we assume that 7, is given
by

oTs
oUA
in a thermoelastic membrane of the type considered here. ¢2 is taken
to be equal to the heat flux q2 divided by temperature

= q2/T..

The entropy flux ¢/ of the fluids on either side of the membrane
is given by (see [9])

Ns = s ps, 8, Bar, GaT, bar, Bar, Ts, amn

(18)*

¢/ = qi/T, (19)

~ where T is the absolute temperature of those fluids.

(tii}  The production density o5 of the entropy is non-negative for
each thermodynamic process

0024 58 + [ini] 2 0, (20)

ot

Insertion of (17) and (18) with (15)3 into this inequality leads to an
expression on its lefthand side that is linear in the derivatives

dps 06 dp; 08 o2xi iaus ovT oV,
ot "ot oUT’ oUT’ dUTOUA " ot * U’ oUA’

22V, 3T, 22T,  ?2T, d3xt @)
dUAAUT’ at " atdUT aUToUA dUTdUAUZ"

But several of these derivatives are constrained by the field equa-
tions (10)—(13) and we rely on the method of Lagrange multipliers to
take care of those constraints. This method was introduced by Liu
[10] and according to him we may replace the entropy inequality (20)
by the new inequality

poZIt 4yl + (] —An 2

ot

- 2kMV )ps)

O’ .
— AUk ——t —npi
(p o [pv})

des .. 1dgar ( av,))
— A& — 4 A + Jyli __..._SAI‘_SA b
Ps o qs;:a [q/v] 2 o AT N7

—A"( +(VF—2kMV)5)>0 (22)

41t is possible to derive (18) from the assumptlon that é¢ is a constitutive
quantity of the same type as (15)3 provided that ¢2 and g+ are linear functions
of T, a. For brevity we anticipate that result by assuming (18).
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and require that this new inequality be satisfied for all analytic fields
of

ps(UT, ), x1(UT, t), Ts(UT, t), 8(UT, ¢).

The newly introduced quantities Afs, A%, A%, and A® are called
Lagrange multipliers by Liu and they may depend on all variables in
the constitutive relations and on v,

The exploitation of this inequality is cambersome but it follows the,
by now, standard procedure. Some of the results may be used to
identify the Lagrange multipliers:

s > ] 1
Ams = p, ( Ms _ Ass __e_s), Avi=0, At=-—
0ps 0ps T,
0 0¢€s
Ad=pg|—=—As—] 23
P (aa aé) 23)

After some calculation one concludes that n; and ¢, are indepen-
dent of dTs/0U? and the curvature tensor bar and that the deriva-
tives of 7; and ¢; with respect to ps, gar, Ts, and § are related by the
equations

0¢; — Tyns = -, - (Psz ¢ — T + psﬁ Q€5 — Tsﬂs)g”
oT; Ops 1)
O¢s — T,
+ ZPS_G_S___S_?’_S = §AT (24)
ogar

So far constraints on the derivatives d05/0t, 06/0t, dgar/0t have been
taken into account by use of Lagrange multipliers. But the field
equations (10) and (18) upon integration imply constraints on p;, 6,
and gar themselves, namely,

G G
ps=p§°\/:, 5=5”°\/:,
g g

where G is the determinant of Gar. The identity (14) was used to
derive (25). Thus it is possible to replace €, (ps, 6, gar, Ts, Gar, Bar)
and 75(ps, 8, gar, Ts, G ar, Bar) by functions & and #is of gar, Ts, Gar,
Bar only and the relations (24) may thus be shortened to
a@s - Ts‘;]s a%s - Tsﬁs
oTs OgAT

These two equations imply an integrability condition for & — T,
viz.,

(25)

= '—ﬁs; 2ps = SAT, (26)

sar -7,

& _ L( @)

aSAI‘)
ogar  2ps

T, [

As was mentioned in the Introduction as a basic observation with
rubber, the stress of rubber is proportional to the temperature 7%.
Therefore we conclude from (27) that the internal energy of rubber
is independent of deformation. This is a most remarkable property
of rubber, because it implies that the stress is determined by the
specific entropy alone rather than by the specific values of both en-
tropy and internal energy.

Indeed, by (26)2 we have

SAI‘ = e 2P:OTS \/(_—}.%
g 0gar
This formula forms the basis for the further development of the theory
in the next chapter. )

For future reference, I emphasize that, while the entropy principle
forbids the dependence of 75 on bar it may still depend on the cur-
vature tensor Bar in the reference configuration. Thus SAT may de-
pend on Bar as well.

(28)

3 Kinetic Theory of Rubber Membranes

(a) Scope of This Chapter. The objective of this chapter is
the calculation of the stress-deformation relation in a rubber mem-
brane. This goal can be reached by the calculation of the specific en-
tropy 7, from a kinetic theory, because, by (28) the knowledge of n;
implies the knowledge of SAT.
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&)

Fig. 2

The basis for the calculation of ;s is the idea—proposed by Kuhn
[3] and reviewed by Treloar [11]—that a rubber molecule forms a long
entangled chain whose links are randomly oriented. The entropy of
such a chain will be determined first.

The membrane particle in this model is represented by a network
of such chains. The entropy of a particle results by the summation of
the entropies of its chains.

(b) Entropy of a Single Rubber Molecule. The individual
links of the chain, which represent the rubber molecule in Kuhn'’s
model, can be oriented randomly as shown schematically in Fig. 2. The
macrostate of this chain may be given by the euclidean distance r of
its ends and a typical microstate is given by assigning a direction
vector d* (@ = 1,2,..., N) to each link.

When N4 is the number of links pointing in the direction d, the
number of possibilities to realize a macrostate r is given by

where Y Ngy=N and Ydb=r. (29)
: d d

N!
R‘nNd!’
d

b is the length of one link. This number R determines the equilibrium
entropy by Boltzmann’s formula

H=FkInR, (30)

where £ is the Boltzmann constant.

The entropy turns out to be fairly insensitive to different as-
sumptions about the possible direction which might be assumed by
the individual links of the chain. Indeed, in a strongly entangled chain
with the four different choices

(i) d = (xey)
(if) d = (Ley, +ey),
(11) d = d1e1 + doeg,
(iv) d = diey + dges + dges,
where e; is an orthonormal base, lead to similar entropies namely,
r2
Nb?2J
In particular the dependence of H on r and N is the same in all four
cases and the coefficients bg are all of the order of magnitude 1, while
agis an unimportant constant.

(¢) Entropy of a Membrane Particle. () 7Tangential and
Normal Chains. A membrane particle must be visualized as a net-
work of rubber molecules. Let there be n such chains in a particle.
When the idea of the membrane as a two-dimensional surface is taken
seriously, all parts of the network have to lie on that surface. In Section
(8) we shall indeed exploit that idea and calculate the entropy which
is contributed by such tangential chains.

However, just like in thermodynamics of membranes we have to
account for the incompressibility of the rubber and this will make it

necessary to attribute a thickness to the membrane. In the model this
thickness is taken into consideration by allowing parts of the chains

H@g =k|[Nlnag—bg (B =1),ii), i), iv)) (81
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to lie in the direction normal to the membrane. The contributions of
these normal chains to the entropy of the particle is calculated in
Section .

(8) The Entropy of a Particle Due to Tangential Chains. If N,
is the number of the links of a chain which are constrained to lie on
a line of the two-dimensional surface, it can be shown that the entropy
of the chain is given by

2

IN,b¥

A is the length of the chain along the line, rather than the euclidean
distance of the ends.

If the chain is free to choose between different lines connecting the
ends along the surface, it will choose the geodesic, because this makes
H, a maximum.

Four assumptions precede the calculation of the entropy of a net-
work of tangential chains:

N, In2-

H,(\,N;) =k (32)8

(i) Al n chains of one particle have the same number of links.
Thus the entropy %, of the particle reads
n X . n .
He= 3 H,ONGND = ¥ HO) =S HMNZ0, (3
i=1 i=1 X
where Z(A) is the number of chains with the length A.
(#z) In the reference configuration ko the nuinber Z(L) is pro-

portional to the number of possibilities R = el/® Hr to realize the
length L:

Zyo(L) = Cel/k HilL), (34)

It follows that
Z,(8) =

Zo(L) (35)

holds, because the number of chains does not change in the defor-
mation.

(iii) 'The deformation of the end to end distance of the chains is’

affine to the membrane particle.

(iv) For the calculation of the entropy of the tangential chains
it is useful to imagine that one end of each of the n chains in a mem-
brane particle with coordinates UT lies in a central point P, The other
end lies at 01, 02 in the reference configuration kg and at #1, 92 in the
deformed configuration «; where O and 0T are geodesic coordinates
within the particle with the origin at P.7 This means that the chains
are situated on certain lines O = constant and 9T = constant. For
simplicity we choose the 61s as polar geodesic coordinates such that
in ko the chain lies along a line #2 = constant and L is equal to ¢,

We assume that the number of end points between OF and 6T + dOT
in &g is proportional to the element of area /G d0'dO2 A corre-
sponding assumption applies to x,(0) and thus we have

Zo(L) = z4(L) \/— d01d02%and Z,,(£) = 2,,(8) Vgd1d 9%
(9)
(36)
Gar and gar are the metric tensors of the parameters nets O and
9r,
Therefore, by (33), the entropy of a particle in the deformed con-
figuration reads

H = H,(£)2,(€) v/gd91d9?, @7
(€))]

where £ = \/gar929T. By assumption (iv) we may write (35) with
(34) as @

2 (£) Vg d91d9?2 = C eVRH:L) /G dO1dO2
@) ()

(38)

5 This case corresponds to choice (i) in the Section (b). Proof of the formula
(32) can be found in [12].

6 The geodesic length A w111 be denoted by L in the reference conﬁguratxon
ko and by £ in the present configuration «;.

7 Thus the particle UT is put under a magnifying glass and its different points
are labeled by OT and 0T, respectively, in g and «;.
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and C has the value

n
¢= SR (/G dO1dO?’ 39

()

because the total number of chains in the particle is n. Thus we
have

SH,(£)e/*H: ) /G dO1dO?
®)

Sel/kH-L) \ /G dO1dO2.
®) '

Hi=n (40)

£ is related to L by assumption (iii) in a complex manner which is
specified in [12]. Furthermore Gy is related to G ar and its first two

derivatives by the equation ®
G 1
AT _ 0 1)
© 0 (61)2 — 15 Kg(01)4ar

where K¢ is the Gaussian curvature of the membrane particle UT in
Ko.

Integration of (40) leads to the following expression for the entropy
of the tangential chains of the particle UT:

¥ =nk|N;In2 - Y% garGAT(1 - Y% N.b2Kg)) {42)

and we conclude that the entropy of the particle UT depends on the
values of gar(UZ) and Gar(UZ) and on the second derivatives of
G ar(U?) as represented by Kg.

(v) The Entropy of a Particle Due to Normal Chains. To ac-
count for the thickness we assume a part of each chain to be normal
to the membrane. The number of normal links is denoted by N,. The
entropy of a normal chain is, according to Section (),

Hi (rg, NJ) = (N In2- (43)

2
Tl
where ry, is the distance vector of the ends of the chain which is parallel
to the normal v of the membrane particle.

Just like for the tangential chain we assume affine deformation of
the chain length and the membrane thickness, such that

&

T~ Tkor
Oxo

where 8 is the thickness parameter introduced in (8)4.

In addition we assume—again like for the tangential chains—that
in the reference configuration ko the number of chains with the length
ry is proportional to the number of ways to realize this distance.
Therefore the mean value of rZ;is

(44)

P =

7?(; = N, b2 (45)
and, by (43) and (44), the mean value of H¥ is
— 2
H§'=k(n,,ln2—l(——(-s~ ) (46)
2 V0.
By (25)5 we obtain
J— G
H’,‘,‘=k(N,,ln2—l—) 47
28

and, since the membrane particle contains n chains, the entropy of
the normal chains of the particle is given by

— 1G
FHit=nH =nk (N,,an———). (48)
2g
(6) Entropy of a Membrane Particle. The entropy of the
membrane particle in the deformed configuration is the sum of #*¢

and 7 derived in the foregoing. If M denotes the mass of a chain we
obtain the specific entropy of the membrane in the form

k G
=0y NIn2-YgarGAT(1 — % N,b*Kg) - 'h —)- (49)
4
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We conclude that this result is consistent with the thermodynamic
result according to which 7, is independent of the curvature tensor
bar in the present configuration ;. In the contrary, thermodynamics
allows a dependence of 7 on the curvature tensor Bar in the reference
configuration «g and this dependence is indeed realized by the kinetic
theory, because #; in (49) depends on K. However, the dependence
on K¢ is weak indeed, because N,b2K g << 1 under all realistic cir-
cumstances. We are then left with the formula

k G
Ns = — (N In2-1% (gArGAF + —)) (50)
M 8
It is easy to confirm that
7§ =15 <0, (51)

so that the reference configuration has the biggest entropy.
(d) Surface Stress of a Membrane Particle. Insertion of 7
from (50) into the thermodynamic relation (20) for the surface stress

leads to
SAT = 05k Ts \/ (GAI‘__gAI‘)

Experiments with sphencal membranes show that this formula is
valid for deformations up to 250 percent.? This restriction of the range
of validity is due to the assumptions which have led to (50). In par-
ticular at large deformations the assumption of a strong entanglement
of the chains is no longer valid.

The formula (52) shows that the temperature dependence of SAT
is linear as it must be according to observations related in the Intro-
duction.

It remains to be shown that the aforementioned expression for SAT
is compatible with the observations reported in Fig. 1. To this end we
consider the case of a spherical membrane which is deformed by an

.increase of the radius. In this case

r2 0 RZ 0
. 3 GAI‘ = . )
0 r2sin2 O/ar 0 R2sinZ 6/ar

r 0
bar = 53
ar (O r sin? O)AI‘ 53)

(52)

gAI‘=(

holds, so that

k r?2 1R4
Ns "“M(Nl 2—}—2—5—5,‘4), (54)
__E_G AT
¥R T 1 6 0
SAI‘=p—‘1w——sr—2 Or (b5)

(-
ré/sin2 9

The equation of balance of momentum in equilibrium is expressed
by the two equations

S4'=0 and [p] (56)

and insertion of (55) shows that (56) is identically satisfied while [p]
is given by

= SATh ¢

8 e.g., see [18].
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This function can be compared directly with the curves of Fig. 1 and
it turns out that (57) with an appropriate factor coincides with the
dashed curve of Fig. 1. This curve is confirmed by experiments up to
r/R ~ 2,5 which is the range where we expect this theory to hold).?

If one follows the derivation of the expression (57) for [p] closely,
one finds that the summand (R/r)® in (57) results from the contri-
bution of the normal chains. It is thus seen that the contribution of
the normal chains dominates the behavior of the membrane at small
deformations. In particular, this term guarantees the existence of a
configuration for which [p] = 0 and SAT = 0 this is the configuration
where r = R. The effect of the tangential chains dominates the be-
havior of the membrane at large deformations to the right of the
maximum in Fig. 1.

In the stress-free configuration r = R the entropy (54) has a maxi-
mum. Here again we conclude that the contribution of the normal
chains is most important. Indeed, if it were absent, the maximum of
the entropy would oceur at r = 0 and the membrane would therefore
contract to a point.
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After obtaining the relations between incremental stresses and incremental strains, we
analyzed the instability problem stated in the title on the basis of Biot’s mechanics of in-
cremental deformations. The slab, made of a hypothetical transversely isotropic com-
pressible elastic material, is assumed to be stronger in its transverse direction than in its
axial direction. The analysis shows that, no matter what the anisotropy strength of the
slab is or its thickness is, it can become unstable under tension as well as under compres-
sion. The critical load is higher for the stronger anisotropy in the compressive case, while
it is lower for the stronger anisotropy in the tensile case. In other words, the reinforcement
in the “wrong” direction weakens the slab under tension with respect to its stability. Fur-
thermore, the weakly anisotropic slab can become unstable only after the axial resultant
force reaches its maximum, while the strongly anisotropic slab can lose its stability before

the force reaches its maximum.

1 Introduction

By “instability” of an elastic body we understand here a situation
when for certain prescribed boundary loads there exist several adja-
cent states of displacement that are in equilibrium with these loads.
The smallest load (stress) at which this state is possible is called the
“critical” load.

There are many papers concerning instability problems, even if we

direct our attention to an elastic slab or a thick plate or a rectangular
block under axial loads. Most of these papers considered a slab made
of a general or special incompressible isotropic material {1-6]; the
special one is of the neo-Hookean or Mooney-Rivlin type. Unlike
these, Southwell [7} and Kerr [8] treated the case in which the stresses
and strains, whatever their magnitude, are connected by Hooke’s law,
and Hill and Hutchinson {9], and Young [10] considered a wide class
of materials that is initially isotropic or orthotropic with respect to
the geometric axes, incompressible, and incrementally linear. The
compressible isotropic case was investigated by Burgess and Levinson
[11]. Furthermore, the author [12] examined the instability of a slab
of a compressible isotropic elastic material reinforced by inextensible
completely flexible fibers. :
Wesolowski [1] paid special attention to the instability of a slab
subjected to a tensile axial load, and found that instability would arise
only after the applied force reaches its maximum. This conclusion was
also reached by Hill and Hutchinson [9]. In contrast to their conclu-
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sion, it follows from [12], though not explicitly stated, that the fiber-
reinforced slab under tension loses its stability though the tensile
resultant force has no maximum.

Here we thus examine the instability of a transversely isotropic
compressible elastic slab subjected to uniform axial loads. The slab
is assumed to be stronger in its transverse direction than in its axial
direction, and to be in a plane strain state both prior to and after be-
coming unstable.

In the next section, we first obtain the relations between incre-
mental stresses and incremental strains by taking the material time
derivative of the stress-deformation equations of transversely iso-
tropic, compressible, elastic solids. The incremental stresses are de-
fined as the product of the time increment and the objective corota-
tional stress rate, so that they are identical with those in Biot’s me-
chanics of incremental deformations [13].

A special form of the strain-energy function for a transversely iso-
tropic, compressible, elastic material is proposed in Section 3. The
stress-deformation relations resulting from the proposed form of the
strain-energy function contain the following two special cases: those
of the isotropic Blatz-Ko foam rubber [15] and the idealized fiber-
reinforced Blatz-Ko foam rubber [12].

Next, using the derived incremental stress-incremental strain
relations and the proposed form of the strain-energy function, we
solved the aforementioned instability problem on the basis of Biot’s
mechanics of incremental deformations [13]; the equilibrium equa-
tions for incremental stresses are regarded as equations of neutral
equilibrium for examining the stability of the finite, uniform, axial
extension or contraction of the slab. The buckling condition comes
about in consequence of the fact that there must exist nontrivial so-
lutions for the infinitesimal deformations superposed upon the uni-
form extension or contraction.

Some numerical results in the last section show that the
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transversely isotropic, elastic slab under compression, including the
isotropic case, becomes unstable at a certain critical load for all
wavelength-to-thickness ratios I/h. The critical load decreases for the
larger ratios. On the other hand, when the load is tensile, the slab
becomes unstable for all wavelength-to-thickness ratios //h and for
all anisotropy strength parameters k. The critical load decreases and
is asymptotic to that of the idealized fiber-reinforced slab according
to the increase in the anisotropy strength; in other words, the fiber-
reinforcement in the transverse or wrong direction weakens the slab
under tensile load with respect to its stability. Furthermore, the
critical load does not depend on the wavelength-to-thickness ratios
for the anisotropy strength parameter k > kg =~ 0.86, but does depend
on these ratios for the anisotropy parameter k < ko. Finally, for the
anisotropy parameter k < kg including the isotropic case k = 0, the
slab under tension loses its stability after the axial resultant force
reaches its maximum, while for the parameter k& > ky, the slab under
tension becomes unstable before the resultant force reaches its
maximum,

2 Incremental Stress-Incremental Strain Relations
Let X and x be the positions occupied by a material point X in a

fixed reference configuration and in the present configuration, re-

spectively. Identify the position x with the deformation function, and
the particle velocity v is given by v = dx/dt. The deformation gradient
F and the velocity gradient L are defined as

F = Ox/dX, L = dv/ox, (1)

between which there is the relation
L=FEFL (2)

In terms of these gradients, we may express the right and left Cau-
chy-Green deformation tensors, € and 8, the deformation rate tensor
D, and the spin tensor W as

c =FTF, B=FF7,

p=(L+L7)/2, w=(@L-LT)/2
In the foregoing equations and also in what follows, ( ) denotes the
material time derivative, { )T and ( )~!the transpose and the in-
verse of the tensor, respectively.

Further, let H, denote three mutually orthogonal unit vectors in
the reference configuration. Analytically,

3)

dH,/0t =0, OHy/0X =0, tr (Hy®Hp) = g, 4)

where tr () denotes the trace and ( )®( ) the tensor product. The
symbol 8,5 is the Kronecker delta. The indices a and b take on the
values 1, 2, 3. The deformation carries the vectors H, into the vec-
tors

g = FHg, (5)
in terms of which the six scalars are defined as
Tup = tr (h,®@hp). (6)

If the transversely isotropic material considered here has a
strain-energy function, the function W should depend on the defor-
mations only through the five invariants of €

II = 3 {(tr €)% — tr €3},
V=Tl

I=trcC, III = det C,

IV =T, (no sum on c¢) (@)
under rotations about the preferred direction H, [14]; that is,
w=w({,11 11,1V, V). (8)

In equations (7) and in what follows, the double suffix notation for
summation is applied to the indices but not to the index c. The
stress-deformation relations for the transversely isotropic, com-
pressible, elastic material are given by [14] as

T =& + $B+ $_,B~! + $oh.®h, + P3(Bh,®h, + h,®Bh.), (9)
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where T is the Cauchy stress tensor, | the unit tensor, and the response
coefficients &5 = @, (LILIILIV,V), (k = ~1,0,1,2,3) are expressed in
terms of the strain-energy function W as

&g = (2/vTIDILonW + HlomW), &; = (2/v/TIDoW,

&) = -2/l onW, @2 = (2/V/IIDowW, &3 = (2/v/TIDdyW.
(10)
Here and henceforth, 9y, 913, etc., denote the partial differentiation

with respect to the respective invariants. If the material is initially
unstressed,

W+ 20W + oW =0, oqwW + 20y W =0, (11)

whenI-3=1I-3=1I1-1=IV—-1=V~-1=0.
From equations (1)-(6), we can easily obtain the following for-
mulas:

B = (DB + BD) + (WB — BW),

Tap = 2 tr (Dhy®hy),

¢ = 2FTDF,

ha = (D + W)hg, (12)

and we define the incremental stress tensor s, the incremental strain
tensor e, and the incremental rotation tensor w as

s=TAt, e=DAt, w=WAL, (13)

where At is a time increment and T = T — WT + TW the objective co-
rotational stress-rate tensor. )

Differentiate the stress-deformation relations (9) with (10) and (8)
with respect to time ¢ and then use the formulas (12) and the defini-
tions (13), and we are to obtain the relations between the incremental
stresses and the incremental strains

s = $1(eB + Be) — P_((eB~1 + B le) + doleh,®h, + h Qeh,)
+ P3{(eB + 2Be)h.®h, + h,®(eB + 2Be)h,
+ Bh,®eh, + eh,®Bh.} + 2 tr (eB)OE
+ 2II tr e — III tr (eB~1)}OopE + 21II(tr )OmE
+ 2 tr (eh,®h)d1vE + 2 tr (Bh,®eh, + eh,®Bh.)IVE,

where E(I, II, III, IV, V) is given by

(14)

E=$ol + $:B+ P B! + P3h.®h, + P3(Bh.®h, + h.®Bh,).
(15)

3 A Special Form of the Strain-Energy Function

Blatz and Ko [15] proposed a particular form of the strain-energy
function for an isotropic, compressible, elastic material, which they
adopted in an attempt to characterize the experimental data obtained
in tests on foam rubber. This particular form of the strain-energy
function is, according to our notation,

W = § pf(TI/I11 — 3) + 2(+/1II — 1)}, (16)
where u is a material constant. From this follows
T= (l - B“1) (§ %))
Uy )

In the previous paper [12}], the author considered, in connection
with the instability problem, the reinforcement of this Blatz-Ko foam
rubber by the inextensible, completely flexible fibers along the pre-
ferred direction. The stress-deformation relations for this idealized
fiber-reinforced Blatz-Ko foam rubber are given, with the help of the
theory of ideal fiber-reinforced composites [16, 17], as

1
T=p|l——=8"1] - Qn,®h,, 18
M ( \/il—l ) Qh,®h, (18)
with the kinematical internal constraint
tr (h.®h,) =1, (19)

if the preferred direction is given by H,. The last term on the right-
hand side of equation (18) represents the reaction stresses due to the
internal constraint.
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Fig. 1 Transversely Isolropic slabs before loatding and under axial loads

Here, let us consider the Blatz-Ko foam rubber reinforced by “ex-
tensible” fibers along the preferred direction H,, and let us treat this
rubber as a transversely isotropic material possessing rotational
symmetry relative to the direction H.. As one of the simplest forms
of the strain energy function for such a transversely isotropic rubber,
we consider the following special one:

W =3 uf(II/IIL - 3) + 2(VHI - 1) + 3R(AV —-1)3,  (20)

where k = 01is an additional material constant characterizing the re-
inforcement by extensible fibers or the strength of the anisotropy.
Henceforth, let us refer to this constant as an anisotropy parameter.
This function satisfies the natural state conditions (11). It follows from
equations (20), (9), and (10) that

1 k
T=pll-—=Bl+——=
# [ Waiii Vi
This stress-deformation equation coincides with equation (17) in the

limit & — 0. On the other hand, when & — » and tr (h,®h;) ~> 1, this
equation agrees with equation (18), provided that

(IV — 1h,®h.|. 21)

p lim IV - 1)/4/TI1 = ~Q.

k—>o

(22)

This limiting provision may be intuitively understood to be reasonable
from equations (5)—(7) and (19). For the specified strain-energy
function (20), the incremental stress-incremental strain relations (14)
and (15) reduce to

s = (u/v/T)[eB~1 + B~le + B! tr e + k{2h.®h, tr (eh,®hy)

+ (IV — 1)(eh,®h, + h .®eh, — h,®h, tre)}]. (23)

This equation also agrees, when £ — «, tr (h,®h,) — 1 and tr (eh,®h,)
— 0, with the counterpart of the theory for ideal fiber-reinforced
composites, provided that
u lim k{2 tr (eh,®h.) — (IV = 1) tr e}/+/1Il = —g, (24)
v

where g is the indeterminate incremental reaction stress due to the
inextensible constraint.

Journal of Applied Mechanics

4 Deformation and Stress in a Slab Under Axial
Loads

Let (X, Y, Z) and (x, y, 2) denote, respectively, the material coor-
dinates and the spatial coordinates, with the bases (i, J, k), of a point
when referred to the same Cartesian system. Consider an infinite
elastic slab of thickness 2H in its natural state and having a thickness
of 2h when subjected to the uniform axial stress T at infinity, as
shown in Fig. 1; the strain-energy function of its material has the form
like in equation (20), and the symmetry axis is in the X-direction.
That is,

He =i (25)

Furthermore, the slab is assumed to be free from tractions on its x =
+h boundaries and to be in a plane strain state with A\g = 1.

Denote the principal stretches in the X, Y, and Z-directions as Ay,
A2, As, respectively, and the deformation gradient is clearly

F = \i®1 + Agj®] + k@K, (26)
from which follow
B = A\ 2®i + A2®] + k®k (27)
and
I = )\12 -+ }\22 + 1, II = }\12 + }\22 + )\12)\22, IH = }\12)\22,
IV=\2 V=% (28)

wherein we have used equations (3), (5)—(7), and (25). Substituting
equations (26)—(28) into equation (21) yields, with the aid of equation
),

Toe = pfl = M3A071 + A AT I (2 — 1)),

Tyy = u(l = A ~1Ag79), (29)

Tzz = ﬂ(l - )\1_1)\2—1)-

These are the nonzero components of the Cauchy stress tensor T. From
the condition of traction-free boundaries and from the loading con-
dition at infinity, we get

}\2 - }\1—'3 + k}\1(>\12 - 1) =0 (30)

and

To = u(l — A 1Ag~3). (31)

5 Instability of the Slab

In order to examine whether the finite deformation and the stresses
of the slab obtained in the previous section are statically stable or not,
let us superpose an infinitesimal plane deformation on that finite
deformation. Equilibrium equations for incremental stresses due to
the superposed infinitesimal deformation are regarded as equations
of neutral equilibrium for examining this stability.

As shown by BaZant [18], the incremental stresses defined by Biot
[13] are identical with those defined as the product of a time increment
and the objective corotational stress rate. Therefore, it may be pref-
erable to adopt Biot’s formulation of the infinitesimal deformations
of continuous bodies under initial stresses from among various
mathematical formulations. The equilibrium equations for the in-
cremental deformations in rectangular Cartesian coordinates are

0si;/0xj + Tjrdwin/dx; + Tindwjn/dx; — ejudTi/dx; = 0, (32)

where s;j, e;;, and wj; are the Cartesian components of s, e, and w de-
fined by equations (13). The incremental boundary forces per unit
initial area are

Afi = (sij + Trjwir + Tijerr — Tirejr)n,, (33)

where n; is a unit normal to the initial boundary surface. In equations
(32) and (33), the sum is taken from 1 to 3 with respect to the repeated
indices.

For the sake of simplicity, the superposed deformation is also as-
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sumed to be in a plane strain state. Consequently, the components
of incremental displacement are given by

=u(x,y), v=v(xy), w=0. (34)

These equations and equations (25)—(29) reduce the incremental
stress-incremental strain relations (23) to the forms

Sxx = ‘l’llexx + (/’IZeyy;

Syy = ageyy + do1€xy, (35)
Sxy = Polxy,
where
11 = w(AA2)"H3A 72 4+ kA 2(3A2 — 1)},
do2 = p(AiA)"H(3A2™2),
d12 = WA MM T2 — RAE(ME - 1)), (36)

do1 = u(Airg)"INe72,
$o = p(MA2) THALTZ+ A% + A A2 - D

Substituting equations (29) and (35) into equations (32), we obtain
a set of governing equations in terms of the incremental displacement
components u and v:

Y110%/3x2 + d%u/0y? + Y190%0/0xdy = 0,

¥220%0/022 + 220/0y? + Y9102u/0xdy = 0, @7
where
Y11 = 3+ EAA(BM2 - 1),
Yo = {1+ AAEN2(N2 - D),
Y12 = AMEN 2+ ApD), (38)

\PZ} =3M2(N 724 A7),

Since the slab is free from tractions, the incremental boundary forces
(33) should vanish at x = +h; using equations (29)~(31), (34)—(36),
and (38), we obtain
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Y110u/dx + Ypou/dy =0 at x = +h, (39)
duldy +ov/ox =0  at x =zh,

“where

Yo=1-kM*M2—1). {40)

The differential equations (37) have the following formal solutions
for the antisymmetric mode:
u ={A; cos ({1mx/l) + Az cos ({amx /D)) cos (wy/l),
v = {Aky sin (§imx/l) + Agke sin ($omx /L sin (wy/l),

where A1 and Az are integral constants, and [ is the half wavelength
in the axial direction. The constants {; and {5 are given by

(1)

fo=[I=b = (-1)2(b2 - 4a)3/(22)]'2 (x=1,2), (42)
which are two of the four roots for the algebraic equation
alf+b82+1=0 (43)
with the coefficients
a=yudee, b=y + e — Yroga. (44)
Furthermore, the constants «; and &2 are given by
Ke = (Y11{e® + D/(Y12fs) (@=1,2). (45)

On reference to the boundary conditions (39), the solutions in (41)
yield homogeneous linear algebraic equations with respect to the
unknowns A; and A,. For a nontrivial set of solutions of these equa-
tions, the determinant of the coefficients must vanish, resulting in
the following buckling expression:

(1161 — Yok1) (1 = x33) 1 tan (Sh/l)

= (Y1182 ~ Yoka)(1 — kafa) "L tan (mh/l) = 0. (46)

The counterparts of equations (41) and (46) for the symmetric mode
are

u ={Aysin ({ymx/l) + Agsin ({omx /D] cos (wy/l),

v = ~{A;k; cos ({3ma/l) + Agks cos ({owx /1)) sin (wy/l), 7
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Table 1 Classlfication of equations (36)
Region in Fig.2 Ll and Z, Type of egs. (36)
@ Both real b2—4a>0, a>0, b<0 | Hyperbolic
@ Real and purely imaginary a<0 Mixed hyperbolic-elliptic
@ Both purely imaginary b2—4a>0, a>0, b>0 | Elliptic
@ Both complex ' b2—4a<0 Elliptic
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6 —— — Symmetric mode
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-1
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0 1 2 3 4 5

—4é/h —
Fig. 3 Critical load under compression
and

W15 — doxk1) (1 — k1{1)~Y/ tan ({iwh /i)
— (Y1181 — Yora) (1 ~ kaf2)~Y tan (fowh/l) = 0,

where the constants {1, {s, k1, k2 are given by equations (43) and (45)
again.

The solutions (41) and (47), and therefore the equations in (46) and
(48) as well, are formal expressions and may be rewritten in other
forms depending on what type the differential equations (37) are
classified into. This classification can be carried out according to
whether the two roots {1 and {5 are both real, real and purely imagi-
nary, both purely imaginary, or both complex. This is summarized
in Table 1 and shown in Fig. 2; the k — g plane is divided into several
regions, marked from (D to @), by solid curves.

(48)

6 Numerical Computations

From equation (30) it follows that Ag is a single-valued function of
A1. The use of this in equation (46) [or (48)] then gives an equation
for A\; which has multiple roots. After these are found for the given
I/h and k, we choose a root such that g is nearest to unity (the max-
imum for compression and the minimum for tension), say Ag.. The
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Fig. 4 Critical load under tension as a function of opy par

axial load corresponding to this root obtained through equation (31)
is a critical, or buckling load, such as T,.

However, for the case of tensile loads and when & > kg = 0.86, a set
of roots Ag corresponding to the multiple roots A; does not have a
minimum but an infimum, as is proved by examining equation (46)
[or (48)] in the region (D in detail. This infimum is given by the
equation a = 0 instead of equation (46) [or (48)] and falls on the @-@)
boundary in Fig. 2. That is, this boundary is a locus of points of ac-
cumulation of roots s of equation (46) [or (48)]. We regard the cor-
responding load for this infimum as a critical value, such as T,
again.

In Fig. 2, the dashed curves represent the A = Ay, curves for some
wavelength-to-thickness ratios. For the compressive case (Ag < 1),
all these curves are within the ellipticity regions 3 and @. For the
tensile case (A2 > 1), the curves are on the @) boundary, within the
ellipticity region @, or even within the hyperbolicity region @. Within
this hyperbolicity region, there might be hyperbolic solutions possibly
carrying weak discontinuities or strong discontinuities, though we
have assumed continuously differentiable solutions from the outset.
These possible discontinuities lie beyond our scope. The vertical line
marked A, in the upper middle of the figure is an asymptote of the
@3 boundary curve and at the same time an asymptote of the Ag
= g curve. The approximate value of A, is given as 1.466 in [12].

For the compressive case, Fig. 3 shows how the critical load depends
upon the wavelength-to-thickness ratio [/h for the anisotropy pa-
rameters k = 0.0, 1.0, «, meaning isotropy, transverse isotropy, and
ideal fiber-reinforcement, respectively. The slab becomes unstable
for all I/h > 0. In particular, the transversely isotropic slab, including
the isotropic case, becomes unstable for I/h — 0. The critical load in
this limit coincides with that of a “surface instability” of an elastic
half space. The critical load for the antisymmetric mode, which is
smaller than for the symmetric mode, decreases according to the in-
crease in [/h. The stronger anisotropy makes the critical load higher;
in other words, a stronger reinforcement makes the critical load
higher.

For the tensile case, Figs. 4 and 5 show how the critical load depends
on the anisotropy strength & and the wavelength-to-thickness ratio
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I/h. In spite of the tensile load, the slab becomes unstable for all I/h
z 0and forallk = 0. For k > kg =~ 0.86, the critical load does not de-
pend on //h but does depend on I/h for k < kg. This dependence on
I/h for k < kg is shown in Fig. 5; the incipient instability occurs for the
antisymmetric mode for some values of [/h and for the symmetric
mode for other values of {/h. Furthermore, the critical load decreases
according to the increase in k; in other words, the reinforcement in
the transverse or “wrong” direction weakens the slab in regard to its
stability. The asymptotic critical load in the limit k — « is T = p(1
— Ae —3) [12]-

Fig. 6 shows the Ao = Ag, curves and the Ay = Ay, curve with Agp,
being the value the principal stretch in the axial direction assumes
when the tensile resultant force

F=2HNT, (49)
reaches its maximum. For k < kg, Ag; > A2p. This means that, for the
anisotropy that is weaker than when k = k¢, the instability can arise
only after the resultant force reaches its maximum. This is the same
conclusion as that reached by Wesolowski [1} and Hill and Hutchinson
[9]. In contrast to that conclusion, for k > kg, Az2¢ > Aam. That is, for
the anisotropy that is stronger than when k = k, the instability can
occur before the resultant force reaches its maximum.
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Large Plane-to-Surface
Deformations of Membranes
With Inclusion’

For large deformations, the strain-energy density function for a neo-Hookean membrane
is dominated by the sum of squares of the two principal stretch ratios. This property re-

duces the displacement equations of equilibrium for the class of problems considered to
three uncoupled linear equations. The nonlinear coupling appears only in the algebraic
stress calculations. In light of the scarcity of exact solutions to nontrivial problems, the
approximate but explicit solutions obtained here should be of some practical value.

1 Introduction

The theory of the finite deformation of a nonlinearly elastic
membrane has been studied by many authors (see [1-5], for example).
Because of the nonlinearity of the equations involved, the application
of the theory to particular problems is in general very difficult. Aside
from the few simple problems solved by a semi-inverse approach (see
[6], for example), exact solutions are few.

In the context of the theory of plane stress, the solutions to the class
of axisymmetric problems, originally studied by Rivlin and Thomas
[1], may be considered exact in that the governing equations may be
reduced to two uncoupled first-order ordinary differential equations.
This reduction was accomplished by Yang [7]. The class of solutions
obtained by Varley and Cumberbatch [8] is exact, but is based on an
assumed special strain-energy density function.

In the general case where at least either the undeformed or the
deformed surface is not a plane, the number of exact solutions is even
fewer. Axisymmetric deformations of initially cylindrical membranes
may be solved exactly [9-12]. These are perhaps the only nontrivial
additions to the semi-inverse solutions mentioned in [6]. Effective
numerical formulations for a large number of nontrivial problems,
however, can be found in [13-15].

For very large deformations, explicit asymptotic solutions are very
often possible. The needed asymptotic analysis depends very much
on the type of membrane material involved (see [16-20], for example).
A summary of this discussion may be found in [21] in which the re-
duction of Wang and Shield [17] was generalized to plane-to-surface
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deformations. This simplification is extremely significant in that it
reduces a nonlinear problem to one that is even simpler than a linear
problem. This is illustrated by the many problems solved in [17] and
a recent solution by Wu [22]. The solutions given in this paper give
another indication of the usefulness of the reduction.

2 Nonlinear Membrane Theory

Consider an elastic membrane surface characterized by a constant
thickness H and a characteristic linear dimension R. The membrane
is made of a neo-Hookean material with an elastic constant C;. We
shall use R and RHC as a length scale and a force scale, respectively,
and shall henceforth be dealing with dimensionless quantities
only.

Let x; = x? be a set of rectangular cartesian coordinates with unit
vectors ¢; = e, The position vector x = Z of a point on a surface S may
be expressed in terms of two surface coordinates 8* = . Specifically,
we write

Z = Z(0%) = Zi(B)e; = Z;(D)e! 1)
The covariant base vectors A, and the components 4,5 and A2 of the
metric tensors are

Aa=2Zo=Zp ‘ @
AaB =Ay- Aﬁy (3)
Aaﬁ = (X—I et eB“A)\;u (4)

where e*f are the components of the two-dimensional alternator,
and

A = det [Aag]. )

Suppose that the surface S is deformed to a new surface s. Let x =
z be the position vector of a point on s which, in the undeformed state,
had position Z. The deformation may be defined by

z = z(8,) = zH{0.)e; =z;(0,)et. (6)

On the deformed surface s, the base vectors a, and the components
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@45 and a°? of the metric tensors may be derived from (2)-(5) by re-
placing the kernel letters by their lower case counterparts.

Let dL and dl be, respectively, the arc elements on S and s.
Then

di\2
AZ= (d_L) = (a,pd02d0P) /(A ,pd6>dB) @)
where A is the stretch ratio. The two invariants I and J of (7) are
I=A}+ A} = Ao, (8)
J=A{Aj=a/A 9)

where A; and Aj are the principal stretch ratios. For a neo-Hookean
membrane subjected to large deformation, the dimensionless
strain-energy density W per unit area of the undeformed surface may

be approximated by
W=I-2 (10

For zero body force and surface load, the three displacement equations
of equilibrium are [21]

2 (ﬂ A1/2) =0 a1
ol \ozt,
which, for W defined by (10), become
o (A1/2 AcB _a_z_,_) =0, (12)
ol d0g

If the undeformed surface S is in the plane Z3 = 0, and if Z; and Z,
are taken as the surface coordinates, then (12) becomes

02 o2
(— N —) .
dZ%  dZ%

Let t di be the traction vector on the deformed line element di.
Then

;=0 (13)

dys
t=241/2 A ¢ g a;,

o (14)
The line elements along the coordinate curves are
dl, = all2 dg~ (no sum). (15)
Substituting (15) into (14), we obtain the traction vectors
o = 2412 Ave,, —}/5 as (no sum on «) (16)
3 Elliptic Inclusion
We begin by introducing two complex variables
Z=21+1Zy, (17)
(=0+ife=pe” (p=1, 0<50%2m), (18)
and a transformation
Z=Q={+m/{ (-1=m=1). (19)

The parameters p and 6§ define a set of curvilinear coordinates in the
Z-plane. We choose them as the surface coordinates introduced in
‘Section 2 and write

01 =0l = 0, 02 =02 =, (20)

In terms of the curvilinear coordinates, we may characterize an

elliptical annulus by the expression
1<p=<k (21)

where p = 1 defines the boundary of the inclusion and p = k the outer

3 The complete expression is W = I + J—1 — 3. A discussion on various re-
strictions on the applicability of (10) may be found in {21]. :
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boundary. The shape of the inclusion depends on the choice of m;:

—1 line inclusion of length 4 on the Zs-axis.

m= 0 circular inclusion of radius 1.

+1 line inclusion of length 4 on the Z;-axis.

For large values of &, the outer boundary is almost circular. Our ob-
jective is to determine the deformation of the membrane due to the
application of certain displacement boundary conditions specified
along the inclusion boundary p = 1 as well as the outer boundary
0=Fk. :

Let ¢ be a set of body-axes attached to the inclusion such that ¢
coincide with e; in the undeformed configuration. The set of body-axes
is rotated through the sequence of Euler-angle rotations: ¢ about ¢,
v about €, and ¥ about e;. The effect of these rotations may be
characterized by a matrix R with components Ry, = R!™ defined

by

=
|

= cos ¢ cos Y ~ sin ¥ sin ¢ cos y
Ri2 = sin ¢ cos ¥ + sin ¥ cos ¢ cos vy
Rig=sinysiny

Ra1 = ~cos ¢ siny — cos Y sin ¢ cos vy
Rgs = —sin ¢ sin ¥ + cos Y cos ¢ cos ¥ (22)
Rog = cos ¢ siny

R31 =sin ¢siny

Rg3p = —cos ¢ siny

R33 = cosy

The matrix R satisfies the relation RT = R™L If u is a vector with
representations
u=ule; = yel = gl = €, (23)
then
pi=Riy;, ui=Riy;. (24)

The boundary conditions along the inclusion boundary p = 1 are
those effected by a rigid-body translation A;e and a rigid-body
rotation characterized by R. We have

zj = Aj+ Ry;Z1 + Ry Z (25)
or
2= A +RZ+EZ 26
where
Rj =3 (Ryj — iRy)). 27)

The conditions along the outer boundary p = k are assumed to be of

the following form:
z;=TZ+T;Z (28)

where the I’s are expressed in terms of three parameters A1, Ag, and
B by the expressions

T1=3[\ + A2) + (AL — Ag)e~i26], (29)
Ty= fz [\ = A2e™i28 — (g + A9, (30)
F3 =0. (31)

. This choice is motivated by the observation that as k — «, A and Az

are just the constant principal stretch ratios A and As at infinity, and
B is simply the angle between the Z;-axis and the A;-direction.

4 (") = complex conjugate of ( )
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The functions z; must now be determined to satisfy (13), (26), and
(28). The solution is elementary and the result is

1 —= d; d;
Zj=Aj(1.—1;‘;1np)+bj§‘+bj§'+—g+-}-_—1- (32)
where
1 = -
b; =k2—1 [(kZI‘j+mI‘j)—(R,~+ij)], (33)
dj = 1 [—(k2T; + mT;) + k%R, + mR;)]. (34)

We proceed to calculate a number of quantities pertinent to the so-
lution.

Using the parametric representation defined by (19) and (20), we
have

1 1 2

Au=—Ap=-A1=1-2"cos 20+, (35)
P I p p

A12 = A2 = 0. (36)

The traction acting on the membrane along the inclusion boundary
may be calculated from (16). It is

o)
—tadlyg = ~2 (Al/2 Al —zl) e df
oplp=1
A - — .
=9 |——(b; —d))et® — (b - dl)e“'”]ez dé. (37)
Ink
The total force that must be applied on the inclusion is just
4
F= f —{s dls = T Alel. (38)
Ink

Let € be the total couple that must be applied on the inclusion.
Then

C = cel = Cje!
=F£zX (~adls) — AXF (39)

where z is the position vector defined by (26). The explicit results for
the components C; are

€y = ]% {Rya (1 +m) (B2 + m) (\ — Ag) sin 28

— Rz (1 —m) (k2 —m) [(A1 = Ag) cos 28 — (A1 + Ag)l},  (40)

Cy=— kzzj_r_l Ris(T+m) (RZ+m) [(Ar 4+ Ag) + (A1 — Ag)
X cos 28] + Roa (1 —m) (k2 —m) (A1 — Ag) sin 28}, (41)
C3=— k221r -1+ m) (k2 4 m) [Bia(n — M) sin 26

= Ra[(At + No) + (A1 = Ag) cos 281} — (1 — m) (k2 —m)
{Ro1[(M\1 — Ag) co8 28 — (A1 + A2)] + Raa(A1 — Ag) sin 208)]  (42)
The components ¢; may be calculated by using (24).

Traction vectors along the coordinate curves may be calculated by
using (16). They are

2 2

ti="a?ay = —~aii"z e, (43)
P

o= 2pay3’ a; = 2paz? 21,101 (44)

Along the inclusion boundary p = 1, the traction is
ta = 2(1 — 2m cos 20 + m2)~V2a;| =1 (45)
where the condition Agg = ag for p = 1 has been used in the deriva-

tion. The tangential and normal tractions along the inclusion are
just

T =13 X a3’ ag = 2a3}asa, (46)

Journal of Applied Mechanics

N = (tg Xty — T2 = 9q3} o172, 47)

where a.4 can be explicitly obtained by using (32), but the lengthy
algebraic expressions are not given here.

4 Examples

Pulling and Twisting of a Circular Inclusion. The membrane
is uniformly stretched at the outer boundary with A\; = A2 = A, and
the inclusion is pulled out of the plane by a force Fes and a couple Ces.
Setting

m=f=y=y=A=Ay=0, (48)
F .
A3 =—1In k, (49)5
4T
we obtain
21 = f1(p} cos 8 + fa(p) sin 6, (50)
22 = f1(p) sin 6 — f2(p) cos 6, (61)
F F
=—Ink—-—Inp, 52
B TP 62)
where
_k*\—cos ¢ kZ(A—cos¢) 1
f)=——¢ o1 g (53)
sin ¢ k2
= -=]. 4
f2(p) o1\P p) (54)
The couple C is related to the Euler angle ¢ by the expression
2
=k2]ii\sin o. (55)

For this problem, the curvilinear coordinates are the polar coor-

dinates in the undeformed configuration, i.e.,
A;=e, Az = pey, (56)

where e, and ey are unit vectors. We further introduce a set of body-
polar coordinates with unit vectors ¢, and ¢ defined by

€, = c08 ¢ e, + sin ¢ ey, (57
€ = —sin ¢ e, + cos deg. (58)
1t follows from the explicit expressions (50)-(52) that
a1= (ficos ¢ — frsin ¢) ¢,

F
~ (fysin ¢ + fy cos p)eg — ——e3, (59)
47p

ag = (f1 sin ¢ + f2 cos ¢)e, + (f1 cos ¢ — fa sin ¢)ey, (60)

where primes denote differentiation with respect to p.
At the inclusion boundary p = 1, we have

2k2\ cos ¢ — (k2 + 1) 2R2Z\ F
a; = 21 e,,—-kQ__lsmd)e,,—Eeg (61)
a=¢ (62)

and

‘[2k2 — (k2 2 4 4k4)\2 5in2 F\z
au:[ A cos ¢ — (k2 + 1)]2 + 4k*A%sin ¢+(_), (63)

(k2 —1)2 4

2k2\
a12=—k2_lsm¢, ag =1, 7 (64)
2k2 - (R2+1))2 [F\2
;[ A cos ¢ — (R2+ 1)) +(_) . (65)
(k2 ~1)2 A

A thin membrane wrinkles when one of the principal stresses becomes

5 c.f. (38).
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zero. For membrane materials defined by (10), wrinkling occurs
when

a=A}Aj=0. (66)

1t follows from (65) that for plane-to-plane deformation, F = 0, the
condition
k2+1
2k2\
must be satisfied to avoid wrinkling. If F' is not zero, then a is always
positive. Condition (67) simply indicates the maximum rotation of
the inclusion before the membrane begins to wrap around the inclu-
sion. This follows from the fact that the traction vector along the in-
clusion is t; = 2a; which becomes tangent to the inclusion boundary
when ¢ satisfies the equality of (67).

Line Inclusion. Inview of the arrangement that the Euler angle
% is a rotation about the €; body-axis, we must choose the line inclu-
sion to coincide with the €s-axis and hence m = —1. We shall restrict
ourselves to the case ¢ =y = 8 = 0. Then

¢ < cos~! (67)8

1 1
z1= A (1—l——lnp)+)\1 (p-——) cos 0, (68)
0

nk
)+[(k2+1))\2_2cos'y]
k-1  r-1)’

1
=Agll ——1
22 2( nk np

k? 2 1
_ —-——( + 1)>\2+ 2k cos 'y] —-} sinf, (69)
k2—1 k2—1 o
_ 1 2sin 7y kA
zs—Aa(l—'m—h;lnp)—kg_l(p—-;)sma. (70)

The force acting on the inclusion is just (38), while the couple is given
by the expression

87(’)\2(’22 + 1) . e
=0 —8ln
B2 1 Yer

We now examine the property of the solution for Zy = 0and 0 < Z»
— 2 & 1. Setting § = 7/2 and (p — 1) = (Z5 — 2)1/2in the various ex-
pressions, we obtain

(1)

Ann=Ap=4Z;-2) (72)
AI)Z (‘Az k2+1 )2
Ap=|— +|——2 N2 —2
" (lnk nk B2—1"" cosy
Ag kRZ2+1 | 2
+(]n—k+2k2__1s1n7) (73)

A =4 (Z2-2), A;2=0 (74)

1t follows that ahead of the splinter tip Z; = 0 and Zg = 2, the principal
stretch ratios are

Ay = (ag9/Agg)1 2 = Ay, (75)

Scf. [17].
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Az = (a1/A1)2 = alf/2(Z5 — 2)172, (76)

where Ag has the familiar singularity.

References

1 Rivlin, R. S, and Thomas, A. G., “Large Elastic Deformations of Iso-
tropic Materials. VIII. Strain Distribution Around a Hole in a Sheet,” Philo.
sophical Transactions of the Royal Society, London, Series A, Vol. 243, 1951,
Pp. 289-298.

2 Adkins, J. E., and Rivlin, R. S., “Large Elastic Deformations of Isotropic
Materials IX. The Deformation of Thin Shells,” Philosophical Transactions
of the Royal Society, London, Series A, Vol. 244, 1952, pp. 505-531.

3 Green, A. E,, and Adkins, J. E., Large Elastic Deformations and Non-
linear Continuum Mechanics, Oxford University Press, London, 1960.

4 Corneliussen, A. H., and Shield, R. T., “Finite Deformation of Elastic
Membranes With Application to the Stability of an Inflated and Extended
Tube,” Arch. Rational Mech. and Analysis, Vol. 7, 1961, pp. 273-304.

5 Stoker, d. J., Topics in Nonlinear Elasticity, Courant Institute of
Mathematical Sciences, 1964.

6 Green, A. E., and Zerna, W., Theoretical Elasticity, Oxford University
Press, London, 1954.

7 Yang, W. H., “Stress Concentration in a Rubber Sheet Under Axially
Symmetric Stretching,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 34;
1967, pp. 943-947,

8 Varley, E., and Cumberbatch, E., “The Finite Deformation of an Elastic
Material Surrounding an Elliptical Hole,” Symposium on Finite Elasticity
Theory, AMD, Vol. 27, ASME, 1977.

9 Wuy, C. H, “Tube to Annulus—An Exact Nonlinear Membrane Solu-
tion,” Quarterly of Applied Mathematics, Vol. 27, 1970, pp. 489-496.

10 Kydoniefs, A. D., and Spencer, A. J. M., “Finite-Axisymmetric Defor-
mations of an Initially Cylindrical Elastic Membrane,” Quarterly Journal of
Mechanics and Applied Mathematics, Vol. 22, 1969, pp. 87-95.

11 Kydoniefs, A. D., “Finite Axisymmetric Deformations of an Initially
Cylindrical Elastic Membrane Enclosing a Rigid Body,” Quarterly Journal
of Mechanics and Applied Mathematics, Vol. 22, 1969, pp. 319-331.

12 Pipkin, A. C., “Integration of an Equation in Membrane Theory,”
ZAMP, Vol. 19, 1968, pp. 818-819.

13 Yang, W. H,, and Feng, W. W., “On Axisymmetrical Deformations of
Nonlinear Membranes,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 37,
1970, pp. 1002-1011.

14 Yang, W. H., and Lu, C. H., “General Deformations of Neo-Hookean
Membranes,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 40, 1973, pp.
9-12.

15 Feng, W. W, Tielking, J. T\, and Huang, P., “The Inflation and Contact
Constraint of a Rectangular Mooney Membrane,” ASME JOURNAL OF Ap-
PLIED MECHANICS, Vol. 41, 1974, pp. 979-984.

16 Foster, H. 0., “Very Large Deformations of Axially Symmetric Mem-
branes Made of Neo-Hookean Material,” International Journal of Engineering
Science, Vol. 5, 1967, pp. 95-117.

17 Wong, F. S., and Shield, R. T\, “Large Plane Deformations of Thin
Elastic Sheets of Neo-Hookean Material,” ZAMP, Vol. 20, 1969, pp. 176~
199.

18 Isaacson, E., “The Shape of a Balloon,” Comm. Pure Appl. Math., Vol.
18, 1965, pp. 163-166.

19 Wu, C. H,, “Spherelike Deformations of a Balloon,” Quarterly of Applied
Mathematics, Vol. 30, 1972, pp. 183-194.

20 Wuy, C. H, and Perng, D. Y. P., “On the Asymptotically Spherical De-
formations of Arbitrary Membranes of Revolution Fixed Along an Edge and
Inflated by Large Pressure-—A Nonlinear Boundary Layer Phenomenon,”
SIAM Journal of Applied Mathematics, Vol. 23, 1972, pp. 133-152.

21 Wuy, C. H,, “Large Finite Strain Membrane Problems,” Quarterly of
Applied Mathematics, Vol. 36, 1979, pp. 347-359.

22 Wu, C. H,, “Sutures in Stretched Membranes,” Quarterly of Applied
Mathematics, Vol. 38, 1980, pp. 109-119.

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm




M. Taya

Assistant Protessor,
Department of Mechanical
and Aerospace Engineering,
University of Délaware,
Newark, Del. 19711

Assoc. Mem. ASME

T. Mura

Protessor,

Department of Civil Engineering,
The Technologlcal Instliute,
Northwestern University,
Evanston, . 60201

Mem, ASME

On Stiffness and Strength of an
Aligned Short-Fiber Reinforced
Composite Containing Fiber-End
Cracks Under Uniaxial Applied
Stress’!

One of the experimental findings on short-fiber reinforced composite materials is that the
fiber-ends act as a crack initiator. The effect of the fiber-end crack on the overall stiffness
and the strength of the composite are investigated here. A particular emphasis is placed
upon the weakening longitudinal Young’s modulus by the fiber-end crack which is as-
sumed to be penny-shaped. The energy release rate of the penny-shaped crack at the
fiber-end under a uniaxial applied stress is also calculated for a fracture criterion. It is
assumed in our theoretical model that short-fibers are all aligned in the loading direction
and the penny-shaped crack at the fiber-end extends in the direction perpendicular to
the fiber axis. Our analytical technique is a combination of Eshelby’s equivalent inclusion
method and Mori-Tanaka’s back stress analysis so that our results are valid even for large
volume fraction of fibers.

Introduction

The stress-strain curve of a short-fiber reinforced composite con-
sists of two stages; ({) linear stage and (i) nonlinear stage. A
typical stress-strain curve of this nature is shown in Fig. 1 [1], where
variation of the tangent modulus and the corresponding acoustic
emission are also given. In these figures the nonlinear stage can further
be divided into two stages, hence we have three stages 1, 2, and 3.
Assisted by the acoustic emission result one can conclude that the
linear stage (stage 1) is due to elastic deformation of the composite
with perfect interfacial bonding, whereas during the nonlinear stage
(stages 2 and 3) the stiffness of the composite is reduced until the
composite fails in a brittle manner due to the debonding at fiber-ends
and the propagation of the fiber-end cracks. During stage 3 the mi-
crocracks are expected to be abundant in the matrix so that some of
the microcracks cut through adjacent fibers. Observation of a frac-
tured composite has revealed [1] that the fiber-end crack grows ra-
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1980; final revision, September, 1980.
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dially and propagates into the matrix followed by a final failure.

Based on the foregoing experimental findings, a number of prob-
lems and corresponding theoretical models have been proposed [4].
In this paper we focus on the strength and stiffness at the early part
of stage 2 just after the fiber-end crack is initiated. We will compute
the energy-release rate of the fiber-end crack and the longitudinal
Young’s modulus of the composite under uniaxial applied stress. The
fiber-end crack can be simulated by a penny-shaped crack based on
the experimental findings [1]. |

The energy-release rate of a penny-shaped crack in a pure matrix
has been computed by a number of researchers [5-8]. However, the
problem of a penny-shaped crack at a fiber-end has not been solved
mainly due to the complexity of its geometry (see Fig. 2), except for
the case of a penny-shaped crack located in the matrix and surrounded
by fibers which are not in contact with the penny-shaped crack [9],
and for the 2-D crack meeting a continuous fiber at a right angle [10].
There are three methods for evaluating the energy-release rate of
crack:- (i) stress-intensity factor approach; (ii) J-integral ap-
proach, and (iii) total potential energy approach by use of the
equivalent inclusion method. The first two approaches require a de-
tailed information of stress and strain field, whereas in the third ap-
proach a computation of the total potential energy of the composite
containing cracks is only the work to be done. For the computation
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of a penny-shaped crack at a fiber-end, the total potential energy
approach may require the least effort in the computation if one can
find a simple method to compute the total potential energy of the
composite containing fiber-end cracks. The equivalent inclusion
method of Eshelby [2] is such a simple method by which we can
compute energy-release rate in terms of the equivalent eigenstrains
defined in the fiber and crack. This method also provides the overall
stiffness of the composite weakened by fiber-end cracks.

A prediction of the overall stiffness of a composite has been well
studied in the last two decades. However, a perfect bonding at the
matrix-fiber interface was always assumed in the aforementioned
model. If a volume fraction of fiber is small and fiber-end cracks are
of small size, the interaction between fibers can be neglected. If the
volume fraction is not small, the Eshelby’s equivalent inclusion
method can be modified such that the interaction is counted by an
average back stress. The back stress can be again evaluated in terms
of the eigenstrains as Mori and Tanaka [3] did.

The overall stiffness of a composite weakened by fiber-end cracks
can be obtained by use of the modified Eshelby’s equivalent
method.

A Theoretical Model

A theoretical model considered in this paper is shown in Fig. 2 where
the axis of uniaxial loading and fiber is along the x3-direction. It is
assumed in our model that the fiber is an ellipsoid elongated in the
x3-axis (the major axis [ and the minor axis d) and the penny-shaped
crack is also an ellipsoid but elongated in the x; and x5-directions (the
major axis ¢ and the minor ¢). The stiffness tensors of the matrix and

362 / VOL. 48, JUNE 1981

MATRIX (Cf),)

2¢ PENNY-SHAPED CRACK

e

o0
Fig. 2 A theoretical model

the fiber which are linear isotropic, are denoted by C?jkl and Cyjpy,
respectively. For later convenience the domain of the fiber and crack
are denoted by { and €, respectively.

As an analytical tool we use “Eshelby’s equivalent inclusion
method” [2] by which an inhomogeneity is replaced by an inclusion
with C?jkl and unknown eigenstrain components. The eigenstrains
in Qy and . are denoted by ¢;; and ¢;;, respectively. Once ¢;; and ¢;;
are solved, we can compute the energy-release rate of a penny-shaped
crack, G, and the longitudinal Young’s modulus of a composite
weakened by penny-shaped cracks at fiber-ends; Ey,.

Energy-Release Rate of a Penny-Shaped Crack at the
Fiber-End. The energy-release rate of a penny-shaped crack can
be defined as

or
oc

G= (1)

where P is the total potential energy; elastic energy plus the potential
energy due to applied stress ¢°. Following Eshelby, the total potential
energy P is given by

P =Py + Ein (2)

where Py is the total potential energy without any inhomogeneity and
Ejni is called “the interaction energy” between the applied stress and
the inhomogeneity. For our problem, Ein¢ consists of two parts; Ejnt
due to €, (Ef,), and that due to €}, (Efy). However, €/; has no con-
tribution to 9P/d¢ since ¢;; is independent of ¢. Thus G is reduced
to

aE fnt
= = 3
o> (3)
where Ef,; is expressed by [2]
Efy=—}0%; Ve

where V. is the volume of a penny-shaped crack. We note in passing
that there is an alternative way of defining the energy release rate of
a penny-shaped crack [8, 11]. That is, G is given by ¢|dP/dc| instead
of equation (1); hence the dimension of G becomes “force.” The en-
ergy-release rate (7 so defined is rather convenient if one would like
to try to relate G to the energy conservation laws explored by Knowles
and Steinberg [12].

Transactions of the ASME

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



The Longitudinal Young’s Modulus of a Composite Weakened
by Penny-Shaped Cracks at Fiber-Ends. There are basically two
methods to compute the overall stiffness of a composite: (i) to com-
pute the average stress and strain, and (ii) to compute the elastic
energy. We take the latter approach to utilize the Eshelby’s equivalent
inclusion method. Under the assumption that the applied stress ¢°
in the x3-direction (along the fiber axis) is kept constant, the equiv-
alence of the elastic energy yields

02 02
on. V" ome ¥ e Bl (5)
where E¢ is Young’s modulus of the matrix, Ef,; is given by equation
(4) and El, is defined by

Ely=—}%0d%: V; ()]

and where V and V; are the volume of a composite and fibers, re-
spectively.

In computing GG and E, we have only to solve for e;j and e:; The
method of solving for ¢;; and ¢;; as well as the computation of G and
E1, will be discussed in the following section.

Solution Procedure
Two problems are solved successively in this section. The first
_problem is to find eigenstrain ¢;; and the disturbed stress o/ ;in Qy for
an infinite elastic body containing fibers and subjected to the uni-
axial applied stress ¢®. In the first problem the fiber-end crack is not
considered for obtaining ¢;;, but the interaction between fibers is taken
into account by the back stress analysis [3].

In the second problem the disturbed stress ¢¢; in ). is obtained in
terms of ¢;; which is eigenstrain in € and still unknown. On the other
hand, in the first problem the disturbed stress just outside the fiber-
end, o/; is expressed in terms of of; which is a function of €;;, C%y;, Ciji,
and the geometry of the fiber [13-15]. Then, the total stress o; in ,,
vanish:

ali= o+ 0§ (x) + 0l (ki Cimn, Chimn, U/d) =0 (7)

Thus we can solve for ¢),; from equation (7). The use of equation (7)
implies that the interaction between fiber and a fiber-end crack is
taken into account to some extent.

Computation of ¢;;and of;. Based on the Eshelby’s equivalent
inclusion method and Mori and Tanaka’s method on back stress
analysis, we assume that the averaged disturbed stress in the matrix,
{0;;) um is given by

(o5 M = Clipin (8)
The equivalent inclusion method yields in £
0+ 055 = Clpy (s + &t + €en — €h))
= Ciju (e + Eu + €r2) 9)
where
Chinr = A0 05 Opr + 10 (i 81+ 6ir Onj)
Cijri = N0yj 01 + n(Oip Oj1 + 831 Onj)

*
€kl = Sklmn €mn

0% = Chur e (10)
From equations (9), (10)34 we have in Q;
ot = C%y @t + Skimn €mn — €50 (11)

Skimn in equation (10)2 is called “the Eshelby’s tensor” and is a
function of C %kl and the geometry of the fiber, I/d. Explicit expres-
sions for Skimn are given in Appendix. In equation (10)12 §;; is the
Kronecker’s delta, and \° (\) and u® (u) are the Lamé constants of
the matrix (fiber). The geometry of fiber and the direction of applied
stress (see Fig. 2 excluding a crack) yield two nonvanishing compo-
nents of ¢;;, €17 (0T €37) and e33. An integration of the disturbed stress
over the entire domain of a composite (V) yields

Journal of Applied Mechanics

A= (o) +flo)r=0 (12)

where f is a volume fraction of fiber, the symbol {s;;) indicates the
volume average of o;;, and the subscripts M and [ are for the matrix
and the inclusion (fiber in our problem), respectively. A substitution
of equations (8) and (11) into (12) yields

Chit &t + FCYu1 (Skimn €mn — €1) =0 (13)
By setting ij = 11 and 33 in equation (9), we obtain

(14)

* * o 0 0
Cr1 611 + Crz €33 = ~2D1e}; — e

Car €11 + Caz 33 = —2e9; — Doely (15)

where

+ 6yg —

Cu +3(1 - 21/0)5,’}

S P
2(1 - ll()) (Clz - 1)

g v | RS RO
+ 1+ 200+ {1 — 20— ;
2(1—1/0)()\—)\0 Yo T - )f
0 [}
2()\ +;,L)
A— A0

1 —2ug 1 (/.L——;,LO)[ 2%
Cro=1- + -
12 (1—u0)g 20—y =2 | @@=

AT
@ -1 PO =)

+3(1 - 2uo)g]

1 2
Cro= ———1+ 6wy —
2 2(1—1/0)[ T - )

2)\0 2 T uo) [_ B _
HETE ORI (x v |

3
+ '1 —2v + ——2(a2 _ 1)}g]

1- 21/0) (AO + 2#0)
1-yp, A= N0

_ 0 2
1 (M u)[1_2V0+(3a 1)
(1 = pg) \A — A9, a? —

..{Hy +3—H
0 (az—l)é

— 0

D1=1+(&‘—“)

X=X

u—uo)

A= A°

and where g is given in the Appendix, and

(a2-1)

C22=1_(

(16)

el = el +&n (18)
Noting that €} = — v,00/Eo, €33 = co/Eq, we solve for e]; and €33 in

equations (14) and (15) to obtain

Ba_ | 00 (B2~ voBy)

. 1.
_Bi. . B 19
= —rat Eo y (19)
« B3 | By, 0o (Byg — voB3)
€33 =— €11 +—— €3+ — 20
B=" Ent o " (20)
where
A = (0o — Co1Cro
B; =2(C1s— D1Ca)
By =DyC13—Ca
B3 = 2(D1Cq — C11)
By=Cn—DyCus (21)

Next we solve for unknown ; by equation (13). After some algebraic
computation, we obtain
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€1 = fS_Eo (22)
= f‘;j;’z (23)
where
S, = { 2vo +f (H11By + H12B4)l
(1 — 2wp) A
% {H21(Bg — voB1) + Hya(B4 — voB3)}
A
_ [2(1 = vp) + (Ha1By + H2zB4)]
1 - 2wp) A
% {f111(B2 — voB1} + H12(Bs — voBs)]
A
8y = { 4vo / (Ha1B1 + szBs)}
(1 - 2110) A
% {H11(Bg = voB1) + H12(B4 — voB3)}
A
_{ 2 f(HuB1+H1233)]
(1= 2u,) A J
% {H91(Bg — voB1) + Ha2(B4 — voB3)}
A
S [ 2 (H11B1 +H1233)} |2(1 - »)
(1 — 2wp) A (1 = 2w)
+f (H1Bg + H2234)}
A
_ [ 4y (HoB: + H22B3)]
(1 - 2u) A J
( 21/0 + f(HnBQ + H1234)} (24)
(1 — 2wg) A
and where

2p
Hy =2 {—“0— (S1111 + S1ie2 + Sazin — 1) + S1111 + S1iee — 1}
(1 — 2p)

21’0
Hyy=———— (281133 + 8 —1) + 28113
12572 270) (281133 + S3333 1133
4110
Hyy = —————(S1111 + Sti22 + Szar1 — 1) + 483311
(1 — 20¢)
211()
Hygy = ————— (281133 + Sazaz — 1) + 2(Sg3s3 — 1) (25)
(1 — 2w)

Thus the eigenstrain in €, €;; can be computed explicitly from
equations (19), (20), (22), and (23) as

& = {(32 — voB1) + f(B1S; + 3232)}9_‘1 26)
A AS E,

= {(34 = voBg) + f(BsS; + 3452)}6_" @)
A AS Eo

It should be noted that for a small f the terms carying f can be ne-
glected and we recover the results for €], and €33 by the Eshelby’s
method (without the back stress analysis).

From equations (11), (22}, (23), (26), and (27), we can compute o/;

in Q as
- (1-1 (81 + 19)8g)a®
ohi = (1 + po)(1 —2v0) s (28)
_ Q-5 {20051 + (1 — o) Syla®
"= = T vl — 200) 3 @9

Computation of ¢33 In order to compute ¢;; by use of equation

- (7), we obtain first ¢§; and 7] j- Here we have considered only the in-

teraction between a fiber and its end crack. Following the equivalent
inclusion method, we have in Q,:
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a?j = C?jkl (Sklmn f;:n - 5:;) (30)

where S in equation (30) is the Eshelby’s tensor for a penny-shaped
crack and its nonvanishing components are given by

(13 — 81/0) t)
S1111 = Soggp = ———— |-
1111 2202 32— o) \c
(1 — 2vo)w (t)
Seags =1 -~ 2T 2
3% 41~ w) \e
(1 - 8vo)w (t)
Si120 = Sogyy = — ——— |~
1122 = Sag11 321 —vo) \e 7
(1 = 2vo)mr t) { 4 (t)]
Si133 = So23g = — -1{1 - -
1188 2233 8(1 — »g) it a1l = 2p) \e
o (1 + dvo)7 (t)}
S =S = 1- - 31
3311 a2 = (7 0 { 87 . (31)

where ¢ and ¢ are the major and minor axes of an ellipsoidal penny-
shaped crack (see Fig. 2), and ¢ >> ¢ is assumed.

Next we obtain the stress just outside the fiber end, 7/ ; expressed
in terms of of;, C¥;, and ¢;;. The relation between the stress jump
across the interface of an inclusion and eigenstrain efj in the inclusion
can be written as [2, 13-15];

Eéj - 0-‘;]. = Cgikl {_ngmne:nanpnqnl + f;l} (32)
where
1 npnp
Mpp=— {6k - ————} (33)
P o™ 21— wp)

and where n; is the ith component of an unit vector outer normal to
the inclusion, and is given by, at the fiber-end

n=(0,0,1). (34)
With equation, (34), equation (32) yields
1+ N
ol = ol + Zﬂo( UO) €11 (35)
1- Vo
by = ofy (36)

A substitution of ¢f; and iz ; (equations (26)—(30), (35), and (36)) into
equation (7) yields

" c) o
€33 = 4(1 - f) (L + F) (;)ETD 37)
where ]
Fe=_ 1~/ {20051 + (1 — 20) Sy (38)
(1 + vo)(1 — 2vp) - S .

Computation of Energy-Release Rate G. The interaction
energy between the uniaxial applied stress ¢° and eigenstrain in .,
ef; is given by equation (4). Thus Ef,; can be expressed as

e

1
Efy=-— '2‘ %3 Ve

8 231__ 2
=__000( VO)(1+F)
3 Eg

where V. = 47c?t/3 is used. From equations (3) and (39) the energy-
release rate of a penny-shaped crack at fiber-end, G is obtained as
_8afcX(1 -1

0

(39)

G 1+F (40)

Computation of Longitudinal Young’s Modulus E;. By as-
suming that the major axis of the penny-shaped crack ¢ is equal to the
minor axis of the fiber d (this is reasonable at the early part of stage

2), we can solve for E, through equations (4)-(6), and (37)
E; 1

E0_1+nf

41)

where
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p= (B4 e U()Ba) +f (BgS] + B4S2) + 8(1 - V(z)) (l + F)
A AS T

(42)

Results and Discussion

We take vo = 0.35 and » = 0.3 throughout our computation. The
major parameters are hence I/d, E/E,, and /.

Energy-Release Rate . When a penny-shaped crack is em-
bedded in a pure matrix; E/Eq = 1, v = vy, a simple computation
yields

F=0 (43)

In this case equations (39) and (40) are reduced by
8adc3(1 — v})

T 3E,

_ 8afe?(1 = vf)

= __EO_.._

€=
int

(44)

Go (45)

where G for the case of pure matrix surrounding a penny-shaped crack
is set as Gyg.

Equation (44) has been obtained by Sack [16] and Eshelby {2].2
Irwin [5] derived crack-extension force f for a penny-shaped crack:

_dofe(1 = v
7TEO

In order to obtain 3-dimensional energy-release rate for a penny-
shaped ecrack, we multiply f by 2m¢ to recover equation (45).

In the case of a penny-shaped crack at a fiber-end, the energy-re-
lease rate (i is computed and the results are plotted in Fig. 3 where
the solid and dashed curves are for small f (= 0.05) and large f (= 0.20),
respectively. Also two cases of [/d; 10 and 100, are focused on in order
to study the effect of //d on G. It follows from Fig. 3 that the energy-
release rate G increases as the stiffness of the fiber increases compared
with that of the matrix, but its values will reach the asymptotic ones
at large E/Eo. The larger the aspect ratio of the fiber, the larger is the
value of G. This is more enhanced for smaller f. As for the range of the
parameters of a typical commercial short fiber composite, I/d = 50
~ 100, E/Eq = 000, f = 0.2 ~ 0.3. Then the corresponding energy-
release rate G ~ 5Gy.

It should be noted that the present results for G are valid for the
early part of stage 2 deformation where the magnitude of a penny-
shaped crack at the fiber-end is considered to be small, i.e., the radius
of the crack ¢ being approximately equal to that of the fiber d. When
a penny-shaped crack is extended in the matrix to a large extent such
that the order of ¢ becomes that of the fiber length , the following two
cases are identified as important problems to be solved:

f (46)

(i) A penny-shaped crack extends in the matrix, but does not
touch the neighboring fibers,

(i) A penny-shaped crack is arrested by the neighboring fi-
bers.

Even though the geometry of the first case is similar to the present
model (Fig. 2), we cannot use the present method to obtain the en-
ergy-release rate of the crack because the present method neglects
the interaction between cracks and also that between a penny-shaped
crack and the neighboring fibers.? The second case is reduced to a
problem of a crack meeting the fiber-matrix interface at a right angle.
Both cases are now under investigation by one of the present au-
thors.

Longitudinal Young’s Modulus Ej. The values of E; nor-
malized by the matrix Young’s modulus E are computed hy equations
(41) as a function of f for the following three cases:

2 There is a misprint in the expression of Ef,, on Page 394 of reference [2].
3 We thank Prof. A. S. Kobayashi for his valuable comments on the validity
of the present model.
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Fig. 3 The energy-release rate of a penny-shaped crack at a fiber-end, G
normalized by that in a pure matrix (without tibers), G, versus E/E,

EL/Ee
|o}-
CASE-l  #/d=10, E/Eo:I0
5t - Faiz
’///;_,/F
— o
= //T/"/
—
- FC
T
_
! = — - —— . a7z, o3 ox—1
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Fig.4 The longitudinal Young’s modulus of a composite, E, normalized by
the matrix Young's oduius £ versus f for Case 1: /d = 10, E/Eyg =10

Case 1: I/d =10, E/Ey= 10
Case 2: l/d =10, E/Eq=100
Case 3: 1/d =100, E/Ey = 100

The results are plotted by the solid curves in Figs. 4-6 for Cases 1, 2,
and 3, respectively. In order to check the validity of our results, two
extreme cases are investigated; (i) to compute E;, when the penny-
shaped crack at the fiber-end, and (i) to compute E;, when the ex-
istence of the fiber is neglected, i.e., the composite contains only
penny-shaped cracks. Obviously the first and second cases yield a kind
of the upper and lower bound on Ej,, the longitudinal Young’s mod-
ulus of the composite containing fibers and fiber-end cracks. Fur-
thermore two methods are used to compute E, for the first case: (a)
law of mixture and (b) the modified Eshelby’s method (the present
method). For our convenience, four methods to compute Ej, are cat-
egorized as
Method F

by law of mixture

To compute Ej, of the composite with fibers only

E_'o = Z f+H1-f 47)
Method F: To compute E;, of the composite with fibers only
by the present method
E,_ 1
Ey 1+ nsf
By —voB3 . (B3S1+ B4S»)
me=—— +f S (48)
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Fig. 5 The longitudinal Young’s modulus of a composite, E; normalized by
the matrix Young's Modulus Eg versus f for Case 2: /d = 10, E/Eq = 100
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CASE-3 £/d= 100, E/Eo.=100

Frmix

0.9L

Fig. 6 The longitudinal Young’s modulus for a composite, E; normalized by
the matrix Young’s modulus Eq versus f for Case 3: /d = 100, E/E, =
100

Method FC: 'To compute E;, of the composite with fibers and
fiber-end cracks by the present method (equations (41) and (42))

Method C: To compute E; of the composite with penny-
shaped cracks only by
E 1
E—L = '——BH“T (49)
0 -
1480200,
an

The results by equations (47)~(49) are plotted by the dashed (F,;,),
dash-circle (F), and dash-dot curves (C) in Figs. 4-6. It should be
noted that the validity of Method FC (the present resulis) is corre-
lated to that of Method F since both of them are based on the present
method.

It can be seen from Figs. 4-6 that the present results (FC) remain
always between the curves F and C for various values of l/d and E/E,.
Thus the validity of the present results is justified.

Next the degree of the reduction in Ej, of the composite due to
fiber-end cracks is studied. To this end E}, obtained by Method F' is
assumed to be the correct longitudinal Young’s modulus before
fiber-end cracks are initiated. Then we compute the ratio (E1)zc to
(E1)r where the subscripts FC and F denote, respectively, the com-
posite with fibers and fiber-end cracks, and that with fibers only. The
results of (K )pc/(EL)r are plotted for a fixed I/d = 50 (in Fig. 7) and
E/Ey = 50 (in Fig. 8) with f being a parameter. It follows from Figs.
7 and 8 that the larger f (or E/Ey) is, or the smaller I/d is, more re-
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£4/d=50

(EL)Fe/(EL)E

\ f = 0.05

=030

50 106 g/g,

Fig. 7 E. weakened by fiber-end cracks, (EL )gc normalized by E; of a
composite without fiber-end cracks, (E; )¢ versus E/Eg for I/d = 50

E/Eo =50
{EL)ref {EL)F
1.or /____ f:005
$=030
0.5f
P PR H S S |
50 100 274

Fig. 8 E; weakened by fiber-end cracks, (E. )rc normalized by E, of a
composite without fiber-end cracks, (E; )¢ versus E/E, for E/Eq = 50

duction in the longitudinal stiffness of the composite due to fiber-end
cracks is expected.
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APPENDIX

The Eshelby’s tensor S;jx; for an ellipsoidal fiber with major axis
! and minor axis d are expressed by

3 o 1 {1 9 — }
81— (a2—1) ' 41— »g) TR

S1111 = Sgage =

1 (Ba2—1) 3c?
S3g33 = ———— |[1 - g + ———— — {1 — ¢ R
3333 20 = vy) [[ vy [1 2vg + }gJ

(a2 —1) (a?—-1)
1 o? 3
Si1o9 = Soppy = ———— 11— & {9y S
1122 2211 =0 {2(0(2 . (1 — 2p) Aol — 1)g]
1 a? 1 3a?
S11s3 = Sazss = — +
T T 0 =) (2= 1) | 41— ng) {(az -1
)
_ o 1
Saz11 = Sazpe = — 20 =) {1 - 2vp+ m]

1 3
+—— -+t ———g
2(1 — vo) 2(c? ~ 1)
where 2o is Poisson’s ratio of a matrix, o is aspect ratio of a fiber
(=1/d), and g is given by

o

~(a2—_1)3—/2 la(a? — 1)Y2 ~ cosh™1

g=
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Loads

When an axial compressive force is present, the wavelength of a
propagating free wave in a beam rapidly decreases [1]. The conven-
tional Bernoulli-Euler beam equations are often not adequate for
determining dynamic behavior of a composite beam with initial stress
due to a moving load. However, for the stability of the composite
beam, when it is expressed in a nondimensional form, it is shown here
that both the systems (Bernoulli-Euler beam and Timoshenko beam)
behave identically. The investigation is based on the equations derived
by Sun [2] for a composite beam wherein each constituent layer of the
composite beam is regarded as a Timoshenko beam. The beam con-
sists of five stiff layers and four soft layers.

Analytical expressions of the critical velocity as a function of initial
axial stress and foundation modulus parameters are derived for the
composite beam. Critical velocities are also obtained on the basis of
Bernoulli-Euler beam equations and the results compared.

Analysis Based on Microstructure Theory

Sun [2] has proposed a microstructure theory, for a laminated beam
under initial stress, consisting of a large number of alternating layers
of two different elastic materials. The equations of motion are ex-
pressed as

2w oY a¢ P o%w
by ——— b —=by— (1)
Tox? ox 3ax £ ot
ow . oY 2% Y _, %
by om + by ot — by — by 2 + by = byt — 2
2 5~ bel e s orial iU (2)
ow axp %¢ by[/ 2%
ba= = by 2+ bab + b g = b +b 3
350 OToxt g + b 129 = 05,2 T (3)

All quantities entering these equations are defined in [2].

If the beam is supported on a Winkler-type foundation (with
stiffness k and damping constant 8o} and is subjected to a load Fo
moving with a constant velocity v, the quantity p in equation (1) be-
comes
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On the Stability of a Composite
Beam With Initial Stress to Moving

p(x,t>=Foa<x—ut)—kw—ﬁo°a—’f @)

Stipulating a steady-state solution with r = x — vt,

n= 0‘10A1 + 0'20A2; W= w/rl; R = I‘/I‘l

and assuming that dependent variables W, ¢, and ¢ and their first

derivatives approach zero at infinity, the solutions of (1)~(3) may be

constructed with the use of Fourier transform technique.
Introducing the following nondimensional quantities

0
o1 Fo
Ni=— Ny=—",v9= , FF = ——— 5
1 oV G Uo vV Ga/p2 - (5)
a2
am b byio_p_Giy_ 0
-n)¢ 2£(by — n) Gy 02
v d1 h bl
0= —_n= L &= s = 7
vo K di +dy £ di+ds o (b1 —n) @
”= by=n) bg
! by 72 (b1 —n)r?
bq biy
= s = 8
" (b1—nyr? (b1 — n)ry? : ®
(by—n) bs by by
oy = g = = L gy = 9
! b4vg? oz bove® o b1ovo? o b13vo? ®

and following iheﬁproceQuIe similar to reference [3], the transformed
solutions for W, ¢, and ¢ can be expressed as

F*(sipy + s%pg + 1)

W= 0
A (10)
- ¥ 2 +1
7= is(s?ps +1) (11)
Ap
~ Fris(s2pg+ 1
7= _—__‘S(SAPS ) (12)
0
where
Ao = (s2p1 — 2B0is + a)(sipg+ s2p2 + 1) — s2(s2pg+ 1) (13)

is a sixth-order polynomials, in s, with real and imaginary coeffi-
cients.

Determination of Resonant Speeds
The characteristic equation, A, equation (18) can be replaced with
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real coefficients by making a simple substitution, ¢ = is. The result
is, after rearrangement,

Ao = [—q°p1ps — 2B0p4q® — (Ps — pip2 — apa)g* + 2B8p2g®

— (p1+ ape—1)g? - 280q + o] (14)

The true critical velocities for the composite beam occur for the
cases when the characteristic equation (13) possesses double roots,
s = &a, £a, £ib. This is a limiting form of Case 3 mentioned in ref-
erence [3, Table 1] which is in general of the type; +a, £ag, and
+ibj.

For this particular case the inversion integrals are of the form

©  dx = dx
f and
-= (s —a)? ~a (s + a)?

where s and @ are both real.

It is well known that an integral of the type (15) does not exist even
in the sense of a Cauchy principal value. It was discussed in [3] that
such nonexistence of a solution to a physical problem, implies a res-
onance, in the sense that the displacement becomes unbounded. The
value of the load velocity parameter §, which yields an integral of the
type (15) defines the critical load velocities.

The characteristic equation A for 8 = 0 can be written as

(15)

s®pips — s4p3 — p1p2 — pa) + s p1+ apy—1) + a =0 (16)

Imposing the condition of double roots and eliminating b, one can find
using equation (16), a condition in terms of 8, which is

3at+ 2e002+ez3=0 an

where a? is obtained as

a? = (egeq — Yey)/(6es — 2e3?) (18)
and eg, 3, e4 are defined as

es = (p1p2 + aps — p3)/P1p4 (19)

ez = (p1+ aps — 1)/pip4 (20)
and

e4 = a/p1p4 (21)

P1, P2 - - - P4 are functions of only the load velocity parameter 6.
They are defined in reference {3]. Real values of 6 for which equation
(17) is satisfied, are the resonant speeds.

Comparison of Critical Velocities

A periodically layered composite beam of two elastic materials, Fig.
1, can also be considered as a homogeneous beam without micro-
structure with its effective moduli so determined that it predicts the
gross or net behavior of the composite beam. A very widely used ap-
proach in evaluating the gross elastic property of a composite material
is the rule of mixtures, through which the effective Young’s modulus
and the effective shear modulus are obtained as {5]

E=nEi+(1-nEy G=19G1+(1-1Gs (22)

Taking the effective mass density and the effective initial stress to
be

p=noL+ (1 —mpzy o°=10"+ (1 -5 (23)

we can then regard the composite beam as an equivalent homogeneous
beam. Based on the analysis of an Bernoulli-Euler differential
equation of a heam which is given as

d2w d%w d2w

El— — ¢%A—+ m——+ kw = pb{x, t)

dx? dx? dt? b
(09is a tensile axial stress and m is the mass per unit length), Kerr [4]
has given an expression for the critical velocity of the beam subjected
to a unfiorm tensile stress o0 as

5OAl1/2

4kEl | %A

‘m2 m

(24)

VUer =

(25)
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Fig. 1 Layout of composite beam

Dividing both sides of the equation (25) by v and replacing m by p4,
we get

kREI
Jo0 = 0y = 2\/———+
Uer/Vo er [ p2A2004

Utilizing the properties of the equivalent homogeneous beam char-

o9 11/2

po (26)
0

.acterized by equations (22)—(23) and the relations,

Av_m Ay

1-n Ard_ (n)2
ATE AT ( @7)

1

We can express the equation (26) in terms of nondimensional con-
stants; some are defined in equations (5)—(9). Defining some addi-
tional ones as
¢ Nao
dy=——=—" and &
pvo? K

We thus have for Ny = Ny = N
1/2
Oor = [2(§) Vadg + Nal//c]
A7

It is clear from equation (28) that the effect of compressive initial axial
stress is to decrease the critical velocity of the Bernoulli-Euler beam;
a phenomenon which is also observed with equation (17). It is there-
fore of interest to compare the critical velocities and its dependence
on « and N derived in the previous section with that predicted by Kerr
[4] using the Bernoulli-Euler beam equations. It may be noticed that
in the case of the Bernoulli-Euler beam formulation, the expression
for N can be obtained easily from (28) by setting 0., — 0, i.e.,

_E(b1—n)k
p2Avph

(28)

N = -2K£ V 0162/(77041) (29)
Also when N7 = N = 0, equation (28) reduces to
12
0Cr|N=0 = {2(5 vV CK62 (30)

Using equations (29) and (30), equation (28) can be rewritten in the
following form:

02 " N
NCl‘

Since N is negative, a positive fraction for N/N¢ denotes the fraction
of compressive stress value.

It can be noticed that the relationship between fc:/0cr| .o and N/N e
is independent of a. A question can be raised whether a similar rela-
tionship exist for the composite beam formulation. It does not seem
apparent looking at the expression (17) that such a relationship would
exist. However, it has been verified numerically that the plots between
Oce/Ber) oo and N/N o for the Sun’s derivation are identical with that
of Bernoulli-Euler beam formulation. It has also been observed with
considerable interest that such a relationship is independent of «, the
foundation modulus parameter. A graphical representation of equa-
tion (31) is shown in Fig. 2 for a composite beam consisting of five stiff
layers and four soft layers (sketched in Fig. 1).

T'=100,\=2,1=08, =48, 11 = 0.2, vy = 0.35, k = 0.822

=1 (31)

2
b er|N=0
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8 Sun Composite Beam Formulations

8cr / OcriN=0.
o

N/Nep

rlg. 2 Relationship between the ratios of critical velocily versus Initial axial
orce

These parameters are the same as originally used in references [2,
3] for plotting the dispersion curves for the flexural waves.

Results and Discussion

It has been observed from Fig. 2 that the ratios of the critical ve-
locities fer/fer|y-o when plotted against N/N., are independent of the
magnitude of the foundation modulus parameters, « on which beam

is supported. It is interesting to note that the relationship is valid for’

composite beam theory, wherein each lamina is considered as Ti-
moshenko beam, as well as the equivalent modulus theory based on
Bernoulli-Euler beam equations. Fig. 3 shows the effect of critical
velocity on the magnitude of the initial axial force N, when they are
plotted in unscaled terms, Three curves are plotted for three repre-
sentative values of a(a = 0.1, 0.5 and 1.0). It is observed from this
figure that the behaviors of 8., versus N are dependent on the values
of c. Similar type of curves though not shown here (see reference [6])
has been found based on the Bernoulli-Euler beam theory which also
depends on «. The ratio of N/N when plotted against 06,/00,| N=o (@8
shown in Fig. 2) has however, the effect of coalescing all the different
curves (shown in Fig. 8) into a single one.

Concluding Remarks

The expression of the true critical velocity of a composite beam is
obtained in terms of elastic modulus («) and initial stress (N) pa-
rameters. In deriving such expression as shown here (as opposed to
reference [4] for the Bernoulli-Euler beam) it is not essential to find
analytical solutions, i.e., the inverse Fourier transforms of the response
quantities. The results of this investigation show some interesting
features like the one shown in Fig. 2, which indicates that not only the
independency of the scaled variables exists with respect to « (foun-

370 / VOL. 48, JUNE 1981

6.0

5.0

NyNy=-0.6

0

20

0 0.2 04 0§ 0.8 1.0 12 14

of ——

Fig. 3 Dependence of critical velocity 6., on the foundation modulus

dation modulus parameter) but also with respect to the basic math-
ematical systems (Bernoulli-Euler or composite beams) from which
it is derived. The relationship between the unscaled variables however,
has different (see Fig. 3) behaviors.
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orthotropic and two-layer, cross-ply plates. This solution provides a benchmark to evalu-
ate the validity of the finite-element analysis. Both solutions are compared with numeri-
cal results existing in the literature for special cases (all for ordinary, not bimodulus, ma-

terials), and good agreement is obtained.

Introduction

Structural uses have been increasing for laminates consisting of
multiple layers of fiber-reinforced composite materials. Consequently,
there is an increasing need for realistic mathematical modeling of the
material behavior for incorporation in static and dynamic structural
analyses. Certain fiber-reinforced materials have been found exper-
imentally to exhibit quite different elastic behavior depending upon
whether the fiber-direction strain (¢/) is tensile or compressive [1-3].
Examples of such materials are tire cord-rubber, reinforced solid
propellants, and some biological tissues. Although the stress-strain
behavior of such materials is actually curvilinear, it is often approx-
imated as being bilinear, with different slopes (elastic properties)
depending upon the sign of ¢;. Thus they are called bimodulus com-
posite materials.

The limited number of previous bimodulus-material plate analyses
were reviewed in [4-6], and all were limited to static analyses. The
present work is believed to be the first vibrational analysis of such
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plates. The present work is not limited to just thin plates of isotropic
bimodulus material; rather it is applicable to moderately thick plates
laminated of orthotropic bimodulus material. Two formulations are
presented and solved: one is a finite-element formulation with five
degrees of freedom per node, and the other is an exact closed-form
solution.

Classical Formulation and Closed-Form Solution

Mindlin’s linear dynamic theory [7] of moderately thick plates was
first extended to plates laminated of ordinary (not bimodulus)
monoclinic elastic material by Yang, Norris, and Stavsky [8]. Later,
Wang and Chou [9] showed that a slightly different version of the
Yang, Norris, and Stavsky theory, presented by Whitney and Pagano
[10], is more accurate than the original version [8]. Here, this class of
theory is extended to bimodulus-material laminates.

Numerous mathematical models have been introduced to describe
the mechanical behavior of bimodulus materials; five of them were
discussed in [11]. The model used here is the fiber-governed model
introduced in [12), where this model was shown to agree well with
experimental results reported in [2]. Thus we take the generalized
Hooke’s law for the in-plane action in each layer (/) to be of the fol-
lowing bimodular form:

Ox Qi Quan Quen| | &
oy = [Qom Qozer Qremi|{ & (1)
Txy Quert Qoert Qeert | | vy

Here, the origin of a Cartesian coordinate system is taken to be in the
midplane (xy-plane) of the plate with the z-axis being normal to this
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plane and directed positive downward. The stresses (o, gy, T,) and
engineering strains (e, €y, Yxy) are denoted in the usual fashion, and
the @’s are the plane-stress-reduced stiffnesses (symmetric array).
The first two subscripts of the ’s are the contracted forms used in
anisotropic elasticity [13] and composite-material mechanics [14].
Here, the third subscript (k) refers to the sign of the fiber-direction
strain (k = 1 for tension and k& = 2 for compression), and [ refers to
the layer number (! = 1, 2,..., n, where n is the total number of
layers). The thickness shear behavior is assumed to be unaffected by
bimodular action; thus these stresses are governed by the same
stress-strain relations used in [10].

The force and moment resultants, each per unit length, are ex-
pressed in terms of stresses in the usual fashion [10]. The displacement
components, u, v, and w in the x, y, and z-directions, respectively, are
expressed in terms of midplane displacements u?%, v°, w, and slope
functions Y, and , as in [10}. Then, the constitutive equations for
an unsymmetric cross-ply laminate are

Ny Ajr A O By B 0 ub
N, A Ay O By By 0 v,
ny - 0 0 Agg O 0 Beg Ug + uf’y
M, By Bz O Du Dz 0 |hus
M, By By O Dy Dy 0 Yyy
My, 0 0 B 0 0  Ded\Wystuy,
(2)
and
o) sdladd @
Q:c 0 Sss, W+ ‘l/x

Here, differentiation is denoted by a comma, i.e., ( ) =( )/dx,and
the extensional, flexural-extensional coupling, and flexural stiffnesses
of the laminate are defined by

h/2
(45,85, D) = [ (@)(1,2,29dz, i,j=1,26 @
Also, the thickness shear stiffnesses of the laminate are defined by
h/2
Sii=K?f Cidz, i=4,5 5)
—h/2

where the K? are the thickness shear correction coefficients, which
can be determined by various approaches, cf. [15]. In addition to
performing the integrations in a piecewise manner from layer to layer,
one also has to take into consideration the possibility of different
elastic properties (tension or compression) within a layer. This pro-
cedure is explained in detail for a two-layer cross-ply laminate in the
Appendix.

The equations of motion in terms of the force and moment resul-
tants as given in [10] are used. Then substituting the plate constitutive
equations (2) and (3) into the equations of motion, we obtain them
1o be as given by equations (15) in [10].

The boundary conditions on all edges are freely supported (simply
supported without in-plane normal restraint). Along the edges at
t=0andx =a,

w=¢y=Mx=vo=Nx=0
Along the edges aty =0andy = b, ()
w:lpx:My:uO:Ny:O

The governing equations and the boundary conditions (6) are ex-
actly satisfied in closed form by the following set of functions:

u% = U cos ax sin By ef«t

v% = V sin ax cos By eivt
w = W sin ax sin By et 7

hyy = Y sin ax cos By efot

hy = X cos ax sin By el«t
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Here, w is the natural frequency associated with the mode having axial
and transverse wave numbers m and n, and

a=mr/a, B=nw/b (8)
where a and b are plate dimensions in the x and y-directions, re-
spectively.

Substituting solutions (7) into the governing equations [10], we
"obtain
U 0
\% 0 .
[Chl WS =403, k1=1,2345 (9)
Y 0
X 0

where Cj; is a 5 X 5 symmetric matrix containing the following ele-
ments:

Cu =~An0? — Agef® + Po?%

C14= = [(B1a + Beg)/hlaB; Cis=— (Bu/h)a?
~ (Bes/h)B2 + (R/h)w?

Ciz=—(A;a + Age)aB; C13=0

Caz=— Agsa? — Af? + Pw? Ca3=0
Cas = — (Bgs/h)o — (Bga/h)B2 + (R/h)w?: Cos=Ciy
Csz = — (Sssa? + S4f? — Pw?); Cas=— (Ss/h)B

Cas =~ (Ses/h)e;  Cys =~ (Des/hH0® ~ (D3a/h?)B2 — (S44/h?)
+ (I/h2)u?

Cis = — [(D12 + Des)/h % a3
Css = — (D11/h?)a? — (Des/hDB? — (S55/h2) + (I/h2)w?

Here, P, R, and I are the respective normal, coupling, and rotatory
inertias as defined in [10]. The frequency w is determined by setting
|Crif = 0.

To determine the z-position of the fiber-direction neutral surface,
one sets

(10)

g=€+zK,=0
or (11)
Znf = —e?/xf.

Thus 2, = hU/X and 2,,, = —hV/Y. An iterative procedure is used
to obtain the final displacement ratios and corresponding fre-
quency.

Finite-Element Formulation

An exact closed-form solution to the governing equations [10] can
be obtained only under special conditions of geometry, edge condi-
tions, loadings, and lamination. Here, we present a simple finite-
element formulation which does not have any limitations (except for
those implied in the formulation of the governing equations) [16].

Suppose that the region IR is subdivided into a finite number N of
subregions: finite elements, IR.(e =1, 2, ..., N). Over each element,
the generalized displacements (19, v°, w, ¥y, ¥,) are interpolated
according to

r r s
— 1 - =
ul=Yuipf, v0=Yuidl, w=3 we}
i i i

Vs = i Yeiod, Yy = i Yy} (12)
13 13
where ¢f (o = 1, 2, 3) is the interpolation function corresponding to
the ith node in the element. Note that the in-plane displacements,
the transverse displacement, and the slope functions are approxi-
mated by different sets of interpolation functions. Although this
generality is included in the formulation (to indicate the fact that such
independent approximations are possible), we dispense with it in the
interest of simplicity when the element is actually programmed and
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Table 1

(E11/E22 = 80, Gio/Ezz = Gya/Egz = Gag/Epp = 0.5, Vyp = 0.25, K3 = K

Fundamental natural frequencies {(m = n = 1) of rectangular an-
tisymmetric cross-ply plates at different aspect ratios and Ihlcknesses

= 5/6)*

Dimensi f 2,0

Aspect imensionless frequency w(b/n) (P/D,,)

r:;"f Thin-plate b/h = 50 b/h = 10
theory [18] ¢ ¢, F.E. C.F. F.E.
0.5 2.24 2.400 2.421 1.942 1.946
1.0 0.865 0.858 0.877 0.794 0.799
1.5 0.65 0.656 0.668 0.612 0.615
.0 0.606 0.604 0.617 0.565 0.569
2.5 0.59 0.590 0.599 0.548 0.552
3.0 0.580 0.578 0.591 0.541 0.544

*C.F. denotes the closed-form solution and F.E. denotes the finite-element

solution.

take ¢} = ¢? = ¢3(r =5 = p). Herer, s, and p denote the number of
degrees of freedom for each variable. That is, the total number of
degrees of freedom per element is 2r + s + 2p.

Substituting equations (12) into the Galerkin integrals associated
with the governing equations [10], which must also hold in each ele-
ment R.,

f [Lilioldxdy =0 (13)
and using integration by parts once (to distribute the differentiation
equally between the terms in each expression), we obtain

[KH[KZ[K B [KH] K] fee) 0
[K2][K28][K24] K] Riv) 0

(K3 [K34)[K35)| {fw} » =L0 (14)
Symmetric [K*4][K45] (wx} 0
&L Rlvyif. fo

where the {u}, {v}, etc., denote the columns of the nodal values of u,
v, respectively, and the elements K3} fle, $=1,2,...,5)of the sym-
metric stiffness matrix are given by

Kzlj A].IGZ + A66Gu K,25 BﬁsH,J + B22HU
K7 = A1oGF + AesGF K?3 855S + S44S%;
K},~3 =0 K?;‘ = :‘;’
Kif= BuHU +BeHY;,  K¥= S44R
Kls = Blz + BGGH I{44 = D11TU + DGGT{,‘ + S55T?j
K2 = AnGY + AesG K = DyyT + DesT3?
KP =0 KY = DeeT}; + DoaTY; + SasTY;
K} = BecH} + BioH (15)
where
Gy = f ohdladrdy  Gi=12...0)
Hir= J;R o}, 63, dx dy G=1,2...,r; j=1,2,...,8)
Mf;’=f]R ok b7, dx dy (=1,2...,r; j=1,2,...,8)
S§= [ ohelydedy  Gi=12...9)
E"‘f ¥ i, dx dy G=1,2,...,8 j=1,2,...,¢t)

Th= [ ofhdldrdy (=129
& n=0,x,y)
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Table 2 Fundamental natural frequencies of square antisymmetric cross-ply
plates at different lhicknesses (EﬁIEzz = 40, G13/Eap = G13/Epp = 1,
G23/Egp = 0.5, vy = 0.25, K7 = Ki = 5/6)

b/h Dimensionless freguency ubz(P/Enh!)L’
Fortier & Rossettos [19] C.F. F.E.

10 10.80 n.n 1.5

50 11.65 11.82 12.06

Table 3 Material properties for two tire cord-rubber, unidirectional, bimodulus
composite materials®

Aramid-Rubber
k=1

Polyester-Rubber
k=2 k=1 k=2

0.617

Property

Longitudinal Young's modulus, GPa 3.58 0.0120 0.0369

0.00909 0.0120 0.00800 0.0106
0.416 0,205 0.185
0.00370 0.00370 0.00262 0.00267

0.00290 0.00499 0.00233 0.00475

Transverse Young's modulus, GPa
Major Poisson's ratio, d1mens1‘0nlessb 0.475
Longitudinal-transverse shear modulus, 6Pa®
Transverse-thickness shear modulus, GPa
0.970

Specific gravity, dimensionless 1.00

@ Fiber-direction tension is denoted by k = 1, and fiber-direction compression
by k = 2.
b The minor Poisson's ratio is assumed to be given by the reciprocal relation.

¢ The longitudinai-thickness shear modulus is assumed to be equal to this one.

and G3f = G, etc. In the special case in which ¢ = ¢f = ¢, all of the
matrices in equations (16) coincide.

In the present study, elements of the serendipity family are em-
ployed with the same interpolation for all of the variables. The re-
sulting stiffness matrices are 20 by 20 for this four-node element and
40 by 40 for the eight-node element. Reduced integration [17] must
be used to evaluate the matrix coefficients in equations (15). That is,
if the four-node rectangular element is used, the 1 X 1 Gauss rule must
be used in place of the standard 2 X 2 Gauss rule to numerically
evaluate the coefficients Kj;.

Substituting solution (14) into equations (11), we get

25, = "u,ex/v’/f:,x; Ziy= —U?y/‘pgl,y (17)
Numerical Results

Computations using the closed-form and finite-element solutions
were carried out on an IBM 370 computer. Because there is no pre-
vious analysis for vibration of bimodulus plates, the present results
could be compared only with those for rectangular plates laminated
of ordinary materials. Comparisons of the results of the present
analysis are displayed in Tables 1 and 2 along with the fundamen-
tal-frequency results of Jones [18] for thin plates and Fortier and
Rossettos [19] for thick and thin plates. Upon comparison of the
various results, we find good agreement.

As examples of some actual bimodulus materials, two composites
used in automobile tires, aramid cord-rubber, and polyester cord-
rubber, are selected. The material properties, listed in Table 3, are
based on the experiments of Patel, et al. [2], and are the same data
used in {6] with the addition of the values of specific gravity, which
were estimated on the basis of the volume fractions. The numerical
results for single-layer 0° orthotropic and two-layer cross-ply plates
are presented in Tables 4 and 5-6, respectively, where the agreement
is good.

There may be a question regarding the effect of bimodulus action
on plate stiffness in different portions of each cycle of vibration. To
explain this effect, we show a single-layer, bimodulus-material plate
at the two extremes of its deflection in Fig. 1. The initial half cycle is
depicted in Fig. 1(a). During this time interval, the top surface is in
compression and the bottom in tension, thus causing the neutral

(16) surface for ¢, to be positive (2, > 0), i.e., below the plate midplane
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Table 4 Di ionl fiber-direction neutral-surface locations and fun-
damental frequencies for single-layer 0° orthotropic plates having b/h = 10
by two methods (closgd form and finite element)

lr\‘:g?gt Z, = z./h Wb2(P/ES,hY)%
a/b C.F. F.E. C.F. F.E.
Aramid-rubber:
0.5 0.4484 0.4484 19.065 19.255
0.7 0.4467 0.4468 11.324 11.515
1.0 0.4433 0.4435 6.877 7.062
1.4 0.4373 0.4370 4.766 4.968
2.0 0.4262 0.4302 3.688 3.856
Polyester-rubber:
0.5 0.3089 0.3083 25.134 23,136
0.7 0.3072 0.3071 15.058 14.421
1.0 0.3056 0.3049 8.668 8.648
1.4 0.3011 0.3013 5.421 §.533
2.0 0.2945 0.2950 3

777 3.918

Table 5 Dimenslonless neutral-surface locations in the first and second
portlons of a cycle for two-layer, cross-ply plates having b/h = 10 by
closed-form and finite-element methods*

topee 50 Gl i 5
a/b C.F. F.E. C.F. F.E. C.F. F.E. C.F. F.E.
Aramid-rubber:
AO.S 0.4457  0.4458 -0.0648 -0.0660 -0.0171 -0.0170 0.4247  0.4257
0.7 0.4434 0.4436 -0.0490 -0.0491 -0.0240 -0.0238 0.4338 0.4344
1.0 0.4394 0.4394 -0.0347 -0.0344 -0.0347 -0.0346 0.4394 0.4394
1.4 0.4335 0.4337 -0.0250 -0.0249 -0.0494 -0.0497 0.4423 0.4426
2.0 0.4228 0.4237 -0.0174 -0.0175 -0.0705 ~0.0700 0.4437 0.4442
Polyester-rubber:
0.5 0.3687 0.3691 -0.1335 -0.1295 -0.0830 -0.0825 0.3569 0.357
0.7 0.3664 0.3663 -0.1119 -0.1113 -0.0868 -0.0868 0.3603 0.360
1.0 0.3632  0.3633 -0.0960 -0.0960 -0.0959 -0.0959 ©.3631 0.363
1.4 0.3589 0.3596 -0.0870 -0.0870 -0.1115 -0.112 0.3648 0.365
2.0 0.3514 0.3513 -0.0817 -0.0817 -0.1389 -0.139 0.3660 0.366

oo ? O3

(a) First half cycle {b) Second half cycle

Fig. 1 Bimodulus action during the two half cycles of motion of a single-layer
bimodulus plate; shaded material is in longitudinal tension

e =0
Y
€ =0

w o
=

(a) First portion of cycle (b) Second portion of cycle

Fig. 2 Bimodulus action during the two portions of motion of a two-layer plate
in the fundamental mode of vibration; bottom layer is in x-direction (0°), top
layer Is In y (90°); shaded portions are in tension in the respectlive fiber di-
rections

Table 6 Dimenslonless fund ntal freq ies in the first partial cycle,
second partlal cycle, and complete cycle of motion for two-layer, cross-ply
plates having b/h = 10 by closed-form and finite-element methods’

Aspect wib?(P/ES;n3)* wb? (P/ES,n3)" b2 (p/ES,h )"
a/b C.F. F.E. C.F. F.E. C.F. F.E.
Aramid-rubber:
0.5 19.38 20.23 13.88 14.55 16.18 16.93
0.7 11.60 12.17 9.353 9.807 10.35 10.86
1.0 7.038 7.386 7.038 7.364 7.038 7.375
1.4 4.838 5.045 6.037 6.356 5.371 5.625
2.0 3.n2 3.909 5.551 5.821 4.449 4.677
Polyester-rubber:
0.5 19.12 19.81 15.95 16.61 17.39 18.07
0.7 11.43 11.92 10.04 10.45 10.69 11.14
1.0 7.084 7.406 7.085 7.394 7.085 7.400
1.4 5.164 5.407 5.928 6.193 5.520 5.773
2.0 4.310 4.518 5.435 5.688 4.807 5.036

*
Here Zi” H an/h for the first portion of a cycle, etc.

a certain distance. The latter half cycle is shown in Fig. 1(b). During
this portion of the cycle, the top surface is now in tension and the
bottom in compression, thus causing z,, to be negative, i.e., to fall
above the plate midplane. However, the absolute value of 2, is
identical to its value in the first haif cycle. Thus it can be concluded
that the frequency associated with the second half cycle is identical
to that of the first half cycle and either modal shape, Fig. 1(a) or 1(b),
will give the same computational result for the natural frequencies.

Now consider a two-layer laminate with the bottom layer (layer
1 = 1) oriented at 0 deg and the top layer (I = 2) at 90 deg; see Fig. 2.
Initially, as shown in Fig. 2(a), the neutral surface for ¢, falls below
the interface, within the 0-deg layer, while the neutral surface for ¢,
falls above the interface, completely within the 90-deg layer. In the
latter portion of the cycle, Fig. 2(b), the ¢, neutral surface falls outside
of the 0-deg layer, and the ¢, neutral surface falls outside of the 90-deg
layer. Thus compressive properties are used for the entire 0-deg layer,
and tensile ones for the 90-deg layer.

From the foregoing considerations for a two-layer cross-ply lami-
nate, it is clear that the plate stiffnesses acting in the two portions of
a cycle are different and thus the associated frequencies are also dif-
ferent, except in the case of a square plate. We denote the frequencies
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+ :
Here w) and w, denote the frequencies corresponding to the first and
second portions of a cycle, respectively, and . denotes the effective fre-

quency for an entire cycle.

associated with the two portions of a vibration cycle by w; and we; then
the corresponding time intervals over which the two portions take
place are 7/w; and w/ws, respectively. Thus the total period for a
complete cycle is m(wy! + w3?). The average frequency (w) over the
entire cycle is 27 divided by the period:

ol = (1/2){w7! + wzl) (18)

Thus the computational procedure used for a cross-ply plate is to
calculate w; and ws associated with modal shapes shown in Figs. 2(a)
and 2(b), respectively, and then to apply equation (18).

The question arises as to the possibility of a discontinuity in energy
at the junction of the two portions of a cycle. At this instant in the
cycle, the displacement is zero and the velocity is maximum (because
each individual portion is simple harmonic). Since the mass is un-
changed, equating kinetic energies of the two portions implies
equating maximum velocities. Thus

wiW1=weWa or wofws = Wi/Wo (19)
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where W1 and W, are the amplitudes of motion in portions 1 and
2.
Conservation of potential energy requires
§RiWi=3kaWE or Wi/Wa= (ko/k1)\/? (20)
where k1 and ks are the generalized stiffnesses corresponding to Figs.
2(a) and 2(b}, respectively. However, the frequency ratio is
wolwy = (kalky)/? (21)
Thus, by combining equations (20) and (21), we see that equation (19)
is satisfied and thus energy is conserved in going from one portion of
the cycle to the other.

There are very drastic changes in neutral-surface locations (for
example, z,, for aramid-rubber goes from 0.4h to —0.03h) from one
cycle portion to the other. Thus a question may arise regarding a
transient action. However, it should be remembered that the neutral
surfaces are just boundaries between the tensile and compressive
regions (analogous to the elastic-plastic boundary in elastoplastic
problems) and thus have no mass.

Concluding Remarks

A finite element has been developed to analyze the small-deflection
free vibration of laminated, anisotropic, rectangular thick plates of
bimodulus material. The results obtained agree well with those of an
exact, closed-form solution derived for such a plate freely supported
on all four edges. Thus it is concluded that the element has been
validated and may be used for computations involving more compli-
cated boundary conditions.
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APPENDIX

Derivation of the Plate Stiffnesses for a Two-Layer
Cross-Ply Laminate of Bimodulus Material

In problems involving laminates comprised of bimodulus-material
layers, it is necessary to evaluate the integral forms appearing in the
definitions of the plate stiffnesses, equations (4). The derivation
presented here is for a two-layer cross-ply laminate.

Each layer has the same thickness, h/2, and the same orthotropic
elastic properties with respect to the fiber direction. Because each
layer is oriented at either 0° or 90° to the x -axis, there are no sitff-
nesses with subscripts 16 and 26. The bottom layer, with fibers ori-
ented parallel to the x-axis, is denoted as layer 1,1.e,,! = 1 in &, and
occupies the thickness space from z = 0 to z = h/2, where z is mea-
sured positive downward from the midplane. The top layer, with fibers
oriented at 90°, is denoted as layer 2, i.e., [ = 2, and occupies the
thickness space from z = —h/2 to z = 0.

Because there are two different neutral surfaces (associated with
strains in the respective x and y-directions) and two different layers,
there are four distinct cases depending upon the combination of signs
of the dimensionless neutral surfaces (Z; = zn:/h and Z, = z,,/h).
These cases are designated as follows:

Case 1: 05>Z; >0, -05<Z, <0
Case 2: -056<Z, <0, 05>2Z,>0
Case 3: 05> Z, >0, 05> 7, >0
Case 4: —0.5 < Z; <0, ~0.5<Zy <0

In Case 1, the upper portion (from z = —h/2 to z = 2z,,,) of the top
layer (I = 2) is in compression (k = 2 in @;ji) in its fiber direction
(y-axis), and the lower portion (z = z,, to 0) of the top layer is in
tension (k = 1). Also, the inner portion of the bottom layer (I = 1),
from z = 0 t0 z = zpy, is in compression (k = 2) in its fiber direction
(x-axis), and the outer portion (from z,, to h/2) of layer 1 is in tension
(k = 1). Thus the general integral expression for 4;;, in equation (4),
can be taken as the sum of the integrals for each of these regions:

Casel. (0.5>Z,>0,-05<Z, <0):
h/2
A= s Qijri dz

Zny ) 2Znx
f Qijoz dz + f Qij12dz + f Qijo1 dz
—h/2 Zny 0
/2
+ f Qi dz  (22)
Znx

Because the planar reduced stiffnesses ;;x; are each, respectively,
constant in the appropriate regions, equation (22) can be integrated
to the following:

Aij = (Qija + Qij11) (h/2) + (Qijor ~

Qij11)2nx

+ (Qijoz — Qij12)zny  (23)

or
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Aij = (1/2)(Qijoe + Qij11) + (Qijo1 — Qij11) 2

+ (Qijoz — Qij12)Zy,  (24)

Similarly
h/2
Bij = J:h/é 26ijri dz

- ’h; Qundz+ | Oy Quuadz+ [ 2Qun dz
7 + f "':/2 2Qundz (25)
= (—Qijzz + Qij1)(h?/8) + (Qijz1 — Qijn1)z2,/2)
+ (Qijee — Qij12)(22,/2)  (26)

or

Bij/h = (1/8)(—@ijoa + Qij11) + (Qija1 — Qij11)(Z2/2)
+ (Qijaz — Qij12)(22/2)  (27)
Also

wr
Dij = .I:-h/zz Qijkl dz
Zny 0 Znx
= f 22Qijandz + f 22Qi1e dz + f 22Qijo1 dz
—h/2 Zny X 1]
h/2
+ f 22Qyudz (28)

Znx

= (Qjoe + Qij11)(h3/24) + (Qujar — Qij11) (22,/3)
+ (Qijo2 — Qij12)(2ny3/3)  (29)

or

Dij/h = (1/24)(Qijaz + Qijry) + (Qijzr — Qij1)(Z3/3)
+ (Qijoz — Qij12)(Z3/3)  (30)
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Similarly
Case 2. (=05 < Z, <0,0.5> Z,> 0):

Aij/h = (@11 + Qijoa)/2 + (Qijze — Qij12) 2y + (Qujor — @ij11)Zy
Biji/h? = (@11 — Qije2)/8 + (Qijop — Qij12)(Z2/2)

+ (@ij21 — Q1) (Z2/2)
Dii/h? = (Qij11 + Qija2)/24 + (Qijaz — Qij12)(Z3/3)

+ (@21 — Qj1)(Z3/3) (31
Case 3. (0.5> Zy > 0,0.5> Z, > 0):
Al = Qyjin + Qujz2)/2 + (Qua — Qi Zs
Bij/h? = (Qij11 — Qij22)/8 + (Qijor — Q1) (Z2/2)
Dyi/h® = (@11 + Qij22)/24 + (Qijz1 — Qiju)(Z3/3)  (32)
Case 4. (—0.5<Z, <0,-0.5< Z, < 0):
Ajjlh = (Qij11 + Qija2)/2 + (Qinaz2 — Qij12)Zy
Bijh? = (@ij11 — Qija2)/8 + (Qijoz — Qij12)(Z2/2)
Dyj/h3 = (Qij11 + Qijan) /24 + (Qijer — Qij12)(Z3/3) (33)

In the presence of excessively high in-plane loads, such as those due
to heating to a high average temperature [20] or due to large deflec-
tions, the neutral surfaces can go outside of the thickness of the
laminate and, thus, make it act as if it were homogeneous. However,
this does not occur for small-deflection free vibrations and thus the
equations for these cases are not presented here.

Single 0° Layer. (|Zx]| <0.5)
Here, all four cases collapse to only one, with these results:
Aii/h = (Qij11 + Qijor)/2 + (Qijor — Qij11)Zy
Bij/h? = (Qij11 — Qija1)/8 + (Qijar — Qij11)Z2/2

Dyj/h3 = (Qij11 + Qij21)/24 + (Qijo1 — Quj11)Z3/3 (34)
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Nonlinear Theory for Flexural
Motions of Thin Elastic Plate
Part 1. Higher-Order Theory

This paper develops a comprehensive higher-order theory for flexural motions of a thin
elastic plate, in which the effect of finite thickness of the plate and that of small but finite
deformation are taken into account. Based on the theory of nonlinear elasticity for a ho-
mogeneous and isotropic solid, the nonlinear equations for the flexural motions coupled
with the extensional motions are systematically derived by the moment asymptotic ex-
pansion method. Denoting by ¢ the ratio of the thickness of the plate to a characteristic
wavelength of flexural motions, an order of characteristic deflection is assumed to be €2
and that of a characteristic strain €3. The displacement and stress components are sought
conststently up to the next higher-order terms than those in the classical theory.

Introduction

The classical theory for flexural motions of an elastic plate [1-3]
can give an adequate description for a sufficiently thin plate whose
deflection is much smaller than the thickness of the plate. But as a
characteristic wavelength of flexural motions diminishes and the plate
can no longer be regarded sufficiently thin, the effect of finite thick-
ness comes to play an important role and then the classical theory
becomes inadequate. Also a similar limitation of the theory occurs in
a case of flexural bending of a plate with small cutouts whose linear
dimension is not large enough compared with the thickness. In these
cases, a refined theory is then required to include the effect of finite
thickness of the plate. The investigations toward this refinement were
first made by Reissner [4] and Mindlin [5] under the name of the ef-
fects of shear deformation and of rotatory inertia and since then, they
have been made by many authors [6-15]. In this paper, such a theory
including the effect of finite thickness is called a higher-order theory
for the thin plate theory as a lowest-order one.

On the other hand, the effect of finite deformation plays an im-
portant role in such a geometrical configuration as a thin plate whose
linear dimension is much smaller than the others. Under the as-
sumption that the plate is thin and flexural deflection is as large as
the thickness, von Karman [1-3, 16] derived the nonlinear equations
which couple the deflection with the in-plane displacements. Al-
though, in von Karman’s theory, the effect of finite thickness of the
plate is neglected, it often happens in actual situations (such as vi-
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bration or impact) that the effect becomes as important as the effect
of finite deformation. But most of the higher-order theories just
quoted have been concerned with the linear theory and little attention
has been paid to the nonlinear theory. The purpose of this paper is
to develop a comprehensive higher-order theory for flexural motions
of a thin elastic plate, taking account of the effect of finite thickness
and that of small but finite deformation.

To do so, we start from the theory of nonlinear elasticity [3, 17-19],
assuming that a plate is of a homogeneous and isotropic elastic solid.
In developing the higher-order theory, it should be noted that there
exist two important parameters. One is ¢ which specifies the order of
the thickness of the plate, i.e., ¢ = O(H/L), H and L being, respec-
tively, the thickness of the plate and a characteristic wavelength of
flexural motions. The other is § which specifies the order of deflection
of the plate, i.e., § = O(W/L), W being a characteristic deflection. In
the classical linear theory, both ¢ and § are assumed to be sufficiently
small, while in von Karman’s theory, W/H is assumed to be of order
of unity so that § ~ ¢. In addition to € and d, another practical pa-
rameter is 7y which specifies an order of a characteristic strain. As is
well known, the characteristic strain in flexural motions takes place
in the in-plane bending strain and <y is roughly estimated as y =
O(U/L), U being a characteristic in-plane displacement. According
to Kirchhoff’s hypothesis {1-3], U can be estimated as U ~ WH/L and
therefore y ~ U/L ~ WH/L2 ~ W/L - H/L ~ d¢. Thus the charac-
teristic strain in von Karman’s theory is found to be of order of €2 The
present paper is concerned with the flexural motions in which e and
b are small but finite. For definiteness, § is chosen as a typical case to
be €2, i.e., v ~ €.

In deriving approximate equations, there are two useful methods
available in addition to the variational methods on which the work
of Reigsner [4, 6] and Librescu {13] is based. The variational method
is simple to use when deriving only the lowest-order approximation,
but it has a disadvantage in that it lacks systematic consistency in
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developing the higher-order theory compared with the two methods
described as follows. One of these methods is the direct asymptotic
expansion method used by Friedrichs and Dressler [7], Reissner [9],
Gol'denveizer [10], and Widera [12]. By this method, the displace-
ments and stresses are sought in the form of expansion by the small
parameter €. After introducing the expansion into the equations of
motion and equating like powers of ¢, sequences of the system of
equations are solved by a step-by-step integration. Although Fri-
edrichs and Dressler and Gol’denveizer indicated the procedure, ex-
plicit results are not given. Reissner carried the expansion to higher
order, but he obtained the result that the higher-order deflection is
also governed by the classical plate equation, though the displace-
ments and stresses are consistently sought up to the higher-order
terms in the e2-expansion. This result is due to the fact that neither
inertia nor applied stresses at both faces of the plate are taken into
account. Widera also developed the higher-order theory for the dy-
namic problem, but it still remains essentially within classical theory
because he proceeded to only the second-order problem. For the
consistent derivation of the linear higher-order theory, it is necessary
to proceed to the third-order problem and the €2-expansion is rele-
vant.

The other method is the moment asymptotic expansion method
by Tiffen [8], Novotny [11], and Lo, et al. [15]. This method assumes
that the displacements can be expanded into a power series of the
transverse coordinate of the plate around the middle surface. After
taking the moments of the equations of motion with respect to the
transverse coordinate, and substituting the expansion into the aver-
aged quantities over the thickness such as total in-plane forces,
bending or twisting moments, etc., the coefficients of the series are
successively determined in terms of the displacements of the middle
surface up to any order desired. Because Tiffen treated all quantities
in the averaged form only, he obtained very complicated results. The
method by Lo, et al., lacks systematic consistency since the expansion
is truncated without any positive reason being given. Novotny, who
developed a nonlinear theory for thin shells, first expanded the dis-
placements and stresses in terms of a small parameter and later ex-
panded them in the transverse coordinate. This method is located
between the direct and the moment methods, but it is too complicated.
The two asymptotic methods should be equivalent in principle. Since
the direct method gives successive closed systems of equations to
determine higher-order terms, it is not deemed suitable for the present
purpose which is to derive the compact higher-order equations and
the moment method is employed in this paper.

By use of this method, higher-order equations for the behavior of
the middle surface are derived systematically up to terms next higher
in order to the classical theory. In the course of developing it, the
displacements and stresses are consistently sought in terms of the
displacements of the middle surface up to at least O(5¢%). If the non-
linear terms are ignored and the linear higher-order theory is con-
cerned, it is found that the e2-expansion is legitimate. Furthermore
if plane harmonic waves are considered in the linear higher-order
theory thus derived, it can readily be verified that the dispersion
relation of this theory corresponds to the exact Rayleigh-Lamb fre-
quency equation [20, 21] up to the second-order terms. On the other
hand, it is found that the effect of small but finite deformation arises
in the form of the total curvature of the plate just as in von Karman’s
theory. It should be noted that the effect of material nonlinearity
becomes the secondary effect compared with that of geometrical
nonlinearity. Even if the fact that the third-order elastic constants
are usually greater than the Lamé constants (e.g., 10-10? times) is
taken into consideration, the effect still remains weak in the present
problem. Thus it is concluded that the effect of material nonlinearity
plays a less important role in such flexural motions of long wave-
lengths (¢ << 1). This should be compared with the case of the high
frequency wave propagation (e 2 1) [19].

Finally, it should be remarked that the present higher-order theory
does not presuppose the existence of an edge. Therefore as it usually

happens, the present theory alone cannot always constitute a full plate '

problem. In such a case, a sort of boundary-layer theory must be de-
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veloped near the edge. This point will be discussed in Part 2 of this
paper.

Basic Equations

Let us consider the basic equations which govern a behavior of an
elastic solid [3, 17-19]. Here we assume that the plate is of a homo-
geneous and isotropic elastic solid and that dynamic deformations
take place adiabatically. The basic equations then consist of the
equations of motion and the constitutive equations. We employ the
Lagrangian formulation in a rectangular coordinate system X; (i =
1, 2, 3) and the usual Cartesian tensor notation. The in-plane coor-
dinates of the plate are designated by X and X5, while the transverse
coordinate normal to the middle surface of the plate is designated by
X 3. The equations of motion can be simply expressed as

Uizt = Lip 3, (i=12,3) 1)

where u; and L;; represent the displacement vector and the Lagran-
gian stress tensor, respectively; the comma “,” implies the partial
differentiation with respect to the subscript(s) indicated after the
comma, ¢ being time; the repeated index k implies the summation over
1,2, 3. The Lagrangian stress tensor is related to the Kirchhoff’s stress
tensor K;; through

Lij = (0 + u; x,) Ky, (,7=1,2,3) 2)

where 6;; is the Kronecker delta symbol. Note here that K;; is a sym-
metric tensor, but L;; is asymmetric generally. All quantities are
normalized by the characteristic wavelength and the velocity of shear
waves (11/p0)1/2, u and pg being, respectively, the usual Lamé constant
(the modulus of rigidity) and the density in the reference state.

The equations of motion are supplemented by the following con-
stitutive equations in the form of the power series with respect to the
Lagrangian strain tensor Ej;:

Kij‘= )\15,'1' + 2Eij + [lIZ - (2m ~ n)II]éij + (2m ~ n)IE,'j
+nEpEpi+...,  (,j=1,23) (3)

with the Lagrangian strain tensor given by
2B = uix; + ujx; + ur xurx;, (,j=1,2,3) “4)

where A[=20/(1 — 2¢)] is another Lamé constant normalized by p,
o being Poisson’s ratio and I, m, and n are the third-order elastic
constants (Murnaghan constants) normalized by u. Here I and IT are,
respectively, the first and the second invariants of E;; defined by I =
E;,and I = (E,‘iEjj - EijEi_,')/Q.

It is assumed that both faces of the plate are free from a tangential
traction, but subject to normal stresses g4+ and ¢— on the upper and
lower surfaces, respectively. The boundary conditions can then be
expressed as

L13 = L23 =0 and L33 = g4, at X3 = :i:Eh/Q (5)

where eh is the normalized thickness of the plate, and the parameter
e is introduced to specify the order of thickness of the plate, & being
of O(1).

We remark here that, in the subsequent sections, the coordinates
X1, X9, and X3 are replaced by x, y, and 2z and the subscripts 1, 2, and
3 of the vector or the tensor are also replaced by x, v, and z, respec-
tively.

Derivation of Approximate Equations

Let us now derive by the moment asymptotic expansion method
approximate equations describing the nonlinear flexural motions.
Since a thin plate (¢ « 1) is considered, the displacement components
in equations (1)-(5) are sought in the following power series in the
transverse coordinate z around a uniform state:

uy = 6(ug + w1z + usz? +uszd +...),
Uy = 5(00 + vz + 0222 + 1)323 + .. .),
u, = 6(wo + w1z + woz2 + w3z + wezt + .. .), (6)

where |z| = €h/2 and the small parameter 8 implies the order of
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nonlinearity; u;, v;, and w; ({ =0,1,2,...)depend onx,y,and t and
their order of magnitude is assumed, for the moment, to be of O(1).
Also it is assumed that the differentiation of u;, v;, and w; (i =0, 1,
2, ...) with respect to x and y does not change the original order of
them, e.g., wo,x ~ wo,y ~ wo ~ O(1), ete.

Multiplying each of the x, y, and 2z components of the equations
of motion (1) by z® (n = 0, 1, 2,. . .), respectively, and integrating with
respect to z over the thickness (i.e., taking the moments of equations
(1)), the following systems of equations are successively obtained:

Ul = N&, + N8, — aNE-D, )
Ul = N{) + NG, — nNGY, (8)

Ul =N, + NG, ~naNGTV+Q™, (n=0,1,2,...) (9)

with
eh/2
UM = f w;z"dz,
—eh/2
eh/2
N = f y Lijzndz, (NEY =0) (G, j = x,y,2) (10,11)
—eh/2
and

Q™ = en(h/2)nfgs + (—=1)n+1g_], (12)

where the boundary conditions (5) have been used in carrying out the
integration. Equations (7)—(9) will be referred to as the nth-order
moment equations hereafter. To derive approximate equations, the
order of the applied stressed ¢, must be specified. Since the applied
stresses are usually smaller than the in-plane stresses (of O(d¢)), we
assume in the following analysis that g+ are of O(8¢%) and therefore
Q) is of O(en*3).

Lowest-Order Approximation. We first seek the lowest-order
approximation which is equivalent to the classical linear theory. In-
troducing (6) into (11) and neglecting all higher-order terms, the
lowest-order expressions for N f?) (i,j =x,¥, z) become

(n=0,1,2,...)

NO = §eh[(A + 2)uox + AMvoy + wi)l,
N,(g,) = Beh(u(),y + U(),x),
N©Q =NDO = deh(us + woy),

N = §eh[(\ + 20w + Muox + voy)l, (13)
where the explicit forms of N, N{2, N9, and N{J are omitted be-

cause they can readily be recovered from N, NQ, N9, and NO,
respectively, by the symmetric transposition between x and y and
between u and v. Similarly the lowest-order expressions for NP (i,
J =x,y,2) become

N = 8e3(h3/12)[(\ + 2)uy,, + Mo,y + 2ws)],

N = 863(h3/12)(us, + v1,0),

N{ = N = §e3(h3/12)(2us + w1 ),

N = §e3(h3/12)[2(\ + 2ws + Muy, + v1y)], (14)

and the lowest-order expressions for N[ (i, j = x, y, ) become

N@ = 5e3(R3/12)[(\ + Duo, + Mooy + wy)],
N = 5¢63(h3/12)(uoy + vos),
N = N2 = §e3(h3/12) (11 + wo,r),

NP = 5e3(h3/12)[(A + 2)w1 + Muo,x + voy)]. (15)

Here, and hereafter, the symmetric forms are also omitted for the
same reason as for N{P,
From the first-order moment equations, it is found that

Ul = —Wo,x + 0(62), U1 = —Wo,y + 0(52):
w1 = —=M(A+ 2)(ugx + voy) + 0(e?) = —0/(1 — 6)Do + O(e?), (16)

where Dy = ugx + vo,. Note here that these relations for u1 and vy
are nothing but Kirchhoff’s hypothesis used in the classical linear
theory of the thin plate. .

Next, from the second-order moment equations and the relations
(18), it is also found that

Journal of Applied Mechanics

uz = o/[2(1 — ¢)]Doyx, vz = a/[2(1 — 0)]Dg,,

wy = a/[2(1 — 0)]Awo — (1 — 20)/[8(1 — o)]wa,e, (17

where equations (7) and (8) with n = 0 have been employed in deriving
ug and ve; A denotes the two-dimensional Laplacian defined by A =
0%/0x2 + 02/0y?. We note here that the second term in ws is, as will
be found later, inaccurate because wq, is of O(e?). By virtue of the
relations (16) and (17), N fc‘? in equation (7) with n = 1 can be ex-
pressed in terms of wg as

N = 5e3(h3/12){~2/(1 — 6) Awo,x + (2 — 30)/[2(1 — 6)|wosts).
(18)
Noting that N = N9 and N{¥= N within this lowest-order ap-
proximation, equation (9) with n = 0 yields
Sehwoe + 0e3(h3/12)way = 8e3(h3/12){~2/(1 — 0) AAwyg

+(2 - 30)/[2(1 — D)]Awgl + Q. (19)

Since @© is assumed to be of O(J¢?), it can readily be seen that wg,,
is of O(€2) and hence equation (19) becomes

wo.e + €2h2/[6(1 — o) AAwo = €2q, (20)

where ¢ = @©0/(5e3h) = (q+ — q-)/(5¢3h). This equation is well known
as Lagrange’s equation for the flexural motions [1-3, 20].

On the other hand, upon substitutions of w; into N& and N,
Poisson’s equations for the extensional motions [1-3, 20] can imme-
diately be derived from equations (7) and (8) with n = 0:

(21)
(22)

woze = 2/(1 — oo + ovoy) x + Loy + vox)y
Vot = (u(),y + UO,x),x +2/(1—~ U)(Uo,y + o'uo,x),y

Thus Lagrange’s equation and Poisson’s equations have been obtained
as the lowest-order approximation of the present analysis.

Higher-Order Approximation. We now proceed to derive the
higher-order approximate equations by reviving the neglected terms
in equations (20)—(22). Since only the lowest-order terms have been
considered so far, the relation 6 ~ €2 has not yet been positively em-
ployed. Furthermore, the order of 1o and vo has been temporarily
assumed to be of O(1). But in order to take account of the effect of
small but finite deformation, it becomes necessary to specify their
order of magnitude.

The effect of nonlinearity comes from two origins, one due to the
finite geometrical deformation and the other due to the deviation from
Hooke’s law. The former nonlinearity causes first, through the Lag-
rangian strain tensor, extensional stresses whose order is estimated
as 0(62). On the other hand, the order of the latter material nonlin-
earity causes, through the constitutive equations, extensional stresses
which are estimated as of 0({82¢2, m62e?, nd2%2) from the present
strain level v = O(8¢). But since the Murnaghan constants !, m, and
n (normalized by ) are usually much greater than unity (e.g., 10-102),
the order of material nonlinearity cannot readily be estimated as
0(52%€2), but depends on the relative order of [, m, n, and €. For the
plausible value of € (10~1-10~2 say), it is appropriate that the Mur-
naghan constants should be estimated as O{(e~1). Under this as-
sumption, the effect of geometrical nonlinearity is still dominant over
the material one. Since the extensional motions concerned with here
are assumed to be caused by finite flexural motions only, ug and vg
are primarily induced by the effect of geometrical nonlinearity of
0(62). Thus ug and vy must be taken to be of () because the ex-
tensional strains and stresses are of O (6w, 6vo). By this fact, it is found
from relations (16) and (17) that w1, ug, and vz are also of O(8). In the
following analysis, uo and vg are replaced by duo and dvg to specify
their order explicitly and a similar replacement is made for w1, ug, and
Ua. .
Making use of the lowest-order approximation and the assumption
d~e, N (i,j=x,y,2)and N{P (i,j = x,y) can be evaluated up to
terms next higher in order to the lowest-order approximation as

N,(}}’ = 52€h[()\ + 2)uox + )\(ony + w1)]
+ 82e¢h[(N + 1)(wox)? + Mwoy)?] + O(8263, 63¢), (23)
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NQ = §%h(uoy + vo,x) + 82ehwo oy + 0(2%, 8%),

NO = NO + 83eh{[(A + 2)uox + Mooy + wi)jwo,x
+ (A + D (wo,)? + (woy)wo
+ (uo’y + Uo,x)lU()‘y} + 0(5363),

NQ = 32h{(\ + 2wr + Muox + voy)
+ (O + D[(woz)? + (woy)?]} + 0826, 6%),

N = 563 (h¥/12)[(A + 2urs + Moy + 2w2)]
+ 8e5(h5/80)[(N + 2)uzx
+ Apsy + 4wa)] + 057, 6%3),
N = 5e3(h3/12)(ury + v1,0) + 365 (h5/80) gy + v3:)
+ 057, 6%3 (23)
(be ) (Cont.)
Let us now first derive the higher-order approximate equation for
the flexural motions. Following the same procedure as in deriving
equation (20), we have from equation (9) with n =0,

Sehwo g + 8€3(h3/12)wsg = 8e3(h3/12)[(A + 2)AD1 + 2NAw,
- D1,“] + 565(}15/80)[()\ + 2)AD3 + 4)\AU}4 - Da,n]
+ 83€h(Ry,. + Ryy) + Q@ +.0(5¢7, 836%), (24)

where the definition of D; (i = 1, 3) is given by D; = u; » + v;y and R,
and R, are defined as

R: = {(A + 2uox + AMvoy + w1) + (A + D[(wox)? + (wo,y)Nwo,x
+ (uo,y + UO,x)wo,yv

Ry = (uoy + vo)wox + {(A + 2)voy + Muox + w1)

+ A+ D [(wo,x)? + (woy)?wo,y. (25)

On the other hand, the equations for the extensional motions are
derived from equations (7) and (8) with n = 0. From equation (7), we
have

0%chug s = 62eh{[(A + 2)ugx + Avoy + w1l « + (woy + Vo) v
+ 82eh{[(A + 1 (wox)? + Mwo,y)?] x + (woxwo,) y}

+ 0(8263, 8%), (26)

and the symmetric equation for vg from equation (8) with n = 0. To
complete equations (24) and (26), us, vs, and w4 must be evaluated
within the lowest order, while u1, vy, w1, and we must be evaluated
up to the second-order terms. Following the same procedure as before,
we have from the first and the third-order moment equations,

and vz = (2 — a)/[6(1 = ¢)]Awog,.
(27)

uz = (2 — 0)/[6(1 — 0)]Awo .

By virtue of these relations and the first-order moment equations,
u1, v1, and w1 can be expressed up to the second-order terms as

u1 = —wq,, — €2h2/[4(1 — )] Awo,.,
uy = —woy — €2h2/[4(1 — 0)]Awq,,

wy = —~a/(1 — 0)Dg ~ [(wo,x)? + (woy)?/[2(1 = 0)].

(28)

In order to obtain w3 up to the second order and w4 to the lowest order,
the fourth-order moment equations are necessary. From equation (9)
with n = 2 and that with n = 4, they can be expressed as

wg = o/[2(1 — 6)]Awg + (1 — 20)/[4(1 — o) ]wo
+ €2h2/[16(1 ~ 0)2]AAwy,

wy = —(1 + 6)/[24(1 — 0)]AAwy. (29)

Thus we have determined the coefficients of z” in the expansion (6)
as far as equations (24) and (26) are concerned. The displacement and
Kirchhoff’s stress components are then evaluated from those ex-
pressions up to O(6¢3) at least and their explicit representation is given
in the Appendix. If the terms with 62 in those expressions are ne-
glected (which corresponds to the linear higher-order theory), it is
found that the displacement and stress components are expanded by
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the e2-power, since 2 is considered to be of O(e) and the e2-expansion
is relevant to derive the linear higher-order theory. Furthermore, if
the static problem with no applied stresses on the faces of the plate
is considered, the present results agree with Reissner’s results [9]t
after expanding wo = wi® + w® +. ...

Upon substitution of the expressions just obtained into equations
{24) and (26), we have for the flexural motions,

wee + 202AAw ~ €2B}Aw 11 + 4G50 A AW

= €%q + 0%(Ryx + Ry,y) + O(e%),  (30)
with
Re=v2us+ ovy) + W)+ wy)ws + (uy+vdwy,
Ry = (uy+uvdws+v[20y + ouy) + (we)?+ (wy)w,y,

(31)

where o2 = h2/[6(1 — 0)], B2 = h2(2 — 0)/[24(1 — )], B% = h*(8 ~
30)/[240(1 = ¢)?] and v = 1/(1 — 5). Here, and hereafter, the subscript
(0) of ug, vo, and wy is omitted.

On the other hand, we have for the extensional motions,

Upt = 20U+ oVy) + Uyt vy + v[(w)?+ owy) .

+ (w,xw,y),y + O(EZ), (32)
Vae = Uy +0y) s+ 200y + oly)y + Wawy) s+ v[(w,y)?
: + owx)?ly+ O, (33)

Equation (30) together with equations (32) and (33) are the required
higher-order equations for the flexural motions in which the effect
of finite thickness and that of small but finite deformation are taken
into account.

If the nonlinear terms are completely ignored, equations (30)—(33)
decouple and reduce to the linear higher-order equation for flexural

motions and Poisson’s equations for extensional motions. Equation
(30) in this linearized version is given by
wp + 202AAw — e2B{Aw ¢ + AB5AAAW = €2g + O(eB). (34)

Since the present theory is valid only for € « 1, equation (34), which
apparently is a sixth-order differential equation, can also be rewritten
by using the lowest-order approximation (20) as

Wy + e2a?ADw — 2B2Aw i = €2 — e43'2Aq + O(ef), (35)

where 82 = % + 83/a2 = h2(17 — 7¢)/[60(1 ~ 5)] and B2 = B¥/a® =
h2(8 — 30)/[40(1 — 6)]. This suggests that equation (34) should be
essentially regarded as the fourth-order equation. As will be discussed

. in Part 2, the order of this differenttial equation has a very important

bearing on an appropriate number of boundary conditions to be im-
posed on it. We note here that in the static case with no applied
stresses g, on the both faces of the plate, equations (34) and (35)
degenerate to the classical plate equation, which is consistent with
Reissner’s result [9].

Next, if we assume no applied stresses and look for plane harmonic
wave solutions of equation (34) which vary like exp [i(kx — wt)], the
direction of wave propagation being chosen as the x-axis and k£ and
w being the wave number and the frequency, we have the dispersion
relation for flexural waves

2 2a2k4 — e4ﬂ§k6
1+ e28%k2

€Zh?

N . eth4(17 — 70) 6
6(1 - o)

360(1 ~ g)2

(36)

This expression is exactly equivalent to that obtained by the e2-ex-
pansion of the frequency w in Rayleigh-Lamb frequency equation for
the flexural waves up to the second-order term {20, 21],2

1 Reissner’s results contain errors in his expressions (18a, b, ¢), which are
corrected by v, — — »,.

2 This expression can also be obtained equivalently by expanding w in powers
of k around w = k = 0 after setting ¢ = 1.
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tan (eah/2)/tan (ebh/2) = —[4k%ab/(b% — k?)?],

where a2 = (1 — 20)/[2(1 — 0)]w? — k2 and b? = w? — k2% Thus it is
verified that the present higher-order theory is consistent with the
exact three-dimensional linear elastic theory up to terms next higher
in order to those of the classical theory. It should be noted that relation
(36) is valid only for k < ¢! and the dispersion relation of equation
(34) and that of equation (35) are equivalent within this range of k.
However, we remark that the latter dispersion relation w? = e2a2k4/(1
+ €232k?), rather than the former, exhibits a qualitatively good
agreement with the exact Rayleigh-Lamb frequency equation beyond
the range of validity for k. Namely, it exhibits a saturation of the phase
velocity as k' o,

Since the time variation of the flexural motions is small, i.e., w4
~ O(e?), the inertia terms of the extensional motions caused by the
flexural motions are also supposed to be small. Physically, it is in-
terpreted in such a way that the velocity of the extensional waves
c[=(2v)172] is so fast compared with that of the flexural waves (of
0O(€?)) that the static equilibrium for the extensional motions is
quickly attained. If a new time variable ¢’ focusing on the slow flexural
motions is introduced as t’ = ¢t, the inertia terms 3%u/0t2 and d%v/0t2
becomes €202%u/0t'% and €202%/0t"2, respectively. Thus, as far as the
terms of O(1) are concerned in equations (32) and (33), they are re-
duced to the two-dimensional static problem in which the stress
function f can be introduced through the following definitions:

(37

Wl + auy) + v[(w:)? + a(wy)?] = fyy,
2wy + guy) + r[(wy)?2 4+ owi)?] = fa,

Uyt e+ wewy=—fr (38)

By virtue of the stress function f, equations (30)—(33) can be rewritten
as

Wy + 02AAw — 2820wy = q — €262Aq

+ (6/6)2(f, yWxx + f,xxw,yy - 2f,xyw,xy)y (39)

and

AAf =2(1+ U)[(w,xy)2 - w,xxw,yy], (40)

where the lowest-order approximation (20) has been used. It can
readily be seen that the finite deflection causes in-plane displacements
in the form of the total curvature of the plate just as in von Karman’s
theory.

In concluding this paper, we again remark about the effect of ma-
terial nonlinearity. As was already mentioned, the effect first causes
in K.y, K.y, and K, extensional stresses of O(162¢2, m6%2, n62%?) and
flexural stresses of O(163¢, md3, nd3¢). In the present analysis, how-
ever, the extensional stresses due to the effect of geometrical non-
linearity are taken up to O(82), while the flexural stresses are taken
up to O(de3) (Appendix). Thus it is found that the effect of material
nonlinearity is higher order if [, m, and n remain less than ¢~2. If, on
the other hand, it happens that I, m, and n = €2, account would have
to be taken of the effect of material nonlinearity as well as that of
geometrical one. Although this process is straightforward, the results
are too complicated to be reproduced here.

Finally, we note that the present analysis is concerned with the case
in which § ~ €2, but can be extended to the case with €3 < § < e. In
equation (24), it can be seen that next higher-order terms due to the
effect of finite thickness are of O(d¢’), while next higher order non-
linear terms are of (§%¢3). Therefore in order that the higher-order
equation (30) is still valid even if the condition § ~ ¢? is relaxed, it is
necessary that €2 < § < e. But it should be noted that the effect of
material nonlinearity of O(183€3, m83¢%, n6%) in NY, N, and N
become important near the upper limit of 6(6 < ¢), if [, m, and n are
greater than (¢/6)2.
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APPENDIX

Explicit Representation of Displacement and
Kirchhoff’s Stress Components

252 _
Uy = —6”wx +——6-}—L-—wa z —qu,‘zﬁ-I- 6%,
T 41— g) ’ 6(1 — o) !
252 2(1 —
u, = 6{w + [ W+ — h & = 20) wm/]zQ
l2(1 - o) 16(1 — 0)2 41-g)
1+o 1
- ———— AAwz4} — 68— [20(u, +
21 —o) F } [2(1 2ol +oy)
+. (w,x)2 + (w,y)z]z}:
K 5 < A
xx = = xx vy +——— {2 - XX
{(1 gy Wt owa) + TG (@ ok,
2
+ cAw ] — ——-—(16_00) w,m»}z (41)
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e2h? €2h2(2 — g)

1
+ 20Aw — (2 = o) Aw,yylz® + 2us+ovy) K, = 5( 2_——)[ Awx +———— AAw,
51— g (200w = 2= Qhwylet+ T g T o= M T e OO
()2 9 )2 2 he AAw,
+ (wy)2+ a(w,y; { R 1 . _ 2(16 - w,t't’x] _ 6(24 _%) 6(1Aw,g) , )
h p - - (Cont.)
= 8l e2lw pp + ———— AAw|z — Asz3+e3—~}, ont.
K., 5{6 {w,u + -0 A w]z 31—0) 2
K,, = 5 {[2w PRy xy]z 279 ppe 3} where z ~ 0(e) and ph = 2Q0/(3¢%h) = (qs + q_)/(5¢3); the subscript
hd el -a) 3(1 - o) (0) of ug, vo, and wy is dropped and the explicit forms of uy, K, and
+ 0%y + v+ Way) (41) K, are omitted because they are easily reproduced from u,, K., and
" ' ’ | (Cont.) sz-
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N. Sugimoto

Nonlinear Theory for Flexural
Motions of Thin Elastic Plate
Part 2: Boundary-Layer Theory Near the Edge

This paper deals with, as a continuation of Part 1 of this series, the boundary-layer theory
for flexural motions of a thin elastic plate. In the framework of the higher-order theory
developed in Part 1, three independent boundary conditions at the edge of the plate are
too many to be imposed on the essentially fourth order differential equations. To over-
come this difficulty, a boundary layer appearing in a narrow region adjacent to the edge
is introduced. Using the matched asymptotic expansion method, uniformly valid solu-
tions for a full plate problem are sought. The boundary-layer problem consists of the tor-
sion problem and the plane problem. Three types of the edge conditions are treated, the
built-in edge, the free edge, and the hinged edge. Depending on the type of edge condition,
the nature of the boundary layer is characterized. After solving the boundary-layer prob-
lem, “reduced” boundary conditions relevant to the higher-order theory are established.

Research Associate,

Department of Mechanical Engineering,
Faculty of Engineering Science,

Osaka University,

Toyonaka, Osaka 560, Japan

Introduction

In Part 1, [1] of this paper, a higher-order theory for flexural mo-
tions of a thin elastic plate was developed including both the effects
of finite thickness of the plate and of small but finite deformation.
To apply the theory to actual problems, it is then required to specify
boundary conditions along an edge of the plate. The analysis in Part
1, however, does not presuppose the presence of an edge explicitly.
It only assumes that

1 A characteristic wavelength of flexural motions L is greater than
a thickness of the plate H (i.e.,, O(H/L) = ¢ «< 1).

2 A characteristic deflection of the plate W is smaller than the
thickness (i.e., O(W/H) = O(W/L-L/H) = §/e < 1).

3 dis of order of €2

If boundary conditions would be imposed, it usually happens that the
constraint along the edge invalidates the previous three assump-
tions. '

To elucidate this situation, let us first start from the linear
-higher-order theory for flexural motions. Since in the linear theory,
flexural motions and extensional motions can be treated separately,
together with the boundary conditions inclusive, we take up only
flexural motions here. From the standpoint of three-dimensional
elasticity theory, three independent boundary conditions must be
satisfied along the edge of the plate. For example, suppose a semi-
infinite plate whose edge condition is the built-in type (the edge is
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located at y = 0, say). Then it is reasonable, since the plate is thin, to
impose three boundary conditions averaged over the thickness; that
is, no averaged deflection, I, = 8{w + 20h?/[24(1 — )]|Aw + .. | =
0, and no averaged rotations @, and &, about the x and y-axes, W, ()
= (rot LL/2)x(y) = (—1)6[w,y(x) + €2(2 + o’)hZ/[24(1 = J)]Aw,y(x) +..
= 0, (—1) being only for &, and the averaged quantity [ being
defined as (...) = S92, (.. .)dz/(ch) (see the Appendix of Part 1). In
the classical linear theory (¢ — 0), the conditions Z, = 0 and w, =0
degenerate into one condition w = 0, and only two independent con-
ditions can be imposed. This is consistent with the fourth-order dif-
ferential equation of the classical thin plate theory. In the present
higher-order theory, however, they no longer degenerate into two
conditions. Since the higher-order equation for flexural motions
(equation (34) in Part 1) is apparently of sixth order, it seems possible
to impose the foregoing three conditions. But for the fulfillment of
the conditions, there arises a solution which varies rapidly, i.e., dw/ox

.~ dw/dy ~ O(e~) and invalidates Assumption 1, since the highest

derivative in the higher-order equation contains the coefficient with
the smaller parameter ¢* than other terms. Thus the higher-order
theory becomes invalid. But this does not imply that when an edge
is present, the higher-order theory is invalid everywhere in the plate,
because the validity of the initial three assumptions is still physically
expected in a region away from the edge. It rather implies that the
higher-order equation should not be regarded as the sixth order, but
as the fourth order and that three boundary conditions are too many.
Thus there arises a discrepancy between the conditions to be satisfied
actually at the edge and those relevant to the higher-order theory. For
the present weakly nonlinear problem, since the flexural and ex-
tensional motions are coupled, they are no longer treated separately.
The boundary conditions should thus be imposed on the total mo-
tions. For the coupled higher-order equations, on the other hand, it
is considered legitimate that two boundary conditions should be im-
posed on each equation. To bridge the gap between the actual
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boundary conditions and the “reduced” boundary conditions relevant
to the higher-order theory, it is necessary to introduce the idea of a
boundary layer appearing in a narrow region adjacent to the edge.

The idea of the boundary layer was first introduced by Friedrichs
and Dressler [2] to explain the relevant stress boundary conditions
for the classical plate equation. As is well known, three independent
boundary conditions (bending moment, twisting moments, and shear
force) are too many to be imposed. They showed by the asymptotic
expansion method that the two conditions for the twisting moment
and shear force should be replaced by one modified condition, al-
though this result has already been pointed out by Kirchhoff and later
Kelvin and Tait based on the Saint-Venant’s principle [3, 4]. In a
similar manner, Gol’denveizer [5] also developed the boundary-layer
theory to confirm the classical boundary conditions for various edge
conditions. Recently Reissner [6] considered the boundary-layer effect
in his original manner. It is to be noted, however, that the aforemen-
tioned analyses referred to are restricted to linear theory. The purpose
of this paper is to extend the analysis to the weakly nonlinear case,
and to investigate systematically the boundary-layer effect on the
higher-order theory. After solving the boundary-layer problem, the
reduced boundary conditions for the higher-order theory are estab-
lished.

Since the boundary layer is supposed to develop in a narrow region
along the edge, the full plate theory is divided into two parts. One part
is for the boundary layer in which the effect of the constraint at the
edge is dominant, while the other is for the interior region in which
the effect of edge conditions is tempered through the boundary layer.
In the interior region, the higher-order theory described in Part 1 is
taken to be valid. To develop the boundary-layer theory, a matched
asymptotic expansion method [7-9] is used. To achieve a proper de-
scription of the narrow layer, new stretched coordinate are introduced.
The equations in the new coordinates consist of the torsion problem
and the plane problem. Solutions are sought so that they may match
with the interior solutions at the limit between the boundary layer
and the interior region. Three types of edge conditions are treated in
the following: the built-in edge, the free edge, and the hinged edge.
It is found that the type of boundary layer is different depending
on the edge conditions. For the built-in edge, there first appears
the .plain strain boundary layer, while for the free edge, the torsion
boundary layer first. For the hinged edge, however, it is found that
no boundary layer arises. After seeking boundary-layer solutions, the
reduced boundary conditions for the interior equations (the higher-
order equations in Part 1) are established. It is then revealed from
these conditions that, if the boundary layer arises, its effect gives rise
to O(e)-corrections in the interior solutions. Although the effect of
finite thickness is of O(€?) in the interior equations, the effect affects
the interior solutions primarily through the boundary layer. This
should be compared with the case in which no boundary layer arises.
Finally, we remark that the stress distribution in the boundary layer
can easily be obtained, but explicit results are not given here and left
for a subsequent paper.

Basic Equations

Since the complete set of basic equations has already been given
in Part 1 [1], we only briefly make reference to them. The same
notation is also used so that each quantity having already appeared
there is referred to without a comment, The same rectangular coor-
dinate system is also used with the in-plane coordinates designated
by x and y and the transverse coordinate by 2.

Let a semi-infinite plate occupy the region,y =z 0and —eh/2 =z =<
eh/2, and let the boundary be located at y = 0 and —» <x <, The
boundary layer is assumed to develop in a narrow region adjacent to
the edge, 0 =y S yp and ~¢h/2 =< z =< ¢h/2. Here, y; is the width of
the boundary layer in the y-direction whose order is comparable with
the thickness of the plate. It is therefore appropriate to introduce,
instead of y and z, new stretched coordinates 7 and { defined by

n=yle
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and = 2/e, 1y

where y and z are already normalized by the characteristic wavelength
of the flexural motions.

By means of the new coordinates 5 and {, the equations of motion
can be rewritten as

€U = fLix,x + Liy,n + Liz,g‘ i=x2) 2)

where, as in Part 1, the comma implies the partial differentiation with
respect to the subscript(s) indicated after the coma.

In Part 1, the displacement components have been treated as the
basic dependent variables. In the following, however, it is advanta-
geous to work with the stress tensor, especially Kirchhoff’s stresg
tensor. Thus the equations of motion can be expressed as

Kiyy + Kizg = €ty — €Kiy x
- (Gui,xKxx + ui,nny + ui,szx),x
—e7 ! [(eui Ky + tinKyy + i, Koy g
+ (e Kz + 1Ky + uiiKzo) ¢, (E=2x,3,2) (3)

When the analysis is carried out with Kirchhoff’s stress tensor, the
compatibility conditions are required to determine the displacements
uniquely. The six necessary and sufficient compatibility conditions
are derived in the Appendix A:

AKW + 2Ky ux + €05y = €2Pyy,
AKyx + ngxx,x:c + 529,::.: = fZPxx,

Asz + fQsz,xx + Ge,x( = EZsz,
AKyy + €2Kyy ez + O,y = €2Pyy,

AKy, + %Ky x + 0,50 = €2Py,
AK;, + 52Kzz,xx + e,rr =e2P,;,, (4)

where A = 92/072 + 9%/3{2and © = (K, + K,y + K;2)/(1 + o). Once
Kirchhoff’s stress tensor is known and therefore the Lagrangian strain
tensor is known from the constitutive equations, the displacement
components are derived from the following relations:

zux,x = 2E; — Uk xUk,xs
Uy,y + Uy = 2€Exy = Uk, xUk,y,s

2uy,y = 2eEyy — € lup,nlik,
Uy,p + €Uz x = 2By, ~ Uk U, g,

iy ¢ = 2eE,, — € lup cup g,
Uy s+ Uz n = 2eEy; — € lupyuiny. (B)

where the repeated index k implies summation over x, y, and 2.

Boundary-Layer Theory
By the matched asymptotic expansion method [7-9], the bound-
ary-layer solutions are sought in the following form:

up = 8@ + eall + 2a® + 33V + .. ),
Ej=0(EP + 2EP + SEP + .. ),
Kij=0(eRP + 2P + KPP + .. ),
Lij=8(eL{P + 2L + 3L + .. ),
(i,j=x1y2) (6)

where § has already been assumed to be ¢2 and the tilde implies a
quantity pertaining to the boundary layer and each quantity is as-
sumed to depend onx, , {, and ¢. It should be remarked that E;j, K,
and L;; (i, J = x, y, z) begin with terms of O(8¢) because the charac-
teristic strain and stress concerned with here have been assumed to
be of O(8¢). According to the matched asymptotic expansion method,
the infinity n = « in the boundary layer corresponds to y = 0 in the
interior solutions. The boundary-layer solutions therefore should he
obtained so that they may be matched at 5 = « with the interior so-
lutions at y = 0. To do so, the displacement components in the interior
solutions are expanded in the following form:
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u=u® 4+ eu®+ 2@+
=00 4+ @ 4 e2p@ .,
=wO 4+ @ + 2@+, N

where u®, p®) and w® (£ =0,1,2,...) depend on x, y, and ¢.

The interior solutions at the matching region (3 = «,y = 0) can be
obtained by substituting (7) into the interior solutions (see the Ap-
pendix in Part 1) and expanding them around y = 0. After setting y
= en and z = €{ in the expansions thus obtained, the interior solutions
with which the boundary-layer solutions should be matched at n =
 are given by

Uiw = 0(@Q + el + e2al® +.. ),

Kijw = 8(eR{L + 2KB + SREL +..), (Gi=xy2) (8)

where /¥ and K{¥ (k =0, 1, 2,...) are evaluated at y = 0. At the
actual edge # = 0, on the other hand, three types of the boundary
conditions are treated in the following analysis: the built-in edge, the
free edge, and the hinged edge. For the built-in edge, the boundary
conditions are given in terms of displacement components as

Uy =u,=u, =0 at =0, 9)

and for the free edge, they are given in terms of stress components
as

Lyy=Lyy=L;y=0 at =0 (10)

For the hinged edge, it is difficult, especially in the nonlinear case, to
specify the boundary conditions in the form of the displacement
and/or the stress components. This is discussed later. In addition to
the conditions at 7 = 0 and 5 = «, the conditions at the upper and
lower faces of the plate are required. They are nothing but those for
the interior solutions. For the boundary-layer solutions as well, it is
thus assumed that

Ly,=Ly,=0 at {=xh/2, (11a,b)
but L,, is employed in the following expansion form:
L, = 863Ga(x) + €Gay(x)n+ €2Guyy (x)n2/2 4+ .. Jy=0. (1lc)

Case of Buili-In Edge. Although the case of built-in edge is treated
first, the imposition of the boundary condtions at n = 0 is suspended
for a while so that the following analysis may be valid not only for the
built-in edge but also for the other edge conditions. Substituting (6)
into the basic equations and collecting terms with the same power of
¢, we have successive systems of equations. In this process, it is as-
sumed that the time derivative 0/d¢ is also of O(e) just as in the in-
terior solutions.

Zeroth-Order Problem. Since we are concerned with the case in
which all stress and strain components at this order vanish, all basic
equations except (5) are satisfied identically. The equations for the
displacement components are then given by

. .~ ~(0) . ~(0) —
il = o =afi=af =aft+af =af}=0.  (12)

Imposing the matching conditions at = », i.e., 2% = 3{% = 0 and

19 = w®, we have
i =aP=0 and al=uwo, (13)

where it should be noted that w® is evaluated at y = 0 and therefore
it depends on x and ¢ only.

First-Order Problem.
Km + K“) = K‘” + K“) = K;(VL),U + R’il)f =0. (14a,b,c)

This system of equations is supplemented by the following compati-
bility conditions:

ARY = AR® = AR = 0
ARD + 60 = ARD + 8@ = AR + 8 W =,
where 0 = (R) + KR+ B/ + o).

(15)
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In addition, the displacement components are governed by

[RE ~ a(BY) + m]/u + a),

22

a® =gl =al}=alt+ a2l =af}+al)=o0. (16)
These equations should be solved in the semi-infinite strip region, i.e.,
0 =7 < »and —h/2 = { = h/2 under the relevant boundary conditions
specified along the boundary of the region. It can readily be seen that
equations (14)—(18) can be split into two separate problems. Equation
(14a) constitutes a torsion problem for the strip region, while (145,
¢) constitute a plane strain problem. As will be seen later, however,
it is not an exact plane strain problem. :

In order to solve these equations, it is convenient to introduce the
following stress functions Y and @ so that the stresses derived from

them may vanish at 7 = «:

RY =Ry -9, RY=9Y,
Ry =Kp.- oW K =-005, RY=04L (1
where the matching conditions at » = » are given by
R = 2005 RY. = |
K(l)m = — W(O)g-, R(lz)m = Kg)m =0, (18)

W being defined by W® = 2(w'® + 6w'9)/(1 — o). It can readily
be seen that (17) can of course satisfy equation (14). Furthermore, it
follows from the compatibility conditions that the stress functions
must satisfy the following equations:

AYD =c(x,t), AApW =0, (19), (20)

where ¢ is an arbitrary function of x and ¢, but must be taken zero in
light of the boundary conditions at 5 = =, Solving OV from equation
(15) yields

O = —ApM) 4 ¢y 4 O 4 4O, (21)

where o), ), and y(!) are arbitrary functions of x and ¢ only, which
should be determined from the matching condition for K{Y. Since
K. isgivenby KW = —WO{, W being defined as W = 2(w'®),
+ ow'D)/(1 — 0), it is found that &1 = 4 = 0 and B = —2Aw@/(1
- 0), where Ais defined as A = 92/0x? + 0%/9y?|,=o. This A should
not be confused with A = 32/on2 + 2%/0¢2. Thus KU can be obtained
as

Ry =-wP(—chpW. (22)

As the problems are formulated in terms of the stress functions, the
boundary cond_itions must also be expressed in terms of the stress
functions. For Y, the boundary conditions are expressed as

n—>o, YO, PP 0, {=2h/2,90 =0, (23a,b)
and for 31, they are given by
n—> o, o0 oG G0 —>0, =xh/2, PH=U=0, (24a,b)

where the conditions at n = 0 are left open for a while for the reason
mentioned before. Although the condltxons (23a) and (24a) imply that
as 7 — », Y and 1 approach, res ctlbely, Y0 > coand 0 — 1y
+ c2{ + 3, where ¢, ¢, ¢9, and ¢g beihg; arbltrary functions of x and
t, they can be set equal to zero without loss of generality. Therefore
(23b) and (24b) at { = +h/2 are replaced by § = 0 and P = 3
= 0, respectively.

It should be remarked here that the two stress functions thus in-
troduced represent the boundary-layer solutions. It should also be
noted, even though it seems trivial, that even if the two stress func-
tions are set equal to zero identically, the stresses (17) can satisfy
equations (14)—(15). Therefore, if the stresses and/or the displace-
ments can satisfy the boundary conditions at = 0 without any in-
troduction Y1 and (), the interior solutions invade the boundary
layer. This case should then be interpreted as no boundary layer ap-
pearing.

The displacement components are obtained from equations (16).
By making use of the matching conditions,
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afd=~w®¢ all=-wi all=w®+wn (25

they are sought as " = !l (i = x, y, z). We remark here that p*

itself does not affect ). Therefore (" is free from the boundary-

layer solutions. Such a plane problem may be called a plane strain

problem, although it is not so in a strict sense because the displace-

ments derived from " (2 and 7)) depend on x parametrically.
Second-Order Problem.

R2, +R2,=-RQ, =W+ oAp?, (26a)
RO, + R = -RY, =209 ¢+ P, (26b)
K2 +KZc= KD, = 4%, (26¢)

The following analysis can be executed in quite an analogous manner
to that demonstrated for the first-order problem. It is therefore only
briefly described.

To solve equations (26a), a stress function l,[/(z) is introduced in view
of the matching conditions as

RE =R+ 58+ (- o) [ Bpdn -39,

n

RO =KZ. + o0+ 9P, @7
with
K(Q) = —Zw“)g‘ Zw(f)yyn(+ ug’,) +0@+ wfg)wfg),
R®, = Aw'® (£2 - h?/4)/(1— o). (28)

The function 2 is specified from the compatibility conditions by
A2 =0, Noting that £ = K2 for this order, the boundary condi-
tions for ¢/ are given by the same conditions as for ¢V (23a, b).

For equations (26b, ¢), on the other hand, a stress function @@ can
also be introduced through the relations

72 e “ 5 -
KP=K{.-2 | J%dn-2%

7

R ==, RE=R.—IW+5%, )

with
K;?y)m = _ng) g‘_ W(O) ng‘_l_ [2(0(0) + u-u(O))
+ W2+ owM/(1 - a),

K%.=0, K2.=Aw'Q ({2-h2/4)/(1~ o). (30)

Here, and hereafter, the definitions W“’) 2(w“” + dw(k))/(l - o)
(k =1,2,...) are used and a 31mxlar definition W% = 2(w®) +
aw‘f,),)/(l - cr) (k =1,2,...) will be used as follows. It is found from
the compatibility condltlons that $® must also satisfy AAp® =
Since K% = L2 and K = LY, the boundary conditions for 3 are
given by the same conditions as for <2>(” (24a, b). The remaining stress
component K& is matched with K2, and given by

RO = —why —wO ,7{+2f J0dn + 29 + 50 ®)

+ M2+ e(w®)2/(1 - o) - cAp®.  (31)

The displacement components, on the other hand, are obtained,
after being matched with the interior solutions as

a0 =u® = w@S ~wlnt+ 9P an,

2 = 00 — ¢~ s+ af,
a? = w® + wPn + wWn2/2 + o/[201 ~ )] AW O +
(32)

where 2{7 and ¢ denote, respectively, the displacement components
derived from W, Since the displacements thus derived are always
accompanied by an arbitrary rigid body motion, we determine them
50 as to be free from the rigid body motion. Thus these displacement
components are taken to be damped out as n — .
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Third-Order Problem.

RY,+KD:;=-K2, - @HED), — @B ED); (33)
K%)n + K@’{: _K(z) (uu) K(” ~ (@ 1) K(“) ¢ (33p)
R, + RO, =a®, - R, - (u«»Km + a;}z,xm) .

(u(O)K(l) + il ,,K(l)) ¢ (33¢)

where t’ is defined as ¢’ = et. The stress functions ¥® and »® for this
problem can be introduced as follows:

RO =R+ 39+ 1-0) f Ap@dn — 39,
R®=K®. +p% -2 f IO dy + P9,
RY=RE.—2 [ Vhan -3

7

+0=o) fCan 7 Bptan -2,
R = RO - 50 - 2%,
KR =RP. -2 +25), (34)

where the explicit forms of K ., j = x, y, 2) are omitted, but their
forms are easily reproduced from the Appendix of Part 1. The stress
functions thus introduced must satisfy the following equations:

AY® = -0 ARp® = —2ApW,  (35), (36)

together with the same boundary conditions as for ) and ), re-
spectively. It should be noted that on both surfaces of the plate, L%
=K® (i =x, v, ) because Y (i = x, y, z) vanish there.

On the other hand, the third-order displacement components are
calculated after matching with the interior solutions as

2@ =~ w® +wBn +w, n2/2 + h/[401 ~ 0)]AwPl¢
+ (2 - 0)/[6(1 = )]

x M@ s+ fTIPan- " uld,
¥ = — w2+ whn + w9, 22/2 + h2/[401 - 0)]Aw Dl

+(2-0)/[6(1 - 0)]

x w3+ fdy [T P%dn+ o +oPn+ag,
a®=w® 4 w 11 + w(},)ynz/2 + w(;.]g,yn3/6 + ¢/[2(1 — 0)][AwD

+ Aw9y]52 - 1/120 — )][20w'? + v D)

+ (w(o))z + (w(o))2] + i ~(3)

dy+u®+ Py,

(37)

where 7§} and 2 represent the displacements derived from .

So far we have not imposed the boundary conditions at 5 = 0. Thus,
as stated earlier, the foregoing analysis can be applied to various edge
conditions.

Let us now consider the boundary conditions for the built-in edge.
Although the boundary conditions are stipulated by (9), we assume
that the conditions are assigned separately as 2 = 0 (i = x, y, 2;
k=90,1,2,...). Fromrelations (13) and (25), it immediately follows
that

w® = =M =0, (38)

The first two conditions are nothing but the classical boundary con-
ditions. From the second-order displacement components (32), the
boundary conditions leads to

uO+ [P dn =00 - wW+ o

=w® 4+ Aw©®¢2 + 33 =0, (39a,b,c)

-0

As can be seen from (39), the interior solutions and the boundary layer
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golutions couple with each other through the boundary conditions at
7 = 0. We are now in position to derive from the conditions, reduced
boundary conditions at y = 0 for w®, w®, 1, and v©). From con-
dition (39a), it is found after integrating over { (—h/2 = { = h/2)
that

u® = J; W dy =o. (40)
From the latter condition, 1) is taken to be zero. Therefore K& and
R vanish in the boundary layer since K{).. = 0 from relations (38).
Thus, for the built-in edge, as will be seen later, the plane strain
boundary layer first appears.

Next, in order to derive the conditions for v'®, w?, and w®, we
must solve the boundary-layer equation (20) under the boundary
conditions (24) and (39b,c). For this purpose, it is convenient to
convert the conditions (39b,¢) to those expressed in terms of the stress
function &1, From the relations between the displacement and stress
components (Appendix B), they are rewritten as

aR =2 - 0)pGk/2+ (L-0) 2/2=0,

i@ = —0/(1 — ) AW = gpW/2 - (1 — o) pU/2. (41

Following the procedure developed in the Appendix B, ) can be
obtained [in this case, noting that w% =0, a = 2¢/(1 — 0)2w ), and
8 = 0]. Thus, from the expressions (78), v®, w P, and w® are deter-
mined as

0@ =0+ kR = w® + kh2w ), =0, (42)
with the coefficients x1 and 3 given by
2402 = B, ,]
Ki=———— — c9B;],
(1 = 0)? |n=135 (n7)? :
240(2 — - Al ,
k2 A o(2-0) — Al (49)

= 40(1 - o) - (1—0)% |n=135 (nm)2

In order to derive the condition for w_(f,), we must proceed to the
third-order problem. Then the condition for wff) is similarly deter-
mined from & §3) = 0 at n = 0 and given by

wff) + thw,(};, + thzwg,’;y =0, (44)
with
8+ 24(2 — - B ,
K= ——" o2 o) i B 45)
40(1 — o) (1—0)2 |a=135 (nw)?

We remark here that the remaining condition Y = 0 is used to de-
termine w®, while the condition Z{¥ = 0 is used to give the boundary
condition for ¢ at n = 0. Thus conditions (38), (40), and (42)-(45)
constitute the reduced boundary conditions for the interior equations
at y = 0. These conditions can alternatively be written in a compact
form in light of the expansion (7) as

wy + ek1hw,yy + €2k3h2w yyy = w + €2k2h %Wy = 0,
and

u=v=0. (46)

Case of Free Edge. For the free edge, three stress components
(10) vanish along the edge and these conditions are assigned sepa-
ratelyas L = L® = L# = 0 (k = 1,2,3,. . ). By taking the moments
of the conditions, they can also be expressed in terms of the averaged
quantities as

hi2 W2 ew g =
o= [ IWar=o MPp= [ I ds=o,
G=xy2j=%tyk=123..) @0

where @%* and QJ(,") denote the resultant in-plane forces on the edge,
while Q%*), M), and M) denote, respectively, the transverse shearing
force, the twisting moment, and the bending moment.

" _ h2__ h/2
Noting that L) = K{P(i = x,,2), andfhﬂ@’fgdf = f h/2¢f%}d§
= (), the boundary conditions are given by
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MY = ~h3/[6(1 - )] WO+ o w®) =0, (48a)

hi2 .
My = —howi/6 - f_m Pde=0, QP =0, (48bec)

where QED (i = x, y) are automatically satisfied. By the condition
(48a), K fvly),,, becomes zero and therefore all boundary conditions for
W vanish. Thus @) is taken to be zero throughout the boundary
layer. Condition (48b) should be interpreted as the condition which
determines the boundary-layer solution V. For L&) to be free, it is
required that

VP =—20Q¢ at p=0. (49)
After solving equation (19) subject to this condition together with (23),
Y can be obtained as

~ @ (_1)m
(1) = 0)p 2
4 Buwzyh ,,,Z=:o 73(2m+1)3
X cos [w(2m + 1){/h] exp [-w(2m + L)y/h]. (50)

Thus it is found that, for the free edge, the torsion boundary layer
appears first,

Next from the boundary conditions for M g"}, M 5,2}?, and @9, it fol-
lows that

o hi/2
M = —h/le( = lwl+ owB) +2 fan [ JWar=o,

(51a)
M2 = .._haw(l)/6 — fh/z (@(2) df=0 (51b)
xy sXYy! —h/2 1 ]
h/2
@ = —h3/[6(1 - 0)] AW ~ I d¢=o.
Q /60 - law® - [ W as=0 (510)

Eliminating ¢ from (48b) and (51c), we find that the well-known
classical boundary condition is obtained

(52)

After substituting 1 into M §2y), we have the higher-order boundary
condition for w):

w,(glyy + (2 - a)wfgly =0.

w% +o w(}} — 192«(1 — a)hwfgiy =, (53)

where

k=¥ [#x(2m + 1)]5.

m=0

From the remaining boundary conditions, @2 = Q» = 0, we have
uQ 400+ w®uw® = o,

o9+ @ + [P+ cwP)2/2=0. (54)
Another boundary condition for w® can be similarly derived from
M2 and Q¥ by eliminating {2 and is given by

wily + 2= ow, =0. (55)
This condition together with (53) constitute the reduced boundary
condition for wV,

We now proceed to derive the conditions for w2, From the condi-
tion M. S"y) = (), we have easily one of the conditions

w®, + ow®, — cw /2 + 1/[40(1 = O)]h2[(4 + oDw Dy,

+ (8 = 30)w,,] —192«(1 — )hw'l,, = 0. (56)
The other boundary condition for w® could be obtained by pro-
ceeding to the fourth-order problem to eliminate /® from M) = Q¥
= 0. But we choose another way to achieve it. From the z-component
of the equations of motion for the fourth order, we have

LY.+ L2r=alde - LY. (67)

Integrating this and (33a) over the thickness, and noting that £ =
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E® -9 QuQe+ §P) —w QWO ¢and L8 = KS), it follows after
integrating with respect to n that

QW+ MY, = h(w Wy + h2WE,,,/12 — G, )n2/2
® ™ h/2 .
o+ hwikin—2 [y Ty {90, as
E] E] —h/2

w w2 .
- f dy f . atAPAd{ + constant, (58)
7 —h/2

where § = (§+ — §—)/h and the constant should be determined from
the boundary conditions at = 0. Since @ = M) =0at 5 = 0, we
have

@ @ h/2
constant = 2 f dy f dy f kl/,(gxdf
0 . —h/2

@ hi2 .
+ Tan [T atReBds = how e, /50, (59)
0 ~h/2

where the second integral for $® vanishes, noting that [ #2,¢ @d ¢
=0atn = 0from "%, K2 {2d{ = 0 at 4 = 0 and the relation (52).
Since expression (58) must be valid at 7 = « where Q¥ and M S’y) are
already known from the interior solutions, another boundary condi-
tion for w® can be obtained as

+(2 - U)w,(z)xy - w,(ig))t"y/2 + (h?/10) {2 - a')w,(glx:cy
+ dwfglyyy + (8 = 30)/(1 — o) [w,(%yyy

+ @2 - a)wfgiyyy

2)
W,yyy

1/4}=0. (60)

Thus (48a), (52)-(56), and (60) constitute the reduced boundary
conditions for the free edge. These conditions can alternatively be
expressed in a compact form similar to expressions (46).

Case of Hinged Edge. As already remarked, it is difficult, espe-
cially in the nonlinear case, to specify the boundary conditions for the
hinged edge in terms of displacement and/or stress components. In
the linear case, the boundary conditions may be given by L, = u, =
u, = 0. In the nonlinear case, however, the finite flexural deformation
causes extensional deformation, i.e., in-plane displacements and
stresses. If the same conditions as in the linear case are applied, the
hinged edge cannot support the in-plane forces, nor can slide along
the edge. Thus these conditions are inappropriate and new definitions
are required. It should however be remembered that, if the boundary
conditions in the averaged form are imposed on the interior equations
and the interior solutions can be obtained without any discrepancy,
then there arises no need to introduce the boundary layer. To examine
it, we now define the hinged edge in such a way that the bending
moment, the averaged deflection, and the averaged rotation about
y-axis vanish. Furthermore, it is assumed that the averaged transla-
tion in y-direction and the shearing force in x -direction vanish. Under
these conditions, it immediately follows from the zeroth and first-
order problems that

wl® = wl(g)y + ow® =0. (61)

It is also found that these conditions can be satisfied even if bound-
ary-layer solutions are not introduced.
Next, from the second-order preblem, we find that

w = w% + Jwg)x =@ =p0 = ufg’ + vff") + wfg) wfg) =0. (62)

For this order as well, there arises no need to introduce a boundary
layer. Using these conditions in the third-order problem, we have

w® + ow? =0. (63)
Thus it is found that in the case of the hinged edge, there appears no
boundary layer. However, it should be remarked that if the definition
of the hinged edge is made in a different way, there might appear a
boundary layer.

Concluding Remarks

For the plate with an edge, we have derived reduced boundary
conditions for the higher-order equations in the interior region by
taking account of the boundary-layer effect. In the case of the built-in
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edge and the free edge, it is found from conditions (46), for example,
that the reduced boundary conditions are subjected to the O(€)-cor-
rections to the classical conditions. Therefore the effect of boundary
layer gives rise to the O(e)-corrections in the interior solutions. But
as can be seen from the higher-order equations, the effect of finite
thickness gives only O(e2)-corrections to the classical theory. This
implies that when the boundary layer appears, the effect of finite
thickness affects the interior solutions primarily through the
boundary layer. These results should be compared with the case in
which no boundary layer arises.

Finally it is remarked that since the main concern in this paper is
to derive the reduced boundary conditions, we have not proceeded
further to examine explicit stress distribution in the boundary layer.
However, since the stress functions 17/(“ or 1) are already known, its
explicit distribution can easily be calculated. It will be demonstrated
in a subsequent paper.
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APPENDIX A

Compatibility Conditions for Finite Lagrangian Strain
Tensor

The compatibility conditions for the finite Lagrangian strain tensor
are given in [10]:

Eijpr+ Epiij — Eupj = Epjis + R = 0, (5, ], k1 = 1,2,8) (64)
with

Riptj = (0rs + 2E) " [(Eyrj + Ejri — Eijr) (Ensy + Etsp — Epas)

~ Byt Ey; ~ Eiyp) (Epsj+ Ejsp — Erjs)],  (65)

where Ej; 5 stands for 92E;;/3.X;0X], etc., and the suffix 1, 2, and 3
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correspond, respectively, to x, y, and z in the main text. Out of 81
conditions, there are six necessary and sufficient compatibility con-
ditions to determine the displacement components uniquely. These
compatibility conditions can be rewritten in terms of Kirchhoff’s
stress tensor by use of the constitutive equations. Since it has already
been remarked that the effect of material nonlinearity does not play
a dominant role in such flexural motions, we employ here the gener-
alized Hooke’s law neglecting the material nonlinearity. The six
compatibility conditions are given in terms of Kirchhoff’s stress tensor
as

Kijn+ Kuij/1+0) =X+ Xj;

+ 0/(1 = ) (Xi1 = Rinuim)dij — 2Rinj = Pyj, (66)
where X; = K;j; = uipr — (i nKej)yje

APPENDIX B

Solution of Biharmonic Equation

We consider the biharmonic equation in the semi-infinite rectan-
gular strip region (0 < 5 < », —h/2 = { = h/2) [11, 12]:

Gy + 2ha0tr + Sz =0, (67
with the boundary conditions given by
1=0, (1—=0)¢um—0ds=(1-0)af,

(1=0) ¢+ (2 — )iy = (1 — 0B,
¢ e 0’ §‘= :th/2’ ¢ = ¢,§'= 0) (68)

n_‘)m,

where a and (8 are constants. The boundary conditions at n = 0 are
derived from the relations between the displacement and stress
components as

2y, = 0P,y — (1 — 0 gz,

Qs e=0dr— (L= 0 Uyt uzn= ¢, (69)

To solve the biharmonic equation, we employ a Laplace transform
method defined by

3o, O = fo " p(n, e=Prdn, (70)

In transforming equation (67), it is required to specify ¢ and ¢, at n
= (), I they are known, ¢, and ¢y, at n = 0 are immediately obtained
from the conditions (68). But ¢ and ¢, at 7 = 0 are the quantities to
be obtained after the full solution is completed. We therefore assume
the form of ¢ and ¢, at 7 = 0, and determine it consistently so that
the solution may satisfy the boundary condition as y — «. For se-
lection of the form assumed, it should be remarked that stress
singularities usually arise at two corners (7 = 0 and { = £h/2).
Keeping this in mind, ¢ and ¢, are assumed, respectively, to be
composed of two parts, one being the regular part and the other the
singular part producing the stress singularities at the corners. The
regular parts are expanded into the Fourier series after extending
them into the region (0 = n < =, —3h/2 = { = —h/2) as the even
function with respect to { = —h/2. Furthermore, noting that ¢ is an
odd function with respect to { = 0, ¢ and ¢, are assumed as fol-
lows:

$(0, ) = Z , 0n €08 [nm($/h + 1/2)] + as0® ($/h),
n=1,3
60,0 = % by cos[na(t/h +1/2)] + byo® ($/R), (T1)
n=1,3,6
with
ONL/R) = (1/2 — R — (1/2 + (/R + (A + 1) {/h,
dW(E/h) = (1/2 = §/h = (1/2 + (/M + NE/h, (72)

where the summation is taken over the odd numbers and a,, a;, b,
and b; are the real constants to be determined so that the solution may
satisfy the boundary condition as 7 — «. Here ¢(*) and ¢ are the
terms which produce the stress singularities at the corners, a; and b,
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being the strength of the singularity, and the power of the stress sin-
gularity A (0 < Re A < 1) is determined from the following charac-
teristic equation for the corner singularity with one side built-in and
the other free [13]:!

sin? (w\/2) = 4(1 — ¢)2/(3 — 40) — \2/(3 — 40). (73)

It should be noted that ¢{=) and ¢ are nonsingular themselves and
therefore the preceding Fourier series in (71) could represent them.
But unless the singular parts are included, the Fourier series for the
stress components would not converge uniformly.

After effecting the Laplace transform, we have

#(p,$) = (%'f' %) [§'+—2"{p—hjsm (ph) sin (p§)
p® p 2

sin (ph) — 4
o o]
1 s Q- a) (E)Z
* n=135 [p% - (mr/h)2]2 “p (1-o0) o
e o Lo+
1-0) h 2
2 ph) _ph . (ohl]
+sm(ph)— [[03(2) 28"’(2)“(”0

-p cos( )g'cos (pg“)]]+ 9 (p, §)

2 N h ph
_— (s) —_ Ei
sin (ph) — ph [¢ (p ’ 2) “cos ( 2)

- p?h sin (p?h)] sin (p{) — p cos (22&) { cos (Pf)}

R R\ [h ph\ . . [ph
— 53©) —41Z fatid - Fabid
Ny ( s 2) {2 cos ( 5 ) sin (p{) — sin ( 5 )ﬁ‘cos (pg‘)]], (74)
with ©) (p, {) defined by

39 0,9 =0 [11C = 0/ = Gr(t, & )
— U[21 - 0)]GalS; & P8 (E/R)dE
+o, =/l - 0)G1(5, & p)

+ 1/[20 = 0)]G2(S, £ p)} % (E/h)/p dE, (15)

where G1(§; £, p) = sin [p(§ - £)] and G2(S; £, p) =sin [p({ = &)] —p(¢
— £) cos [p({ — £)]. The function ¢(p, {) has simple poles at zeros of
equation sin (ph) ~ ph =0, £py and £p} (k =1,2,8,...; pr #= 0),
where p}, being the complex conjugate of pi, but not at p = 0 and p
=d+nn/h(n=1,3,5,...). Since ¢ is assumed to be damped out as g
— o, it is necessary that the residues at p = py and p}, (Re pr. > 0; &
=1,2,3,...) must vanish. From these conditions, a,, as, b,, and b
are determined by

> ! uqi _@-o (nW)qu]an

n=136[q? - (n‘lr)z]2 1-0)

¢§Sy (gr)

1
hb ] [2 cos? (qr/2)

38} (qr) — 08 (qk)]hbs

+ [%2 + (nm)?

(1—o0)
—a® a
¢& (qk)] s [2 cos 2(qk/2)
3 4 ‘
+—(ﬂ+§h—) an 2(g’i)=o, (k=1,2,3..) (16)
2\gi g} 2
where qr = prh and q&‘s) (gx) and ¢ls}(qk) (t=1,2)are deﬁned as qS(pk,
Rh/2) = ashd$ (gx) + bsh235 (qr) and 3§ (pr, h/2) = asdFHar) +
bshd)%(qk) Solving an, as, by, and b, from these equations, we have
¢(n, §) by the inversion formula and complete the boundary layer

L'This A should not be confused with the Lamé constant used in the main
text.
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solution. In order to derive the reduced boundary conditions only,
however, we do not solve the solution explicitly. Noting that u,, u,,
and ¢ are assumed to be damped out exponentially as n — =, the
displacement components at.n = 0 are given by

4 l1—o¢ i o 1—-¢ N
w0, ) ==¢, +——o f =—¢,+—— lim s
(0, ) PR A b,50dn g Pt Jim b5t

2—0 1-¢ b 2—0
z \Uy = + - =
u{0, ) 5 et J; N, reedn P

1—¢
2

Cod .
lim —  rit (77)
p—~0dp

Expressing the solutions an, as, b, and by as ans) = ahB4, +
Bh4A ) and bug) = ah2B, ) + Bh3B ,, (77) can be written as
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- 2 - ’ "
4y =[(1 a)Bh 12 [ 5 (ahB, + Bh2B;)
80 n=1,35 (nw)?
— co(ahB, + BhZB:)Hg‘ - E%g-a,
- 2 @ 247 ”
" = (I —o)ah? 1202 o) { 5 (ah?A, + Bh34))
n=135 (nm)?
, " 1-o0)a
—ci(ah?4; + ,8h3As) - —-—4—“— ¢2 (78)
where the coefficients ¢1 and ¢ are given by
1/2 1/2 -
a= [ Te0@d w= [ 6@ 0y

Thus the displacement components at n = 0 [for example, (39b,c)]
should be determined so that they may be consistent with expressiongs
(78) and then the reduced boundary conditions are derived.
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Torsion

Dynamic Stability of Truncated
Conical Shells Under Pulsating

The dynamic stability of clamped, truncated conical shells under periodic torsion is ana-
lyzed by the Galerkin method in conjunction with Hsu’s results. The instability regions
of practical importance are clarified for relatively low frequency ranges. Numerical re-
sults indicate that under the purely periodic torsion only the combination instability re-
gion exists but that with an increase in the static torsion the principal instability region
becomes most significant. The relative openness of the instability regions is found to de-
pend sensitively on the circumferential phase difference of two vibration modes excited
stmultaneously at the resonance with the same circumferential wave number.

Introduction

It is of great technical importance to clarify the dynamic stability
for the design cf lightweight structures under pulsating load. Hence,
numerous references can be found in an excellent review article by
Hsu [1] and a brilliant book by Evan-Iwanowski [2].

Since a conical shell is one of the basic elements of lightweight
structures, a variety of researches have been made on this subject. For
example, the dynamic stability of conical shells under pulsating
pressure has been studied by Alfutov and Razumeev [3], Kornecki [4],
and Tani [5, 6]. The dynamic stability of truncated conical shells
under periodic axial load has been treated by T'ani [7, 8]. As far as the
author is aware, however, no results exist in the case of truncated
conical shells under pulsating torsion.

This paper is concerned with the dynamic stability of clamped,
truncated conical shells subjected to both static and periodic torsions.
The Donnell-type equations modified with the transverse inertia force
are used. The problem is solved by first applying the Galerkin method
and then using Hsu’s general result for the stability of coupled Hill’s
equations [9]. Through detailed calculations, the instability regions
of practical importance, associated with both principal and combi-
nation resonances, are determined for relatively low frequency
ranges.

The simultaneous action of the static torsion and the circumfer-
ential phase difference of two vibration modes excited simultaneously
at the resonance are found to exert the significant effect on the relative
openness of the instability regions.
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Basic Equations and Boundary Conditions

Assume that a truncated conical shell with slant length [, thickness
h, base circle radius r, and semi-vertex angle « is subjected to periodic
torsion T = Ty + T’y cos ¢ applied along the edges, where T, T, ,
and ¢ are static torsion, a amplitude of periodic torsion, a angular
frequency, and time, respectively. The coordinate system is taken as
shown in Fig. 1. When the problem is restricted to relatively low fre-
quency ranges where flexural vibrations of thin shells are dominant,
effects of transverse shear deformation and in-plane as well as rotatory
inertia forces can be neglected. Hence, in the unperturbed motion,
the shell executes a simple torsional vibration with the stress resul-
tants as given by

Neo=Nio=0, Nyo=-—ot T1cos 8t W
2mws? gin? o

Next, consider the perturbed motion of the shell. With U, V, and
W denoting the small incremental displacement components and F
the stress function for the incremental stress resultants, the governing
equations are given by the modified Donnell-type equations including
the effect of transverse inertia force as

Eh cot

ViF + 2%y =0 @)

S
cot 1
RRW o + DVAW — <22 F . — 9N,g0 (; W,¢) =0 ®
where
22 102 1 22
V2= — — ¢ =fsina

. as2 s0s sZog?
In the foregoing, D = ER3/12(1 — »?) is the flexural rigidity of the shell,
and E, v, and y are Young’s modulus, Poisson’s ratio, and the mass
density of the shell, respectively, while subscripts following a comma
stand for differentiation. The relations between the stress function
and the stress resultants are
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Fig. 1 Coordinates and nomenclature of the truncated conical shell

1 1 1
Ns="F,s+'_2F,¢¢y Ng =Fs, Ns(?:—(_F,d?) (4)
] ] §

S

while the displacement components are related to the stress resultants
by

Eh
EhUg=N; = vNy, —=(U+ V- Weota)=Ny— vN;
8

h
Eh (Ug—V+5Vs) =201+ r)Ny (5)
8

For the boundary conditions at s = Lg and L, the following case will
be considered:
U=sV=W=W,=0 (6)

Here, the following coordinate transformation and nondimensional
notations are introduced for convenience.

s e *F D
=log=, [=———\ 7=t/L24]—
¥ ogL f Eh2L cot o T=t uh
w=QL? uh w=—, (u,v)=U,V)/hcota
D b h ’ b ’
L Lg
(nxs Ny, Nxg) = oot e (Ns, Ng, Ngg), v = T
L2 (To, T
Z=v1=v2—, ((10,(11)=—0“~l2
ph . Ter
rrksy 2D .
er =—£’2Y"" V)]

392 / VOL. 48, JUNE 1981

In the foregoing, -y and Z are a truncation ratio and a shape factor of
the conical shell, respectively, and 7', is a buckling torsion load with
a relevant parameter k. Further, go and ¢; are the static and periodic
load intersities normalized by T, respectively, while w is an exciting
frequency parameter. With these notations, the preceding equations
can be rewritten as follows:
o4 o2 o2 ( 2 o2 )}
— 9 —tit+—[2—+2+—|if=w, —w 8
ot " ox? 2¢2\ dx2 292 fRwe=we @)
Lwf)=w., +e V4 — 122272 (f . + f) »

—2ks(qo + gqrcoswr)e (W, —w)y=0 (9)

ne=e *(f+fr+fps) ng= e (f+ [

2+

Nig = =€ fxq (10)
Uz =e*(ng —wny), u—w+uvge=e*(ny— vny)
Vgt v, —0=2(1+p)eing (11)
u=v=w=w,=0 at x=logvy,0 (12)
where
4 3 2 2 2 2
64z§— %5 40—1—2 ;72 %§~45%+4+£;5

Under the boundary condition (12), equations (8) and (9) have, in
general, only bounded solutions for w and f, and the unperturbed
motion is stable. However, under specific combinations of qo, ¢ and
w, the governing equations have a solution w increasing indefinitely
with time 7, leading to the dynamic instability of the shell. The
problem consists of determining the boundaries dividing the stability
and instability regions in the space of go, g1, and w, when the values
for the shell geometry Z, v, and «, Poisson’s ratio v and the wave
number N are prescribed.

Method of Solution

Considering the boundary condition (12), we put w as
w=Y (Cme1— Crs+)iam () cos NO + by, (1) sin N6}
m

Cm =cos (Bux), Bm=mwllogy, (m=12,8,--1) 13)
where a,,(7) and b,,(7) are unknown time functions and N is the
number of circumferential waves. Substituting equation (13) into
equation (8), we can obtain the general solution f of equation (8) as

follows:
f={f1e@T D% + foe=lrtDe 4 fae =Dz 4 fo—(r-1s} cos N

+ {g1e O Dx 4 goe—(rtl)x 4 gee—(rtlx 4 g o =(=1)x] gin N§
+ Z {,Bm—IGm—I(ﬂm—ICm—l - Sm-l)
m

= Bm+1Gmt1(Bm+1Cm+1 — Sm+1))am cos NO + by, sin NO)
(14)

where f; to f4 and g1 to g4 are arbitrary time functions, 4 is a wave
number parameter and

7 =N/sine, Sp =sin(Bnx)

Gm = 1/{Bm®+ (n+ L)HBr® + (n — 1)3

Substituting equations (10), (13), and (14) into equation (11), and
solving for u and v, we can determine the arbitrary time functions fi4
and g14 50 as to satisfy the boundary condition (12).

Thus we have obtained the expressions for w and f satisfying both
the compatibility and boundary conditions exactly. T'o determine the
unknown time functions a,,(7) and b,,(7) contained in these ex-
pressions, the Galerkin method is applied to the remaining basic
equation (9), which leads to the following sets of conditions:
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25 plogy _ cos NO
Cn— ~—bLn Zxdxdf = )
j; J; L, H(Cnr mo(sinNB)e dxdf =0

n=123..:) (15)

Substituting equations (13) and (14) in these conditions (15) and in-
tegrating, we finally obtain two sets of the equations of motion in
terms of a,, () and b, (7) as

> MnmGm 2 + Bam@m + ks(qo + g1 608 @T)Prmbmn} = 0
m

> {Mnm,bm,r'r + Rumbm — ks(qo + q1 cos WT)anaml =0
m

(myn=1,2,3,...) (16)

where
M =11 = (=1)**"y (D ;-1 = Dp,m+1)
Rom = ZH(An—1+ Ant1)0mpn — An—10mun—2 = An+10munt2
+ Hom () + Hom (=)} — (1 = (=1)"*™y%(By,;m—1 — Brm+1)
Pom = {1 ~ (=1)"* "y 2B, 11 — Enyms1) (1

In the foregoing, 8y, m is the Kronecker delta, while An, Bym, D m,
E, ., Hpm are complicated functions of the truncation ratio vy, the
shape factor Z, Poisson’s ratio v, the wave number parameter % (or
N), m, and n, For completeness, these actual expressions are given
in the Appendix 1.

Putting Z = 0 and 7 = N in equations (17), these equations agree
precisely with those for the problem of annular plates {10].

Upon omitting the inertia terms as well as those with periodic
coefficients, and putting a,,(7) = @mo, 6m(7) = bpoand go = 1 in
equations (16), we have two sets of the homogeneous linear equations
in a0 and by, as

> {an (‘Z""’) & kyPp, (b”“’)} =0,

m mo, 2mo

(m; n= 1: 2: 37 ¢t ') (18)

From these equations, the buckling coefficient %, the wave number
N, and the buckling mode can be determined for each specified
conical shell, with the usual procedure for the buckling problem.

Further, upon omitting the terms with periodic coefficients and
PUtting am (1) = Gy cos wT and by, (7) = byy1 cos wr, equations (16) lead
to

— 2 Gm
> {(an ©2Mpy) (b

m

Jsvasali]on
a

1 ml

(m)n = 1, 2» 35"') (19)

Equating to zero the determinant of the coefficients of these equa-
tions, we can determine, for each wave number N, the nondimensional
natural frequencies w; (i = 1, 2, 3, - - -) and the corresponding eigen-
vectors ¢;; (i, ] = 1, 2, 8, - « ), under the effect of the static torsion go.
The indices i (= 1, 2, 3, . ++) designate the axial mode of vibration,
representing the number of half waves in the axial direction.

Here, it should be noted that in addition of a1; = 1, the other con-
dition is required to determine the eigenvectors ¢;;, because of the
use of equation (13). Hence, the following condition is added:

We=0 at x=logy, 8=6 (20)

This condition represents that a nodal line of the vibration mode
develops from a position (y, fg) on the top edge of the truncated
conical shell in the axial direction. Further, this condition makes it
possible to designate the circumferential phase difference ¢ of two
vibration modes with the same circumferential wave number which
excited simultaneously at the resonance.

Now we will proceed to examine the stability of equations (16).
Transforming the generalized coordinates a,, and b,, to the normal
coordinates d; by making use of the eigenvectors ¢;j, we obtain the
following set of coupled Mathieu equations in the standard form:
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10°
- qo= 0
L —_—— 5
e r .
3t —_—— .8

—

To}

Fig. 2 Effect of static torsion on the natural frequencies in the case with
¥ = 0.5 and Z = 191

diqrr + wi%d; + q1 cos wr 2 Qyd; =0
j

Qi =Qii=ks % ; YriPenby;

Vi = ¢ij/ v/ z? El: dirMridil
.

(i7j7k)l =1) 27 3’ (21)

The stability of the foregoing equations has been studied by Hsu in
detail [9]. According to his first approximation analysis, equations
{21) have instability regions of combination resonance type when w
is in the neighborhood of w; + wj, the boundaries of which are given
by

w
—=1x0;q, (,j=123,--9)
wWij
1€
wij = w;tw;, O=——"—- (22)
v : / v 2wijV wiwj

In the foregoing, w;; and 8;; are a central frequency and a relative
openness parameter of the instability region, respectively. Equations
(21) have also principal instability regions at w = 2w;, the boundaries
of which are given by putting { = j in equation (22).

For the small exciting force g1, the foregoing instability regions will
be of most practical importance. Hence, the consideration of the
secondary instability will be omitted in the present analysis.

Numerical Results and Discussions

On the basis of the preceding analyses, detailed calculations are
carried out for the conical shells with the truncation ratio y = 0.5 and
the shape factor Z = 191. Poisson’s ratio v is assumed to be 0.3.
Practically accurate solutions are obtained by taking 20 terms for each
unknown parameter a,, and b,,. Additional cases with Z = 57.2, 644
and vy = 0.5 are also treated.

Buckling Load and Natural Frequency. To check the computer
program, the buckling load parameter ks, the corresponding wave
number parameter 7, and the natural frequency of the first order w,
are first determined for the conical shells treated in references [11,
12]. A comparison of the present and previous results is shown in the
Appendix 2 (Tables 2 and 3). It is found that the present results are
in good agreement with the previous ones.

Next, the buckling load parameter k; and the corresponding wave
number N; in the cases of three kinds as adopted here are determined
with the results listed in Table 1.

Moreover, with the effect of the static torsion g taken into con-
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Fig. 3 Waveforms of the natural mode of vibration in the case withy = 0.5, Z = 191, and N = 9: (a) qo = 0, (b) go = 0.5

Table 1 Buckling load and the corresponding wave
number in each case: » = 0.3, ¥ = 0.5

Lih  (p+ po)/2h @ Z ks N,
200 500 73.3° 57.2 256.7 8
200 150 45.0 191 472.3 9
600 400 41.6 644 1064 12

sideration, the natural frequencies w; (i = 1, 2, 3) in each case are
determined for each wave number N by using the values of &; as given
in Table 1. A typical result for the case withy = 0.5 and Z = 191 is
shown in Fig. 2. It will be seen that for the same wave number N,

natural frequencies decrease with the increase in the static torsion. |

This tendency is most pronounced for those of first order w,, especially

394 / VOL. 48, JUNE 1981

when the wave number is in the vicinity of buckling wave number N;.
This results agree with those obtained by Weingarten [13].

The effect of the static torsion on the natural modes of the first and
second orders is also investigated. The typical results for the case with
v=05,Z =191, N =9 (= N;), and 0y = w/2N are shown in Fig, 3, with
the contour lines with the maximum amplitude of the deflection w
taken as unity. It will be seen that, with the application of the static
torsion, the axial nodal lines are obliquely rotated in the loading di-
rection and that the wave pattern for wy becomes almost identical with
that for the static buckling (see reference [11]).

Instability Regions. First, the variation of the relative openness
f;; of instability regions with the circumferential phase difference ¢
of two vibration modes exciting simultaneously at the resonance is
examined by using the eigenvectors ¢;; obtained along with the cal-
culation of natural frequencies w;. This is because two vibration
modes, having the same circumferential wave number but having the
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different circumferential phase, may be excited simultaneously at the
resonance. As a typical example, the results for the case with y = 0.5,
Z =191, and qo = 0.5 are shown in Fig. 4. In this figure, the instability
regions with 0;; less than 1072 are omitted as they will be of less
practical importance. From this figure, the following is observed. The
relative openness of the combination instability region 8;; (i = j) is
widest when the value of the circumferential phase difference ¢ is in
the vicinity of w/2N. On the other hand, that of the principal insta-
bility region 8;; (i = j) is widest when the value of ¢ is equal to 0 and
m/N. The value of the relative openness 6;; depends on the circum-
ferential wave number N which two vibration modes excited simul-
taneously have equally.

Next, with the effect of the static torsion taken into consideration,
the instability regions are determined for the same shape of shells
under the loads go = 0, 0.25, 0.5, and 0.75. These results are shown in
Fig. 5. In this figure and the following, the relative openness ;; rep-

Journal of Applied Mechanics

resents the maximum value with respect to the circumferential phase
difference. Only the instability regions with 8;; = 10~2 are considered
for natural frequencies up to the third order of axial modes. From this
figure, one can easily find the location and the relative openness of
the instability regions, together with the wave number as well as the
modes of the excited vibration. The following observations can be
made. Under the purely periodic torsion without the static one, one
has only the instability regions of combination resonance type, in
which two modes of vibration of ith and jth axial orders are para-
metrically excited. To judge from the magnitude of the relative
openness f;;, the instability region associated with (Z, /) as (1, 2) is of
most practical importance. The relative openness f;5 has a maximum
when the wave number N is near the buckling wave number Nj.
Under the simultaneous action of the static torsion, one has the
principal instability regions with i = j, besides the combination in-
stability regions with ¢ » j. With an increase in the static torsion, the
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Fig. 5 Effect of static torsion on the central frequency and the relative openness of the instability regions: vy = 0.5, Z = 191

relative openness of the principal instability regions 8;; (i = j), espe-
cially 6;1, grows rapidly, while that for the combination type 8;; (i #
J) remains almost unchanged. When the static torsion exceeds one
half of the buckling load, the principal instability region for the vi-
bration mode of the first order, associated with the wave number
around Ny, is of most importance. The central frequencies w;; of each
instability region are shifted toward the lower frequency with the
static torsion. ‘

To check the influence of the shell geometry, the instability regions
for the cases with Z = 57.2, 644 and v = 0.5 are determined with the
results shown in Figs. 6 and 7. In these cases, two loading conditions
are considered: gg = 0 and 0.5. It can be seen from these figures that
with the change in the shape factor Z, the magnitude of the central
frequencies w;; together with the dependence on wave number N are
changed significantly, obviously due to the variations in the natural
frequencies. However, no substantial changes are observed in the
magnitude and in the wave number dependence of the relative
openness 0;;. It was omitted to illustrate the effect of the truncation
ratio 7, but the same tendency was observed. Hence, it is to be noted
that the main remarks on the instability regions stated in the forgoing
are still valid irrespective of the shell geometry.

Conclusions _
On the basis of the dynamic version of the Donnell-type equations,

the dynamic stability of clamped, truncated conical shells subjected

to both static and periodic torsion has been theoretically studied

396 / VOL. 48, JUNE 1981

within relatively low frequency ranges. The main results obtained here
may be summarized as follows:

1 Under the purely periodic torsion only the combination insta-
bility region exists, while the simultaneous action of the static torsion
gives rise to the principal instability region also,

2 With the increase in the static torsion, the relative openness of
the principal instability region, especially that for the vibration mode
of the first order, grows rapidly, while that of the combination type
remains almost unchanged. When the static torsion exceeds one half
of the buckling load, the principal instability region for the vibration
mode of the first. order, associated with the wave number around the
buckling one is of most importance.

3 The relative openness of the instability regions depends sensi-
tively on the circumferential phase difference of two vibration modes
excited simultaneously at the resonance with the same circumferential
wave number.

4 - The aforementioned conclusions are valid irrespective of the
shell geometry.

5 The magnitude of the central frequencies and its dependence
on wave number are changed significantly with the change in the shell
geometry.
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APPENDIX 1

For completeness, actual expressions of the coefficients appearing
in equations (19) are given in the following:

A, = 3wn3G,(1 + B,2)48,

Bn,m = n(.Bm2 + 772)[(4 + ﬁmz - 772)(4 + .Bmz
+ Bu-1D(4 + B2 + Bnt1?) + 480404 + 5%
- Bn—lzﬁn+12}]/>\nm
Dpm = 6n2{(4 + Bmz + 6n—12)(4 + B2+ 6n+12)
— 4824 + B D/nAnm
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En,m = m’l[(2 + ﬁmz)(4 + ﬁmz + ﬁn—lz)(4 + ﬂmz + ﬂn+12)
- 2ﬂm 2{6’"2(4 + ﬂm2) + ﬁn—lﬁn+1}]/)\nm

)\mn = (4 + ﬂm+n—12)(4 + ﬂm—n+12)(4 + ﬁm+n+l2)
. - X (4 + ﬂm—n—lQ)
Hpn(n) = 12B8nBun(n + DA+ )2+ o)1+ (—=1)rym+y
X [ly=2 = (=1)my = UKy ) + (3 — v}y
— (1) YK @ = (1 + 2)(n — DL = (=1)™y 711K @]
+ {1+ (1)ry Y6 = w)fy — (L YK, )
FUL+ 9272+ B(L = )llr® = (~DPy T YK @
+ 1+ ) - DL - (”1)m7"+liKm(4)”]/Xm

xm = 91+ V)| + 12+ Brn-13(n ~ 1)?
+ Br—13i(n + 12 + Bms1?
X {(7’ - 1)2 + ﬁm-HZ“(n + 1)2 + ﬁn-IZ“("] + 1)2 + 6n+12}
XL+ 024+ @2+ 1)+ @ =)y =y~ )2
= (3 =3y =y
Kn® =2(1 = 79 = DL+ v)n + 4l — {1 + )2 + v)?
+ (22 + 3y -3+ 4Jn
Kn®@=21-9)1 - +{1+ 2+ v)ndn
Kn®=20-9)0+nn+{1 -2+ o),

Kpn® = 2(1 — 12 (n — DL + v)y ~ 41, — {(1 + )2 + »)7?
— (202 4+ 3v — 3)y + 4}dm

I, =B8.204+m ) +1+ n?
I = Br-12Bm+12 — (1 — 7%)?
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APPENDIX 2

Table 2 Buckling load and the corresponding wave-
number parameter in each case: v = 0.3. (The value of 9
is assumed to be able to change continuously.)

Present Reference [11]
7 Z ks s kS s
10 41.55 3.06 41.556 3.06
0.2 100 124.2 6.33 124.3 6.43
1000 608.6 13.6 608.6 13.4
10 188.8 5.68 188.8 5.69
0.5 100 326.7 9.58 326.8 9.58
1000 1454 21.8 1454 21.8
10 1781 17.0 1781 16.9
0.8 100 1840 17.8 1839 17.8
1000 3624 32.8 3623 32.8

Table3 Natural frequencies of the first order: v = 0.3,
Z =932, v = 0.438, a = 20°

N 2 3 4 5 6
Present 1737 | 1131 837.5 | 7446 | 788.1
Reference [12] | 1736 | 1131 837.0 744.0 787.4
N 7 8 9 10 11
Present 899.1 | 1042 | 1210 1403 1617
Reference [12] | 898.2 | 1041 | 1209 1400 1614
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Elastic Instability of a Heated
Annular Plate Under Lateral
Pressure

On the basis of the dynamic version of the nonlinear von Karman equations, a theoretical
analysis is performed on the elastic instability of a uniformly heated, thin, annular plate
which has suffered a finite axisymmetric deformation due to lateral pressure. The linear
free vibration problems around the finite axisymmetric deformation of the plate are
solved by a finite-difference method. By examining the frequency spectrum with various
asymmetric modes, the critical temperature rise under which the axisymmetric deforma-
tion becomes unstable due to the bifurcation buckling is determined, which is found to
Jjump up to 7.2 times within a range of very small lateral pressure.

Introduction

The large axisymmetric deflection of thin annular plates under
various lateral loads and boundary conditions has been studied by
numerous researchers [1-8]. Moreover, the axisymmetric postbuckling
behavior of the annular plate with the free inner edge and subjected
to uniform compressive thrust at the clamped-movable outer edge
has been studied by Huang [9, 10], and Uthgenannt and Brand [11].
The axisymmetric postbuckling behavior of heated annular plates
with both edges clamped or simply supported has been studied by Pal
[12]. Recently, the author examined the thermal buckling of a clamped
annular plate with axisymmetric initial deflection [13] and the elastic
instability of a clamped annular plate under uniform compressive
thrust and lateral pressure [14]. The latter results of the author’s
studies showed that there are two ranges of the combined loads under
which the axisymmetric deformation of the plate becomes un-
stable.

The object of the present paper is to study the elastic instability
of a uniformly heated, thin, circular annular plate which has suffered
a finite axisymmetric deformation due to lateral pressure. The ma-
terial properties of the perfectly clamped annular plate are assumed
to be independent of temperature. A finite-difference method is ap-
plied to the dynamic version of the nonlinear von Karman plate
theory. By examining a continuous variation of the asymmetric linear
natural frequencies in the neighborhood of the axisymmetric finite
equilibrium state, one may detect the unstable axisymmetric defor-
mation of the plate. Through the numerical results, it is shown in this
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case also that there are two ranges of the magnitude of combined loads
under which the axisymmetric deformation of the plate becomes
unstable due to the bifurcation buckling.

Basic Equations and Boundary Conditions

Consider that a thin, isotropic annular plate with thickness h, inner
radius a, outer radius b is heated uniformly and subjected to a uniform
lateral pressure p. Assume that its temperature rise T above the un-
strained state is constant throughout the plate and that its material
properties, i.e., Young’s modulus E, Poisson’s ratio », the mass density
0, and the thermal expansion coefficient « are independent of tem-
perature. The coordinate system is taken as shown in Fig. 1. The
transverse displacement of the midplane and the stress function for
stress resultants are denoted by W and F, respectively. As a basis for
the analysis of the asymmetric small vibration of the plate in the
neighborhood of nonlinear axisymmetric equilibrium state, we use
the dynamic version of von Karman’s equations. These equations are
given in nondimensional form as follows:

12 1 12 1 2
Vif=——lws+-wopl war+ W —=wp
X X X x
4 1 1 1 1
Viw = - f,x+—f,00 w,xx"'"f,xx w,x+—w,a‘}0 1)
x x x x
1 1
-2 (_f) (— w) +ﬁ — Wy (2)
X Jxf \x x0
1 11 1 i
= 22— |= I
u,x+2(w,x) 12 (xf,x+x2f,03 Vf,xx+t)
1 x v 1 -
votu+— (we)?=— [f,xx - (f,x + '"f,ee) + t]
2x 12 x x
1+v (1
ot Ay =Vt wawe=— x (—f,a) (3)
6 X X
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Fig. 1 Dimensions and coordinate system of the annular plate

where subscripts following a comma stand for partial differentiation
and
2 109

12
X Ox

22 of?
In these equations, the nondimensional quantities are related to the
corresponding physical ones through the following relations:

b(1 —»?)

r a
x=;7 ’Y=l_7', (uvu)=T(U>V)
v1-—1v? F t D
w=Y "y, pE oL 2
3 D b2V oh
_ bhET pbt
t=———-——’ D = 1— 25— 4
p PV T Dh @

in which « is a ratio of inner to outer radii, D = ER3/12(1 — v?) is the
flexural rigidity of the plate and ¢ is time. The displacements of the
midplane in the radial and circumferential directions are denoted by
U and V, respectively.

Assuming that the annular plate is perfectly clamped along both
edges, we have the following boundary conditions as x = -y, and 1.

u=sv=w=w,;=0 (b)

Denoting the time-independent, nonlinear, axisymmetric defor-
.mation state by up(x), wo(x), and fo(x), the relevant equations are
obtained from equations (1)—(3) and (5).

X F (xn)’x} = —§{2 (6)
X X
1
x [— (xo,x] e ™
x x 2
Me=utE=0, {=0 at x=7,1 ®

where
n=fo,, §=uwo,

In order to analyze the asymmetric small free vibration of the plate
in the vicinity of an axisymmetric equilibrium state, we assume u, v,
w, and f in the form
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u = uop(x) + ur(x) cos Neivr, v = v;(x) sin Nfeier
w = wo(x) + wi(x) cos Nfe'~r, f = fo(x) + f1(x) cos Nfei=™ (9)

where N and w are the number of circumferential waves and a circular
frequency, respectively, while u1, v1, w1, and fy are infinitesimal
quantities.

The equations governing the asymmetric small free vibration of
the plate in the neighborhood of the axisymmetric equilibrium state
are obtained by substituting equation (9) into equations (1)—(3) and
(5), subtracting the equations of axisymmetric deformation from
resulting equations and retaining only the linear terms in the infini-
tesimal quantities. This leads to '

12 2
Vi1 =— . [f'uh,,,,c + (wl,,, - Njwl)g‘,x] (10)

1 N2
Vitw; = = [fh,,, + (fl,x - ”‘fl)f,x + i,
x X
NZ
+ (wl,x - wl)n,x] + w?w; (11)
x

11 N2
uy, + {wy, =—I-

12 fi,——fHi— Vf1,xx)

x x?

x 1 N2
Nvi + uy =-1—2[f1,xx - V(;fyx _;C;fl)]

N(1L+ ) 1
~Nuy +x03, —v1 — Nfw; =_“é——(f1,x'“;f1) (12)
ui=vi=w=w,=0 at x=v,1 (13)
where
d2 1d N2
vlz =— - — — -
dx? xdx x2
With equation (12), equation (13) becomes, at x =+ and 1,
wi=wy, =0, x2%f, —vixfi,~ N%)=0
%31 e — (1 — v+ 2N2+ yN?)xf1, + 3N2f1=0 (14)

Numerical Procedures and Results

The details of the numerical procedures used in this study were
described in reference {15] and will not be repeated here. The system
of nonlinear differential equations (6)—(8) governing the axisymmetric
deformation was solved by Newton’s method, in which the direct
solution of the nonlinear system is replaced by the solution of a se-
quence of linear correctional equations. These equations, as well as
the eigenvalue problem posed by equations (10), (11), and (14) were
solved by central differencing and the application of Potters’ algo-
rithm [186]. Tterative calculations of Newton’s method were done until
the condition |8y ™)/y ™)} = 10~4 was satisfied, where 6y ™ and y ™
correspond to the values of correction term and solution of n iteration
at each station, respectively. A mesh of 100 points on the interval of
(1 — 7) was considered in the finite-difference method.

When the values for the radius ratio vy, Poisson’s ratio », and the
load parameters ¢ and P are given, we can determine the eigenvalues,
i.e., the natural frequencies w in this case for each circumferential
wave number N, If the square of any natural frequency thus obtained
is negative, the corresponding original axisymmetric deformation will
be unstable. Hence, the branching of the asymmetric equilibrium state
from the axisymmetric one may take place at the state where one of
the natural frequency becomes zero.

As a numerical example, we take an annular plate with v = 0.5 and
v=03.

Fig. 2 shows the variation of the square of the first order of natural
frequencies with the wave numbers N = 2, 3, 4, and 5 as a function of
the temperature rise f for the plate under p = 30. From this figure,
it can be seen that there are the ranges in which the square of the
natural frequencies corresponding to N = 3 and 4 becomes negative.
Hence, the axisymmetric deformation is unstable between two circule

"marks, i.e., A (t =t = 104.5) and B (for = = 113.2). When the tem-

perature rises from the unstrained state of the plate, the branching
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Fig. 3 Relations between the temperature rise and the maximum value of
the axisymmetric deflection: ¥ = 0.5, p =0 ~ 104

of the asymmetric equilibrium state with N = 4 from the axisym-
metric one occur at the point A. If the axisymmetric equilibrium state
were realized at a temperature rise beyond the point B, the branching
of the asymmetric equilibrium state with N = 4 from the axisym-
metric one will take place at the point B, during a fall in tempera-
ture.

Fig. 3 shows the relations between the temperature rise and the

Journal of Applied Mechanics
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Fig. 5 Instability regions for the axisymmetric deformation: v = 0.5

maximum value of the axisymmetric deformation for various values
of pressure. Detailed results for the cases when p is less than 50 are
shown in Fig. 4. In these figures, small circles, triangles, squares, and
so on, denote the branching points, while broken lines correspond to
the unstable axisymmetric equilibrium states in which the square of
some natural frequencies becomes negative. The points A and B in
Fig. 4 indicate the location of the corresponding points in Fig. 2, re-
spectively. The bifurcation buckling with the indicated wave number
N may occur at the branching points corresponding to ends of the
broken lines. The following may be observed from these figures. The
asymmetric bifurcation buckling of the annular plate without lateral
pressure oceurs at the point E with £%; = 103.4 and N = 4. For the
annular plate under f < 44.40, the axisymmetric deformation be-
comes unstable near %,. When the temperature rise becomes higher
than 7.2 £.,9, the bifurcation buckling with N = 9 occurs and the axi-
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symmetric deformation becomes unstable. From the results stated
in the foregoing, the relation between the temperature rise and
pressure destabilizing the axisymmetric deformation is determined
with the results as illustrated in Figs. 5. Fig. 5(a) shows a part of Fig.
5(b) after magnification. In these figures, the shaded ranges show the
combined loads destabilizing the axisymmetric deformation. The
points 4, B, C, D, and E indicate the location of the corresponding
points in the foregoing figures, respectively. From these figures, the
following observations may be made for the annular plate here con-
sidered. The instability region near %, exists only for the plate under
pressure less than 44.40. The temperature rise Z.. which gives rise to
the bifurcation buckling jumps up to 7.2 t%;, and then gradually in-
creases with pressure.

Figs. 6 and 7 show the distributions of (a) the axisymmetric de-
flection, (b) the axisymmetric radial and circumferential stress re-
sultants, Nyp and Ngo, just before bifurcation buckling, and (¢) the
buckling deflection for the plates under p = 30 and those underp =
5000 and 0, respectively. In these figures, x = 0.5 and 1 in the abscissa
correspond to the inner and outer edges of the annular plate, while

NO, stands for the axisymmetric compressive radial stress resultant”

at the buckling temperature rise t%; of the heated annular plate
without lateral pressure, Moreover, the cases A, B, C, and D indicate
the states of the corresponding points in the foregoing figures, re-
spectively. It is to be noted that for the heated plate without lateral
pressure, N0 is equal to the circumferential stress resultant N%g at
buckling, as the plate is in a state of uniform compression. It will be
seen from Fig. 6(b) that the circumferential compressive stress re-
sultant Nyp becomes larger than the radial stress resultant Ny, as the
buckling temperature rise t; increases from A to B. From Fig. 7(b),
this tendency will be seen to be especially marked in the case with high

pressure. From Fig. 6(c), it will be observed that both buckling de- ’

flections at the points A (f¢ = 104.5, N = 4) and B (ter=11329,N =
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Fig. 7 Distributions of (a) axisymmetric detlection, (b) axisymmetric radial
and hoop stress resultants just before buckling, and (¢) bifurcation buckling
deflection, C (p = 0, t., = 740.4), D (p = 5000, ., = 806.6)

4) almost agree with that of the point E (t%, = 103.4, N = 4). Fig. 7(c)
indicates that the buckling deflections at the points C (¢, = 7404, N
=9) and D (t, = 806.6, N = 9) almost agree, and have many waves
in the circumferential direction and two half waves in the radial di-
rection. Judging from these figures the bifurcation buckling for the
plate under high pressure appears to be caused by the large circum-
ferential stress.

Conclusions

The elastic instability of a uniformly heated circular annular plate
under lateral pressure is studied by examining the linear free vibration
in the vicinity of the finite axisymmetric equilibrium state. Main re-
sults obtained through the calculations for the radius ratio y = 0.5
are summarized as follows:

1 The combination of the temperature rise and lateral pressure
destabilizing the axisymmetric deformation of the annular plate exists
always for the higher temperature than 7.2 times the buckling one %,
of the annular plate without lateral pressure.

2 The bifurcation buckling due to the higher temperature rise
than 7.2 t%,, is caused by the large hoop stress and has many cir-
cumferential waves. This buckling temperature rise t.; increases with
pressure.

3 Besides the forestated one, the annular plate under very small
pressure gives rise to the buckling with a few circumferential waves
due to the temperature rise near 0.
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a geometric nonlinearity, which is encountered in many practical engineering applica-
tions. An exact solution was derived for the steady-state motion of a viscously damped

Bernoulli-Euler beam with an unsymmetric geometric nonlinearity, under the action of
harmonic excitation. Experimental measurements of a mechanical model under harmonic
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1 Introduction

The problem of forced vibration of a dynamic system with mo-
tion-limiting stops is of great importance in many practical engi-
neering applications. For example, this problem is encountered in such
cases as

1 The effect of gapped supports on the response of piping systems
in nuclear power plants subjected to postulated rupture condi-
tions.

2 The vibration of mechanical equipment possessing dead space
nonlinearities.

3 The vibration isolation of dynamic systems mounted on resilient
supports with motion-limiting stops.

Several investigators have conducted numerous analytical, nu-
merical, and experimental studies of dynamic systems with geometric
nonlinearities and, in some cases, with material nonlinearities {see,
for example [1-10]). However, closed-form solutions are lacking,
particularly for nonlinear continuous systems.

For better determination of the dynamic response of real nonlinear
structural systems, this study is concerned with the “exact” solution
for the steady-state motion of a harmonically excited, viscously
damped Bernoulli-Euler beam with an unsymmetrical geometric
nonlinearity located at an arbitrary point along its span.

The formulation of the problem and the solution algorithm are
presented in Section 2; the experimental studies that were conducted
are given in Section 3; and the application of the analytical results to
investigate the effects of various system parameters is discussed in
Section 4.
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as well as random excitation verified the analytical findings. The effect of various dimen-
sionless parameters on the system response was determined.

2 Analytical Studies

Formulation. The model of the system under consideration is
shown in Fig. 1. It consists of a viscously damped continuous Ber-
noulli-Euler beam of mass M(x) and stiffness EI{x) which is separated
by a gap d from an elastic stop located at a distance A from the beam
support point. The elastic stop has a stiffness K;. Although Fig. 1
shows a cantilever beam, the method of solution is applicable to beams
with arbitrary boundary conditions.

The motion of the system in Fig. 1 is governed by the partial dif-
ferential equation

Wix, t)

0 02
L*[W(x, t)] + o ClW(x, )] + M(x) 52 =F(x, t) (1)

over the length L of the beam, where

L* = a linear, homogeneous, self-adjoint differential operator
of order 2p with respect to spatial coordinate x that
specifies the stiffness distribution of the beam.

C = an operator that is a linear combination of operator L*
and function M, viz.,

C=aM + SL* (2)

M = a function that specifies the mass distribution of the
beam.

F(x, t) is a harmonically varying load equal to
F(x) cos wt 3)
with
F(x) = Q2SoM(x) 4)

for base excitation.

Steady-State Solution. Experimental studies of the system under
consideration indicate that the predominant type of response under
harmonic excitation is that in which the beam contacts the elastic
stop, and the conditions of the system are repeated, once per cycle,
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of the excitation. A typical segment of the time-history of such
steady-state motion during one period of the excitation is illustrated
in Fig. 2.

The steady-state solution of the system shown in Fig. 1(a) consists
of two segments corresponding to W®(h, t) < d, i.e., when there is
no contact between the beam and the elastic stop (the spring), and
W@(h, t) = d, i.e., the solution region in which the beam and the
elastic stop are in contact (see Figs. 1(b, ¢)). The solution should
satisfy certain conditions of continuity of the displacement and ve-
locity of the system at times of release and contact for one cycle. These
conditions may be stated as follows:

(@) Everywhere along the beam, the displacement WD (x, ag) and
velocity W®(x, ovg) at the end of the first region of solution (the no-
contact solution region) should be equal to the corresponding dis-
placement and velocity, respectively, at the beginning of the second
solution region. ‘

(b) Everywhere along the beam, the displacement W®(x, «1) and
velocity W (x, «r;) at the beginning of the first solution region should
equal the displacement W®(x, a3) and velocity W2 (x, a3), respec-
tively, at the end of the second solution region (contact region).

(¢) At the point of contact between the beam and the elastic stop,
the displacements W(h, a;), WO(h, ag), WO(h, as), and Wk,
a3) at the beginning and the end of both solution regions should be
‘equal to the gap d.

Thus the steady-state solution must satisfy the following condi-
tions:

WD(x, ag) = WO(x, ag) = Wa(x) (5)
WD (x, ) = W(x, ag) = Walar) {6)
WO(x, ag) = W(x, ay) = Wi(x) (7)
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Fig. 2 Ranges of motion of the steady-state solution
W(x, ag) = WD(x, a1) = Wilx) ®
Wz, a3) [2=p = WO(x, ar) [z=p = Wilh) =d (9)

WO(x, ag) [z=n = W(x, @s) |x=p = Wah) =d (10)

Solution Procedure. Referring to Fig. 2, let ¢;)(x) be the ith
eigenfunction associated with the homogeneous equation of the un-
damped system for the jth solution region and assume that the
eigenfunctions satisfy the orthogonality condition

I ¥ M) D) = 5:5M;0) (11)

and
L
S 6L, V@ = 810 (12)

where ;5 is the Kronecker delta, and M; V) and K; V) are, respectively,
the generalized mass and generalized stiffness of the ith mode for
solution region j.
Using the normal-mode approach, the solution for region j can be
written as
Wi, t) = ¥ ¢:;V(x)q: V() (13)
i=1

where j = 1 or 2, depending on the solution region.
Then, substituting for W0)(x, t) into equation (1) leads to

M;9q;0(¢) + C;0g; V() + K; Dg; D(t) = QD)
- [ S won U)(x)dx] cos (@ + ag) (14)

where « is a phase angle related to the origin ¢t by ag = Qto.
The solution of equation (14) is

q: V() = exp

Y
) (2t — «j)
. L, g
O ) i— &) gin —— —
X(Qz (a,)lm(j)[i', smri(j)(Qt )
, ni(j) .
+ 7@ COS—(J.)‘(Qt - aj}{i + ¢: D(ay)
r
. ()
Wi
X {wi(j)‘ni(i) sin 7 Qe a,)}

0 B
in 0 D 4= () gy —— R
+ sin 6; {mw ri smr 5 (@2t — o)

i

(15)
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Ao -
A 2 e G) qiy — oy
+ cos f; { 0 [{, sin ) (Qt — o)

(15)

. U)
e — ) ) ;0
+ ;¥ cos o) (Q¢ a,)”) + A; 0 cos (2t + ;) (Cont.)

where
0= VEO/MT, §O=C0/2vK0M0
10 =VI-T0E r?=Qq/w?
A9 = (DKM A = TROP2 + (zfib)ri())p

0= [ 60@0 @

70 = ap = v; 0,
79 = tan™! 260 /(1 - [r; ]}

subject to the conditions oj < Ot < wjy1 where qy = 0,6, = 7,0)
+ «; and aj = Qt;, g = unknown to be determined, oz = 2.
The velocity of the system is given by

()
¢:9(t) = exp [— % (Qt - aj)]

ri

. W g
X <qi(1)(01j) {—ﬁsm%(ﬂt - ozj)}
1 13

+ () [— —1—[;-0) sin T2 (@t — o)
R UV i ) /

0) cos 1.
=7V cos — (Qt — o)
)
A w0 DA )
+Sin0i0)["";f_1‘— &Y sinﬂtf—
;@) r )

oW
X (Qt - a_,') — 17,‘0) cos —— (Qt ~ aj)
M DAD )
)Y il B | Ry P
+ cos 0; [7)'0) Smri(f)(m a,)})

i
~QA4;Dgin (Qt + ;D) (16)
subject to the condition
o < Qt < @41,

Evaluating equations (15) and (16) at Ot = a4 yields
q:Najr1) = S, Vg V(ay) + 82;V; D(ey) + 85;0) sin §; )

+ 86,9 cos 6; ) + S7;0) cos (ajy1 + ;) (17)
and
G: N aje1) = 83;Vq; V) + 84;Vg; (rj) + 58; ) sin ;P

+ 89;0 cos 6; ) + §10; V) sin (aj41 + 7))  (18)

where all the undefined symbols are related to the parameters in
equation (15).
The solution for j = 1 is subject to the condition

(443 < Qt = g (19)
and the solution for j = 2 is subject to the condition
o < U < g, (20)

. Initially, the unknowns of the motion are W1(x), Wa(x), W1(x),
Walx), o, and az. With some effort (see Appendix), the use of the
orthogonality conditions in equations (11) and (12), together with the
steady-state conditions as expressed by equations (5)-(10) and with
equations (17) and (18), will eventually lead to a set of two coupled
nonlinear algebraic equations of the form

gilao, ag) = 0 (21a)
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Fig. 4 Steady-state excitation and forced nonlinear response of beam/target
system; (/27 = 30.4 Hz

galowg, atg) =0 (21b)

that involve only the two unknowns o and ag. .

Once the system properties are specified, equations (21) can be
solved by conventional numerical techniques to yield the values of
g and as. The rest of the unknowns of the motion can then be found
by back substitution.

3 Experimental Studies

The model shown in Fig. 3 was used to investigate the range of va-
lidity of the analytical results, and to evaluate the effects of system
parameters. The striker and target beams were made from sheets of
mild steel. In addition to a number of strain gages that were mounted
on the beams, several vibration pickups were attached to the test
fixtures and the vibration exciter (which furnished base motion) to
monitor the system response.

Vibration Test Procedure. In a typical test, the gap clearance
d was set to a specific value, the shaker base amplitude level Sy was

selected, and the shaker frequency was set to a given frequency value

. The excitation and the system response were then measured and
recorded. Measurements were made of the following quantities:

Transactions of the ASME
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S@) = sinusoidal base acceleration = —Q2S; sin Qt.

Wi(x, t) = displacement at chosen stations along the beam.

W(x, t) = velocity at chosen stations along the beam.

e1(x, t) = striker beam strain at the chosen stations.

e2(x, t) = target beam strain at a station chosen along the
target beam.

The excitation frequency ! was then increased to some value Q;
and the same response parameters were measured and recorded again.
Due to the nonlinearity of the system parameters, the response was
determined for both increasing and decreasing excitation frequency
values that spanned a range of +50 percent with respect to ws, the
fundamental frequency of the striker beam.

Sample time histories of representative response quantities are
shown in Fig. 4. The striker beam displacement was measured with
an optical displacement follower, and the corresponding velocity was
found by integrating the beam acceleration.

Reduced Vibration Data. The data discussed in the section,
“Vibration Test Procedure,” were reduced to a more meaningful form
by introducing the following dimensionless ratios:

Q/wn = excitation frequency ratio = exciting fre-
quency/natural frequency of striker beam.
= clearance ratio = size of gap between striker and

d/Se

target beam/amplitude of a sinusoidal base mo-

tion.

= gtiffness ratio = target beam stiffness/striker
beam stiffness = K*.

= amplification ratio = peak S-S amplitude of
striker beam/amplitude of sinusoidal base mo-
tion.

¢ = ratio of critical damping corresponding to the first

mode

K./K,

Wmﬂx/ S 0

Typical frequency response results are shown in Fig. 5.

4 Applications

Cantilever Beam With a Stop. In order to apply the present
theory to a specific beam/stopper system, the striker beam mode
shapes in both ranges of the motion must be determined. Consider,
for example, a cantilever beam with an elastic stop at its free end (i.e.,
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Fig. 8 Construction of a typical solution

h/L = 1in Fig. 1). The modal frequencies and shapes of the beam in
the unconstrained range of the motion (range 1 in Fig. 2) are readily
available in standard vibration books. In the range of motion where
the beam and stopper are connected, the natural frequencies and
mode shapes can be found by using a procedure similar to thatin [11,
12].

The damping parameters « and 3 can be related to the frequencies
and ratios of critical damping of two modes m and n by [13]

@ =(2{n ~ Bom)on (22)

and
B =2(nwn — {mamHwn?~ wn?).

In the present study, the values of « and § were determined from
equations (22) and (23) so as to make {3 and {; the damping ratios of
the first two modes of vibration of the unconstrained region of solu-
tion, equal to {o = constant. The damping ratio {; ¥) for each mode of
both solution regions is then determined by the following equa-
tion:

23)

o

D =05 i BwiU)] (24)

wj

Steady-State Response. Typical time histories of the steady-
state solutions for an arbitrary set of parameters are illustrated in Fig.
6, where the displacement W(x, t), the velocity W(x, t), and the cur-
vature W”(x, t) at different stations along the striker beam length
are shown for one period of the excitation. For this case the dimen-
sionless stiffness ratio is K* = 1, the dimensionless gap size is d/Sp
= 2.5, the ratio of critical damping in the first two modes is {G = 0.05,
and the harmonic excitation has a frequency of 0.8 of the fundamental
frequency of the striker beam. Five modes were used in the calcula-
tions.

The contribution of the higher modes to the response is clear in all
the time histories shown in Fig. 6, as was the case in the experimental
results shown in Fig. 4. Note also that the qualitative behavior of the
beam response agrees with reality:

1 The stress (curvature) is zero at the free end and increases as
x/L approaches zero, the beam’s fixed boundary.
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Fig.7 Maximum positive peak response tor { = 0.05, 0.10; clearance ratio
d/Se = 1.5, 2.5; K* = 5, 10, 20

2 The ratios of the peak response at different locations along the
beam approximately correspond to the same ratios associated with
the first modes.

. 3 The major contribution from the higher harmonics (more sig-
nificant in the case of velocity and stress) is due to the second heam
mode which for the present example is wg/w; ~ 6/1.

Additional qualitative features of interest in the results shown in
Fig. 6 are that

1 The beam conditions at ¢ = 0 match those at the end of a
period Qt = 2w, as required by the steady-state solution.

2 The transients induced by the contact with the elastic stop start
to decay at Q¢ = 0 upon the separation of the beam and its target, thus
attenuating (at an exponential rate determined by (o) the contribution
of the higher harmonics to a negligible amount within a period of
~(0.75 T1.

3 'The sharpest velocity change occurs at the contact point.

4 The amount of penetration (W(L, t) — d) during contact at x/L
= 1, as well as the duration of contact, is relatively small.

If the striker and target beams are of comparable stiffness (i.e., K*
= 1), a more reasonable analytical model would treat both striker and
target as beams.

In a comparison of theoretical and experimental results shown in
Fig. 5, note the qualitative difference in the response of the system
with increasing and decreasing excitation frequency. Keeping in mind
that the beam/target system is essentially a nonlinear system with
hardening restoring force characteristics, one would expect such a
system to exhibit “jump” phenomena associated with the “backbone
curve” related to the frequency response of the nonlinear Duffing
oscillator [14]. Moreover, it is known that the amplitude-frequency
relationship of the Duffing oscillator will result in a backbone curve
that tends to “rotate” clockwise as the nonlinearity of a hardening
system is increased, thus shifting the jump point associated with in-
creasing excitation frequency to a higher frequency value. These
observations apply, in a qualitative sense, to the amplitude-frequency
curve of the beam/target system.
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Fig. 8 Varlation of dimensionless contact time with frequency ratio; &/ S,
= 2,5; K* = 5, 10, 20; { = 0.5, 0.10

It is seen from Fig. 5 that the peak beam/target response occurs at
a frequency ratio significantly higher than unity; this again is con-
sistent with the behavior of the hardening Duffing oscillator, whose
peak response is known to decrease in amplitude but occur at an
ever-increasing frequency value as the magnitude of the nonlinearity
increases [14].

In Fig. 7 the effects of the dimensionless target stiffness ratio K*,
dimensionless gap size d/So, and beam damping ratio { on the peak
response of the free end of the example cantilever beam are shown
over a relatively wide excitation frequency band. The maximum re-
sponse peaks are markedly affected by the target stiffness and in-
herent striker beam damping, but less by the gap size. The reduction
of the maximum peaks with increasing target stiffness and the shift
in frequency where the peaks occur with increasing K* are indeed
consistent with the behavior expected of such systems for the reasons
just discussed.

Since the system under discussion has an unsymmetric nonlinearity
(a one-sided stop), one would not expect the beam motion to be
symmetric with respect to its equilibrium position. Nonetheless, for
the range of parameters under discussion, the positive peak response
very nearly equals the corresponding negative one at all locations
along the beam. Of course, the main reason for this behavior is that
since the beam displacement is periodically constrained to a certain
amplitude every system period, the “initial conditions” at the end of
the contact period cannot propagate in time (under periodic excita-
tion, a lightly damped dynamic system will require a time ¢/T; >> 1
to reach steady-state values).

Fig. 7 also demonstrates that as K* and the damping ratio increase,
the ability of the elastic stop to reduce peak response decreases; for
example, a fourfold increase of K* from 5 to 20 changes the peak re-
sponse in Fig. 7{a) by the ratio =~ 7/5, or 1.4, Thus, in practical engi-
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Fig. 9 Response of beam model; (a) Harmonic excitation; (b) Random
excitation

neering applications, little additional control of the beam response
can be gained by stiffening the stop beyond a certain level.

Note that if the gap becomes progressively smaller while all other
parameters remain constant, the amount of penetration (Wmax — d)
increases. Penetration also increases if damping is decreased and
excitation levels are increased while gap size remains constant.

The variation of the dimensionless contact time T * with excitation
frequency ratio is shown in Fig. 8. Keeping in mind that cg is a mea-
sure of the fraction of the excitation period during which the beam
is not in contact with the stop, then T.* = 1 — as/(27) is the fraction
of the excitation period during which contact does occur. The curves
in Fig. 8 indicate that T.* varies from 0 for 0.9 2 Q/w; Z 1.5 to about
0.25 (a quarter of an excitation period) at frequency values corre-
sponding to the peaks of Way as shown in Fig. 7. Comparison of the
results shown in Figs. 7 and 8, makes clear that the amount of pene-
tration and duration of contact have similar (nonlinear) dependence
on the other system characteristics.

Referring back to the jump phenomenon shown in Fig. 5, it was
found that the width of the frequency band over which unstable be-
havior occurs is dependent on a number of factors such as gap size,
stiffness ratio, amount of inherent damping, rate of change of the
exciting frequency, etc. This fact has important ramifications for the
behavior of the beam/target system under arbitrary transient exci-
tation, particularly stochastic excitations. Fig. 9 shows the nonlinear
dynamic response of the beam/target system under stationary random
excitation. In addition to the richness of the various response quan-
tities with higher-mode contributions, it is interesting to note that
beam/target impacts persist for a long time even after the excitation
level that induced the-onset of such impacts has dropped to much
lower levels. If the same excitation levels were applied to the linear
system (i.e., without the target), it would not generate a relative beam
motion that exceeds the available gap.

Journal of Applied Mechanics

The relatively simple example studied has some of the basic fea-
tures of nuclear power plant piping systems with snubbers. Based on
the analytical and experimental results shown here, it is clear that
caution should be exercised in analyzing nonlinear systems of the type
previously discussed. This is particularly true where repetitive im-
pact-induced stresses are a concern, such as in cases where low-cycle
fatigue is significant.

Regarding the “exact” solution in this paper, it is worth noting that
in nonlinear systems periodic forcing inputs do not always lead to
periodic solutions. One case in point is the class of strange attractor
solutions [15-17] that have been found recently in both theoretical
and experimental studies in which nonperiodic, bounded, chaotic
motions can occur under periodic excitation. Ueda [15], for example,
has found such solutions for a single equilibrium point system with
strong nonlinearity.

5 Summary and Conclusions

An “exact” closed-form analytical solution for the steady-state
motion of a viscously damped Bernoulli-Euler beam with an un-
symmetric geometric nonlinearity was derived using a modified
normal mode approach. The elastic beam was assumed to have uni-
form properties and arbitrary boundary conditions, and was subjected
to a harmonic excitation. The geometric nonlinearity consisted of an
elastic spring placed at some arbitrary location within the span of the
beam and separated from the beam by a certain gap.

Experimental studies with a mechanical model were performed to
verify the validity of the analytical solution and also to investigate
the effect of system parameters under both harmonic and random
excitation. A fairly good agreement between the theoretical and ex-
perimental results was achieved.

The effects of various dimensionless system parameters (such as
excitation frequency, damping, target stiffness ratio, and gap size)
on the system displacement, velocity, and stress at various locations
along the beam were investigated and found to be significant.

Acknowledgment

This study was supported in part by a contract from the U.S. Nu-
clear Regulatory Commission. The assistance of D. Oba in the prep-
aration of the manuscript is appreciated.

References

1 Den Hartog, J. P., and Heiles, R. M., “Forced Vibrations With Nonlinear
Spring Constants,” ASME JOURNAL OF APPLIED MECHANICS, Vol 3, 1936,
pp. 127-130.

2 Lee, W.F. Z, and Saibel, E., “Free Vibrations of Constrained Beams,”
ASME JOURNAL OF APPLIED MECHANICS, Vol. 19, 1952,

3 Iwan, W. D., “Steady-State Dynamic Response of a Limited Slip Sys-
tem,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 35, 1968, pp. 322
326.

4  Watanabe, T., “Forced Vibration of Continuous Systems With Nonlinear
Boundary Conditions,” ASME Journal of Mechanical Design, Vol. 100, No.
3, July 1978, pp. 487-491.

5 Moreadith, F. L., et al., “Structural Analysis and Design of Pipe Whip
Restraints,” Structural Deszgn of Nuclear Power Plants, Vol. 2, ASCE, Dec.
1973.

6 Anderson, J. C., and Singh, A. K., “Inelastic Response of Nuclear Piping
Subjected to Rupture Forces,” ASME Journal of Pressure Vessel Technology,
Vol. 98, No. 2, May 1976.

7 Kotwicki, P. J., Chang, K. C,, and Johnson, E. R., “Effects of Restraint
Stiffness and Gap on the Dynamic Response of Piping Systems,” Third U.S.
National Congress on Pressure Vessels and Piping, ASME, San Francisco, June
25-29, 1979.

8 Onesto, A. T., “A Snubber Response Sensitivity Study,” Third U.S,
National Congress on Pressure Vessels and Piping, ASME, San Francisco, June
25-29, 1979.

9 Graham, D., and McRuer, D., Analysis of Nonlinear Control Systems,
Wiley, New York, 1961,

10 Tseng, W. Y., and Dugungi, J., “Nonlinear Vibrations of a Buckled Beam
Under Harmonic Excitation,” ASME JOURNAL OF APPLIED MECHANICS, Vol.
38, June 1971, pp. 467-476.

11 * Young, D., “Vibration of a Beam With Concentrated Mass, Spring, and
Dashpot,” ASME JOURNAL OF APPLIED MECHANICS, Vol. 70, Mar. 1948, pp.
65-72.

12 Gorman, D. J., Free Vibration Analysis of Beams and Shafts, Wiley,
New York, 1975.

13 Rosenblueth, E., and Newmark, N., Fundementals of Earthquake
Engineering, Prentice-Hall, Englewood Cliffs, N.J., 1971.

JUNE 1981, VOL. 48 / 409

Downloaded 01 May 2010 to 171.66.16.249. Redistribution subject to ASME license or copyright; see http://www.asme.org/terms/Terms_Use.cfm



14 Caughey, T. K., “The Existence and Stability of Ultraharmonics and
Subharmonics in Forced Nonlinear Oscillations,” ASME JOURNAL OF APPLIED
MECHANICS, Vol. 21, Dec. 1954, pp. 327-335.

15 Ueda, Y., “Randomly Transitional Phenomena in the System Governed
by Duffing’s Equation,” Journal of Statistical Physics, Vol. 20, No. 2, 1979,
pp. 181-196.

16 Holmes, P. J., “A Nonlinear Oscillator With a Strange Attractor,”
Philosophical Transactions of the Royal Society, London, Vol. 292, No. 1394,
Oct. 1979, pp. 419-448.

17 Moon, F. C., and Holmes, P. J., “A Magnetoelastic Strange Attractor,”
Journal of Sound and Vibration, Vol. 65(2), 1979, pp. 275-296.

APPENDIX

Derivation of Equations (21)
Multiplying both sides of equations (17) and (18) by ¢;¥)(x) and
summing over { with j = 1, 2 yields the following:

2 ¢i () 181 Wgir + 52,V
i

+ 85, gin 6,1 + S6,V cos §;V

+ 87 cos (az + 7: M)} = Walx) = L ¢:P(x)qiz  (25)
3 ¢ D(x) {S3;Vgin + S4; Vg l
13
+ 88; (W gin ;D 4 S9; M cos ;1)
+810;V sin (az + 7, W)} = Walx) = T ;P (x)giz  (26)
1

¥ :@(x) [S1,Pg;p + 52, @q;o

13

+ 85;@ gin ;@ + 86;( cos §; @

+87:® cos (a3 + 7)) = Wi(x) = T 6:V(x)gin  (27)

> ¢; @ (x) {S3,@q;5 + S4; ;o + S8, gin ;2 + §9;® cos §;2

13

+810;® sin (a3 + 7)) = Wi(x) = £ ¢ V(x)din  (28)

where
gi1 = q; Pon) (29)
giz = i P{a) (30)
dis = ¢;Pewy) (31)
iz = §: Perz) (32)

Using equations (13), (17), and (18), together with equations (9) and
(10), yields

T 6:@D(h)q;i Pas) = T 6:@(h) {S1;Pq;5
i i

+ S82; mq}z + 85;@ gin 6;® + 56, cos ;@
+ 87 @ cos (g + 7@ =d (33)

T ¢iO(h)gi V(aa) = T ¢ P(h) {S1; g,
13 13
+ 82;Wg;; + S5;W sin §; 0

+ 86, cos §; M + S7;V cos (g + ;D)) =d  (34)

Using equation (26), together with the orthogonality condition of
equations (11) and (12), yields

3 [Cllmqm1 + C24nGm1 + C3ypy sin 0m(1)

m

Gy = M®
+ Cdipm, €08 0, D + C5y, sin (ag + 7, V)] (85)

Similarly, equation (25) yields
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¥ [C6ugir + CTugin + C8y; sin 6; D + C9y; cos 6; )

i

95 = M®
+ C10; cos (az + ;M (36)

Substituting for ¢, and g, from equations (35) and (36) into equa-
tions (27)-(32) yields

Z [hqujl + h2j¢j1 + h3; sin 0,'(1)

j
+ h4; cos §;D + h5; cos (ag + 7;V)
+ h6; sin (ag + 7;9) + h7; sin 0;® + h8; cos ;P

+h9j cos (a3 + 7;)]) = L ¢;D(x)gin = Wilx)  (37)

S [h10pgp1 + R11pgp1 + h12p sin 8,V + R13, cos 6,V
o

+ h14, cos (ag + 7, D) + h15, sin (a2 + 7,0)
+ h16, sin 6, + h17, cos 8,® + h18,, sin (ag + 7,M)]

=T ¢pD(x)gp1 = Wilz) (38)
14
and
S [h19pqr: + h20kgn1 + h21, sin 8,V + h22; cos 6,V
k

+ h23p, cos (e + 71, V) + h24,, sin (g + 7, V)
+ h25; sin 0, @ + h26; cos 0, @ + h27, cos (a3 + 7 P)] =d
(39)

Also, equation (33) can be written as

Y [h28;q;1 + h29;qiy + h30; sin 6;(V
7
+ h31; cos 6; D + h32; cos (ag + ;M) =d  (40)
From the definition of 7;9) and §;,
6:; 9 = ap + (aj — v; V). (41)

Making use of trigonometric identities to express sin and cos of §; )
in terms of op and «;, then equations (37)-(40) become

¥ [h1igji + h2;¢j1 + h50; sin «
j

+ hblp cos o) = X ¢, D(x)gjn  (42)
J
3 [h10,gp1 + AllpGp + h52, sin ap
p
+ h53p cos ao] = T ¢pD(x)gpy  (48)
p
h19%qp1 + h20xqgs1 + h60, sin g + h61g cos ag = d (44)
h28,qi1 + h29;qiz + h62; sin ag + h63; cos g =d  (45)

The orthogonality conditions of equations (11) and (12) can be
further used with equations (42) and (43) to yield

qn = Z [H1;q;1 + H2jj¢;1 + H3jj sin ag + H4yj cos ag) (46)
J

m1 =2 [H5ppdp1 + Hbmpgp1 + HTpp sin ag + H8pp cos ag)
P

47

Note that equations (44)-(47) provide four equations through which
the unknowns ¢;1, ¢i1, &g, and «g can be determined.

The various undefined coefficients are omitted for the sake of
brevity. In general, they are algebraic expressions involving the system
parameters.
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A method for analyzing the earthquake response of deformable, cylindrical liquid storage
tanks is presented. The method is based on superposition of the free lateral vibrational
modes obtained by a finite-element approach and a boundary solution technique. The
accuracy of such modes has been confirmed by vibration tests of full-scale tanks. Special
attention is given to the cos §-type modes for which there is a single cosine wave of deflec-
tion in the circumferential direction. The response of deformable tanks to known ground
motions is then compared with that of similar rigid tanks to assess the influence of wall
flexibility on their seismic behavior. In addition, detailed numerical examples are pre-
sented to illustrate the variation of the seismic response of two different classes of tanks,
namely, “tall” and “broad” tanks. Finally, the significance of the cos nf-type modes in
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the earthquake response analysis of irregular tanks is briefly discussed.

Introduction

The only special feature of the earthquake-response problem,
compared with any other form of dynamic loading, is that the exci-
tation is applied in the form of support motions rather than by ex-
ternal loads; thus the essential subject of the present discussion is the
method of defining for the tank wall the effective external load history
resulting from a given form of support motion.

The hydrodynamic fluid pressure exerted on the wall of a de-
formable tank due to a ground motion G(¢) is given by the super-
position of four pressure components:

p1 = the long period component contributed by the “convec-
tive” fluid motion (sloshing).

p2 = the “impulsive” fluid pressure component which varies in
synchronism with the horizontal ground acceleration.

p3 = the short period component contributed by the cos f-type
vibrations of the tank walls.

pa = the contributions of the cos nf-type vibrations (n = 2) of
the tank walls.

Each of these four pressures has a different variation with time.

It has been shown [1] that the coupling between liquid sloshing
modes and shell vibrational modes is weak; and consequently, the
convective dynamic pressure can be evaluated with reasonable ac-
curacy by considering the tank wall to be rigid. It is the purpose of this
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paper to evaluate the hydrodynamic pressure components ps and ps;
to develop the effective earthquake load by employing the expression
of the work done by external loads through arbitrary virtual dis-
placements; and to obtain the time histories of shell displacements
and stresses.

Coordinate System and Fundamental Assumptions

The liquid-shell system under consideration is shown in Fig. 1. Tt
is a ground-supported, circular cylindrical, thin-walled liquid con-
tainer of radius R, length L, and thickness h, with the wall connected
to a rigid base. The tank is partly filled with liquid to a height H. If
the tank wall is not connected to a rigid base, the strong earthquake
response will be different.

A cylindrical coordinate system is used with the center of the base
being ‘the origin. The radial, circumferential, and axial coordinates
are denoted r, 6, and z, respectively, and the corresponding dis-
placement components of a point on the shell middle surface are de-
noted by w, v, and u, respectively. The tank is subjected to a ground
motion G(t) in the constant direction of § = 0.

Throughout this investigation, the liquid is assumed to be homo-
geneous, inviscid, and incompressible. In addition, the amplitudes
of vibration are considered to be small. The strain-energy expression
of the shell includes the effects of both stretching and bending. A
detailed analysis of this problem is given in reference [1].

Free Lateral Vibrational Modes

The dynamic characteristics of the liquid-shell system are deter-
mined [2] by means of a discretization scheme in which the elastic shell
is modeled by finite elements (refer to Fig. 2) and the liquid region
is treated as a continuum by boundary solution techniques. In this
approach the number of unknowns is substantially less than in those
analyses where both tank wall and liquid are subdivided into finite
elements.
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Fig. 1 Tank geometry, coordinate system, and earthquake excitation

The extremization of the appropriate variational functional leads,
for each circumferential wave number n, to the following matrix
equation of motion:

Mg} + [Klig} = {0} (1)
where {q} is the nodal displacement vector of the shell, [M] = [M,] +

Nomenclature.

[Mi]; [M;] and [M] being the consistent mass matrix of the shell and
the added mass matrix of the liquid, respectively, and [K] = [K,] +
[Ki]; [K.] and [K] are the shell stiffness matrix and the added stiff-
ness matrix due to the initial hoop stress, respectively.

The resulting eigenvalue problem is solved by means of a digital
computer. A comparison between the computed natural frequencies
and mode shapes with those measured by vibration tests of full-scale
tanks confirms the reliability of the theoretical analysis [3].

Tank Response to Earthquake Excitations
The matrix equation which governs the earthquake response of the
liquid-shell system for a particular value of n can be written as

[M]ig} + [Clig} + [Klig} = {Perd 2

where [M] and [K] are the mass and stiffness matrices defined in
equation (1); [C] is the damping matrix; and {Peg} is the effective

_earthquake load vector resulting from a given ground motion G (¢),

For a perfect circular cylindrical shell, the effective earthquake load
vector takes the form

—{FIG{t) n=1 (refer to equation (22))
lPeff} = {
{0} n#l

and consequently, the earthquake response can be obtained by su-
perposition of the vertical modes corresponding to n = 1 only. Re-
cently, shaking table experiments with aluminum tank models [4, 5]
and vibration tests of full-scale tanks [3] showed that cos nf-type
modes do respond to rigid base excitations; and this is attributed to
noncircular imperfections of the cross section

3)

Cos 0-Type Response to Earthquake Excitations

1 The Effective Force Vector. The total displacement vector
of the shell can be considered as the sum of two components: the rel-
ative displacement vector {d} defined by

u(f,z,t)
v(8,z,t) (4)
w(f,z,t)

{d} =

and the displacement vector {dg} associated with the ground dis-
placement G(t); it can be written as

0
—sin (f)
cos (#)

{dg} = G(t) )

[C] = damping matrix

{d} = relative displacement vector

{d}. = element nodal displacement vector

{dy} = displacement vector associated with
ground motion

e = element number

{F,} = inertia force vector

& = acceleration of gravity

G (t) = ground displacement

h = shell thickness

H = liquid depth

Hg = height of impulsive mass

11 = modified Bessel function

|K] = stiffness matrix

{K,] = shell stiffness matrix

[Ki] = shell stiffness matrix due to static
hoop stress

L = shell length

L. = length of a finite element

m = total mass of liquid

mg = impulsive mass

412 / VOL. 48, JUNE 1981

M pax = maximum impulsive wall moment

{M] = mass matrix '

[M;]} = added mass matrix of liquid

[M,] = consistent mass matrix of shell

n = circumferential wave number

NEH = number of shell elements in contact
with liquid

NEL = number of shell elements along its
length

N, = axial membrane force resultant

Ny = circumferential membrane force resul-
tant

p = hydrodynamic pressure

{Perr] = effective earthquake load vector

{¢} = shell nodal displacement vector

Q(t) = base shear o

[Q*] = modal displacement matrix

r = radial coordinate

R = tank radius

Sq = spectral displacement

t = time

u = shell axial displacement

v = shell circumferential displacement
w = shell radial displacement

W = work done by external loads
z = axial coordinate

B; = modal participation factors
& = variational operator

{; = damping ratios

{n(¢)} = modal amplitude vector
# = circumferential coordinate
o1 = mass density of liquid

ps = mass density of shell

¢ = liquid velocity potential function
wj = circular natural frequency
Subscripts

¢ = an element

! = liquid

max = maximum

s = shell

z = axial direction

f = circumferential direction
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Fig. 2 Finite-element definition diagram

The external forces acting on the shell due to ground motion G(t)
include (i) the distributed inertia force of the shell which is given
by

0
{Fg} = _Pshfdg} = —p.hG(t) { —sin (F)
cos (f)

(6)

and (ii) the hydrodynamic pressure on the wall of a similar rigid tank.
This pressure can be expressed as

PR H2.t) = —m%‘f (RH2.1)

H
f G(t) cos (agx)dx
2pl ® 0

=7 E1 o) Ii{asR) cos (a2) cos (6)
_ 2p0G(8) = (=1)*Us(a;R) )
= I El o Tu(@iR) cos (a;z) cos (6) ()

where ¢ is the velocity potential function associated with the ground
motion G(t); p; is the liquid mass density; /7 is the modified Bessel
function of the first kind of order 1; and «; are constants given by

2 — D)
p = 8
“ 2H (®)

The work done by these external loads during arbitrary virtual
displacements

Suy cos (6)
Sv1 sin (6)

Swy cos (8)

{od} = )

Journai of Applied Mechanics

can be expressed as
L p23
= T
W J; j; (F,)T{6d})Rdbdz

H 2
+ J; j; (pg(R, 6, 2, £) wy cos ()Rddz  (10)

Substituting equations (6), (7), and (9) into equation (10) yields

SW = -G () {pﬂrR ‘I;L h(=6v; + dwy)dz

w H
+ 3 b; ows cos (oz,-z)dz} (11)
i=1 Q

where
b = 27Rpil1(o;R)
' o?H'T(aR)

With the aid of the finite-element model of the shell, the first term
in equation (11) becomes

(1)t (12)

L NEL e
psR j; h(=801 + 6wi)dz = psR S, holdiT1He
e=1
= {6q)T{F}
where NEL is the number of shell elements along the shell length; {d}.

w0,

is the nodal displacement vector of the element “e”’; and the vectors
{fle and {F} are given by

(13)

. Le L Lt LeLe L
¢ = o,——e,-—e,—e-,o,——e,-f,——ﬂ 14
!f}e[2212 2’2 12 (14)
and
— NEL _
fF} = 3 psWRhe{f}e (15)
e=1
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Furthermore, the second term in equation {11) can be expressed
as

® H ® NEH _ _
b owicos(welde = 3 L 00k (6)
i=1 0

i=1 e=1
where NEH is the number of shell elements in contact with the liquid
and {f};. is given by

AL = 10,0, fia, fi4, 0,0, Fizs Fisle (17)
in which
= 1 6 . 12
fis= L, [— (—+ —5) sing;(e — 1) + —, €08 ai{e — 1)
a; a; a;
6 si 12 a
— — sin g;e ~ — cos gze|;
ad " et
= 4 1 6
fia=1L2 [— —sinai(e — 1) - (—2 - —4J cos ai(e — 1)
i i a
2 . i
-~ a—lg sin ;e — a_;i COos a;e|,
= 6 12
fir =L, [—5 sina;(e — 1) — — cos a;{e—1)
a; a;
1 6\ . 12
+ —+—§ sin a,-e+—;cosa,~e N
a;  af al
= 2 2 6
fis=L21— — sin aile - 1) + —; cos ai{e — 1)
a; a;
4 1
——; sing;e + —~ ;] cos aze|;
i ( a
iwL, .
a; = (¢=1,2,..) and e=1,2,...,NEH. (18)
Equation (16) can be expressed more conveniently as
o H @ =
3 b f dw1 cos (qz)dz = 3 bilog}T{F);
i=1 0 i=1
= {6q} T{F} (19)
where
= NEH - = @ =
{F} = Zl {flie and (F]= ‘}:1 b:{F); (20)
e= i=

It is important to note that the infinite series in equation (20) con-
verges very rapidly and only the first few terms are needed for ade-
quate representation of the series.

The virtual work expression can now be written as

W = ~G(e)5q)T(F} + (F}) = =G (6){oq}TIF) (1)
and therefore, the effective earthquake load vector is given by
(Perd = —{FIG(t) (22)

2 Modal Analysis. The matrix equation of motion of the lig-
uid-shell system can be solved directly by numerical integration;
however, in analyzing the earthquake response of linear structures,
it is generally more efficient to use modal superposition to evaluate
the seismic response and to carry out the analysis for only a few nat-
ural modes.

First, the nodal displacement vector of the shell is expressed as

la} = [Qln()

where [Q] is a rectangular matrix of the order N X J which contains
the modal displacement vectors associated with the lowest o natural
frequencies; NV is the number of degrees of freedom (4 X NEL), and
{n(¢)} is the modal amplitude vector.

(23)

Employing the orthogonality conditions of the natural modes, the .

undamped matrix equation of motion can be reduced to J indepen-
dent differential equations for the unknowns »;
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wp+whyy =—;G(t); j=1,2...,d (24)

Introducing damping into equation (24), then one can rewrite such
equations as follows:

W+ 28w+ whyy = =8;G@); j=1,2,...J (25)

For G(t) given by a segmentally linear function, for ¢; < t < ti41,
equation (25) becomes

~  AG; ) 26)

i+ 2800 + whyy = —B; (G,- + ~ @t —t)
where AG; = Giv1 — G and At = t;41 — t; = constant. The solution
of equation (26) at time ¢t = £;4, can be expressed in terms of that at
t =t; by [6]

ﬁﬂ=mmMMMﬂ+wmmmﬁﬂ

Ni+1 i

G;
Giv1
in which the subscript j is omitted for brevity. Therefore, if the modal
amplitude n(t) and its time derivative 7(t) are known at ¢;, then the
complete time history can be computed by a step-by-step application
of equation (27).

3 Numerical Examples. A digital computer program has been
written to compute the earthquake response of partly filled tanks by
the method outlined in the preceding sections. The program obtains
the free vibrational modes, formulates the generalized mass and load
vectors, and computes shell nodal displacements and accelerations
which are used to solve for the shell force and moment resultants, for
the hydrodynamic pressures, and for base shear.

Example (1): A Tall Tank. The computer program is first uti-
lized to estimate the earthquake response of an open top tall tank
whose dimensions are: R = 24 ft (7.32m), L = 72 ft (21.96m), and h
= 1 in. (2.54cm). The tank is assumed to be full of water and to be

] (27
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subjected to the N-S component of the 1940 El Centro earthquake;
only the first 10 sec of the record are employed in the analysis and this
portion is displayed in Fig. 3(a). The modal damping ratios of the
liquid-shell system are assumed to be 2 percent.

The time history of the relative radial component of shell acceler-
ation at the tank top and in the 8 = 0 direction, w(0, 72, t), is shown
in Fig. 3(b) for comparison with the ground acceleration; it is clear that
the relative acceleration is much greater than that of the ground.

The maximum relative displacement of the shell, wmay (0, 72, t),
can be computed approximately using the El Centro response spec-
trum; it is given by

Wnax (0, 72, £) = Sad (28)

where 3 is the earthquake participation factor of the fundamental
mode; Sy is the spectral displacement corresponding to the funda-
mental period; and 5 is the modal amplitude of the radial mode shape
at the top of the tank. Hence, wyax (0, 72, t) = (1.55)(0.295)(1.0) =
0.457 in. (1.16cm) which is in close agreement with the value of 0.445
in. (1.13cm) obtained by time integration of equation (27) and su-
perposition of 4 modes of vibration. This also indicates that the dis-
placement response of the tank is due mainly to the fundamental
mode.

Having obtained the relative displacements of the shell, the force
and moment resultants can be computed. Fig. 4 displays the time
history of the membrane force resultant N, computed at 3 ft (0.92m)
above the base. To compare this stress with that induced in a similar
rigid tank, one can make use of Housner mechanical model [7]. The
elements of such model are given by mg = 0.902m and H, = 0.375H
where m is the total mass of the contained liquid. The impulsive
moment is therefore given by

L
Mpax = (m()HO + m, E)Gmax

=174.78 X 108 1b ft (101.5 X 108 N.m) (29)
which produces axial membrane force resultant
M
(N2)max = %‘ = 3443.8 Ib/in. (603.3 N/m m) (30)
by

It is clear that such force resultant is much lower than that in a flexible
tank. This is due to the fact that the impulsive loads arise through
acceleration of the shell. If the shell is flexible, two acceleration
components must be considered: (I) the acceleration of the unde-
formed shell, i.e., the ground acceleration, and (it) the relative ac-
celeration due to shell deformations. Ina rigid tank, only the accel-
eration of the undeformed shell is considered which introduces the
noticeable difference in the magnitude of shell stresses. To further
clarify this point, consider, for illustration purposes, that the masses
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mg and m, are attached to the tank wall by springs with stiffnesses
that simulate the fundamental natural period of the tank. To estimate
the impulsive moment, one has to employ the spectral acceleration
which is 2.46 time the ground acceleration, and therefore, the maxi-
mum axial membrane force is given by

(N2 )max = 3443.8 X 2.46
= 8471.8 Ib/in. (1484 N/m m)

which is in close agreement with that obtained by a shell analysis.
The maximum value of the membrane force resultant Ny at a dis-

- tance of 6 ft (1.83m) above the base is 2166 Ib/in. (379.5 N/m m). To

compare with that obtained in a similar rigid tank, one has to compute
the hydrodynamic pressure. For a rigid tank, the maximum hydro-
dynamic pressure occurs at the bottom of the container; its value is
given by [7]

pa(R,0,0,t) = @E—G— tanh (ig—}i)

= 4.92 psi (33.9 kPa) (31),

and consequently, the maximum dynamic membrane force resultant
can be computed by

Ny(0,0, t)max = (Pd)max - R
= 1417 Ib/in. (248.3 N/m m)

which is less than that of a flexible tank.

It should be noted that the moment resultants M, and M, in a tall
tank have negligible effect on the extreme fiber stresses of the
shell.

As is known, the impulsive hydrodynamic pressure consists of two
components: one due to ground acceleration and one due to the rel-
ative acceleration of the deformed shell. The maximum value of the
pressure at a distance of 7.2 ft (2.2m) above the base, due to ground
acceleration only, is 3.63 psi (25 kPa) which is less than that obtained
by equation (31); however, it is pointed out in [8] that the Housner
model overestimates the hydrodynamic pressure for this particular
H/R by about 33 percent which indicates a close agreement between
the computed pressure and the “exact” pressure in rigid tanks. The
time history of the additional pressure due to shell deformation at 7.2
ft (2.2m) above the base is shown in Fig. 5. Its maximum value is 1.33
times that due to ground acceleration only; however, the ratio is much
larger at higher elevations. It should be noted that the maximum
amplitudes of these two components of the impulsive hydrodynamic
pressure do not occur, in general, at the same time.

The maximum base shear due to ground motion (Qg(f))max i in
reasonable agreement with that computed for rigid tanks which is
given by

(32)
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Table 1 Impulsive earthquake response of a tall tank
input: N-§ component of the 1940 El Centro earth-
quake

“ Damping
2%a 5% 10%® |Rigid tank
Maximum radial
component of 0.445 0.344 0.296 —
shell
displacement (1.13) (0.87) (0.75)
w(0, 72, t)
in. (cm)
Maximum axial
force resultantf 8375 6473 5564 3444
N,(0,3,¢) (1467) (1134) (974.8) (603.3):
Ib/in. (N/m m)
Maximum
tangential
force resultant 2166 1674 1439 1417
N0, 6,t) (379.5) (293.3) (252.1) (248.3)
Ib/in. (N/m m)
Maximum base
shear 51.08 X 105 [39.47 X 10° [33.94 X 105 27,18 X 10°
Q) (2.27 X 10")}(1.75 X 107)}(1.51 X 107} (1.21 X 107)
1b (N)
@ Computed by time integration.
b Computed by response spectrum.
(Qg)max = (mo + ms)émax
= 27.18 X 1051b (1.21 X 107N) (38)

The slight difference between this value and that of the present
analysis is due to the fact that the Housner model overestimates the
impulsive mass myg for tall tanks. The total impulsive base shear is also
checked by the method presented in [8] where the liquid-shell system
is analyzed using Fliigge shell theory in combination with a Ritz-type
procedure and the natural modes of vibration of uniform cantilever
beams. The analysis gives a value of 52.47 X 10° Ib (2.33 X 107 N)
which is in close agreement with the value of 51.08 X 105 1b (2.27 X
107 N) obtained in the present analysis. It should be noted that the
analysis in [8] is applicable only to uniform shells which are completely
filled with liquid.

The troublesome aspect of analyzing the earthquake response of
storage tanks is to define the appropriate value of damping. It can only
be estimated from earthquake response of real tanks; unfortunately,
seismic response data from tanks during past earthquakes are not
available. Although a modal damping ratio of about 2 percent seems
appropriate for the liquid-shell system, the foundation soil also
dissipates energy which cannot be exactly evaluated. For illustration
purposes, Table 1 presents the maximum values of the response
computed for different values of damping ratio {; it also displays those
in a similar rigid tank for comparison.

Example (2): A Tall Tank (Comparison With Shaking Table
Resulis). To illustrate the effectiveness of the analysis under con-
sideration, the computed earthquake response of an open top tall tank
is compared with that obtained by shaking table tests [5]. The tank
model was made of aluminum; its modulus of elasticity was 10 X 106
psi (6.89 X 107 kPa) and its density was 0.244 X 103 Ib sec?/in.? (2.61
X 103 kg/m3). The model has the following dimensions: R = 3.875 ft
(1.18m), L = 15 ft (4.58m), and h = 0.09 in. (0.23cm) in the lower 10
ft (3.05m) of its length and h = 0.063 in. (0.16 cm) in the upper 5 ft
(1.53m). The tank was partly filled with water to a depth of 13 ft
(3.97m). The input motion was the N-S component of the 1940 El

Centro earthquake; the time history was speeded by a factor of 1.73

and the peak acceleration was increased to 0.5g.
Table 2 presents a comparison between the computed and observed

416 / VOL. 48, JUNE 1981

Table2 Comparison with shaking table tests [5]

Flexible Rigid
(= 2%)° (impulsive
(impulsive only) only) Observed®
Max. radial
component
of shell 0.150 — 0.131
displacement (0.381) (0.333)
w(0, 15, t)
in, {(cm)
Max. axial
force
resultant 418.1 155.3 362.6
N.(0,0.625, t) (73.2) (27.2) (63.5)
Ib/in. (N/m m)
Max. base
ghear 3.90 X 104 1.79 X 104 2.75 X 104
Q) (L74 X 105) | (7.97 X109 | (1.22 X 109)
1b (N)

@ The input motion used in calculation of tank response is not identical to
the actually applied shaking table acceleration.

responses; it also displays the response of a similar rigid tank for
comparison. Inspection of this table indicates that the computed and
the observed responses are much higher than those computed for a
rigid tank. It can also be seen that the seismic response of a flexible
tank computed by the present method is higher than the observed
response in a shaking table test. However, one must keep in mind that
the input acceleration used in the calculation of the response is dif-
ferent from the actually applied acceleration in these tests.

It is found that the input acceleration used in shaking table tests
does not exactly resemble the motion of the 1940 El Centro earth:
quake, especially at the fundamental natural frequency of the model.
For such a frequency, the spectral acceleration of the actually applied
motion is 0.95¢ for a 1 percent damping ratio; however, the spectral
acceleration of the record employed in the calculation of the response
is 1.45g for a 2 percent damping ratio. If one takes into account this
difference in spectral accelerations and modifies accordingly the
observed response, one can achieve a good correlation between the
computed and observed responses. For example, multiplication of the
observed base shear of 2,75 X 10* 1b (1.22 X 10° N) by a factor of
(1.45/0.95) yields a value of 4.19 X 104 Ib (1.86 X 10° N) which is
comparable to a computed value of 3.9 X 104 1b (1.74 X 10° N} (note
that the observed base shear includes both the impulsive and con-
vective components; however, for the problem under consideration;
the convective component is much smaller than the impulsive one):
The modification suggested in the foregoing yields reasonable values
for all response quantities which are proportional to the acceleration;
however, those quantities which are directly proportional to the
spectral displacement are slightly underestimated. This indicates that
the observed fundamental period is higher than the computed period
by about 10 percent.

Example (3): A Broad Tank. The computer program is also used
to estimate the earthquake response of an open top, fixed base, broad
tank whose dimensions are: R = 60 ft (18.3m), L = 40 ft (12.2m) and
h = 1in. (2.54cm). The tank is assumed to be full of water and be
subjected to the N-S component of the 1940 El Centro earthquake:

The time history of the radial component of shell acceleration at
mid-height, (0, 20, t), is shown in Fig. 6; it should be noted that the
maximum amplitude of the radial component of shell acceleration
occurs near the bottom of the tank not at the top as in tall tanks as
shown in Fig. 7.

The axial membrane force resultant N, at a distance of 1.67 ft
(0.51m) above the base is 1085 Ib/in. (190 N/m m). The parameters
of the Housner mechanical model are given by mo = 0.38 m, Ho =
0.375 H; and therefore, the impulsive moment is
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L.
Miax = (mOHO + ms E)Gmax

= 60.53 X 108 1b ft (82.15 X 10% N.m)

and the corresponding axial membrane force resultant is 446 1b/in.
(78.1 N/m m) which is much lower than that in a flexible tank. It
should be noted that the computed dynamic moment resultants (M,
and M) in fixed-base broad tanks are very high; however, in a real
tank the wall is not rigidly “built in” at the base and this reduces local
bending stresses significantly. Therefore, only the membrane stresses
in a broad flexible tank are compared to those of a similar rigid
tank.

The normalized hydrodynamic pressure distributions py and p,,
due to ground motion and due to shell deformation, respectively, are
plotted separately in Fig. 8; it can be seen that the pressure component
Pw has an axial distribution similar to that of p, which is in contrast
to the pressure distribution in a tall tank. It should be also noted that
the maximum amplitude of p,, is much higher than that of p;. For
example, p,y(0, 4, t)max is 9.53 psi (65.66 kPa) while pg(0, 4, t)max is
4.92 psi (33.9 kPa).

Cos n0-Type Response to Earthquake Excitations

In a perfect circular tank, cos nf-type modes cannot be excited by
rigid base motion; however, fabrication tolerances in civil engineering
tanks permit a departure from a nominal circular cross section and
this tends to excite these modes.

Little can be found in the literature about the importance of the
cos nf-type modes in an earthquake response analysis. Veletsos and
Turner [9] carried out an approximate investigation of the seismic
response of an out-of-round tank. They computed the hydrodynamic
pressure in an irregular rigid tank and applied it to a flexible tank. It
should be noted, however, that the hydrodynamic pressures in a
flexible tank may differ significantly than those of a rigid tank. An
analysis of the effect of irregularity of the circular cross sections of
flexible tanks can be found in [1] and will not be presented herein. The
fact remains that the magnitude and distribution of fabrication error
cannot be predicted, and consequently, only a hypothetical analysis
can be made. It is also of interest to note that a recent experimental
study [10] showed that buckling of full tank models depends largely
on the stresses associated with the cos #-type modes.

Conclusion

In view of the results of the study, one can conclude that the flexi-
bility of tank walls that are anchored to a rigid base has a significant
effect on the seismic response of both tall and broad tanks. These
dynamic stresses are much greater than those computed assuming
rigid walls. :
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Acceleration of Unbalanced Rotor
Through the Resonance of
Supporting Structure

The dynamic response of a simple beam excited at its midspan by the action of a turboma-
chine secured to it, is investigated in detail. The forcing function includes transients at

startup or shutdown. Effects of the shear deformation, rotatory inertia, and the internal
viscous damping, which may depend on the frequency, are considered individually as well
as in combined forms. The results indicate that the maximum amplitude of vibration is
highly dependent on the acceleration rate through the critical frequency. There is also
an apparent shift in its position as compared to the classical resonance frequency. Influ-
ences of shear deformation and rotatory inertia are significant when the supporting struc-
ture (or foundation) is relatively massive.

Introduction

The response of a simple system when subjected to a force of
time-dependent frequency has been investigated in the past [1-6].
However, extension of these studies to systems with several degrees
of freedom becomes extremely complicated. Furthermore, the effect
of shear deformation and rotatory inertia has generally been neglected
in the previous studies. In structures supporting rotating machinery
these effects as well as the influence of acceleration of rotor unbalance
have to be investigated. '

The purpose of this paper is to study in detail the response of a
beam under the action of an unbalanced rotor, starting from a position
of rest and accelerating through critical frequencies. The critical
frequencies are the natural frequencies of the system. The effect of
various parameters such as acceleration or deceleration rates, shear
deformation, rotatory inertia, and viscous damping is investigated.

Massive structures supporting turbogenerator machinery are
generally composed of beam elements. A simply supported beam
subjected at its midspan to an accelerating unbalanced rotor force is
representative of the main load transfer member. This study is,
therefore, of interest in understanding the response of structures
supporting rotating machinery. It provides a method whereby effects
of acceleration or deceleration through critical frequencies could be

1 Present address: Structural Engineer, Lemieux, Royer, Donaldson, Fields
& Associés, Sherbrooke, Québec, Canada. J1J 3M7.
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Department. Manuscript received by ASME Applied Mechanics Division, May,
1980; final revision, October, 1980. Paper No. 81-APM-24.
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ROTOR

Fig. 1 A beam supporting anbunbalanced rotor

predicted. It also points out the parameters that are not generally
known or considered in the present-day design practices. For example,
if the design criterion is a manufacturer prescribed maximum am-
plitude of vibration, the designer of the support structure (foundation)
must have information regarding the transients at startup or shut-
down. That is, the effects of the startup regime to reach the operating
frequency and its rate of decrease to arrive at a shutdown state should
be studied. The steady-state analysis presently employed in the design
of foundations cannot predict the maximum amplitude. This ampli-
tude is highly dependent on the acceleration or the deceleration rate,
shear deformation, and frequency-dependent damping.

Fundamental Equations and Solution

In order to appreciate the motion of a structure which is dynami-
cally excited by a turbomachine secured to it, let us examine the be-
havior of a supporting element shown in Fig. 1, subjected to the action
of an unbalanced rotor.
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Flg. 2 Forces acting on a smali element of beam

Forcing Function. The forcing function of an unbalanced rotor
could be extremely complicated. It depends on the mounting details.
We will assume a simple model representation (Fig. 1) of the form

P(t) = —m,d?[e sin @ + h + y,(t)]/dt? )

where m; is the unbalanced mass, e its eccentricity, and the remaining
symbols are defined in the accompanying Nomenclature.

Carrying out the derivation at the right-hand side of equation (1),
the unbalance rotor force is given by

P(t) = mre[Q2sin @ — Q” cos @ — y,(t)/e] 2)

To simplify the study of the beam response under the action of
accelerated unbalanced rotor, we will further assume that the torque
applied to the rotor by the power source is constant during most of
the acceleration period. The angular acceleration would also be con-
stant, were it not for the part of the torque which is absorbed by the
vibration. Due to the buildup of the vibration, a torque associated with
the unbalance appears which is in opposite direction to that received
from the power source. This reaction therefore reduces the angular
acceleration below the ideal situation with no parasitic vibration [1].
Thus the angular travel, , is assumed to vary with time according
to

_ w,T1(3t2/TF — t3/T3H/3 for 0<t< T 3)

To utilize the formulation of the steady-state vibration, the rotor
unbalance forcing function must be transformed to a set of forces, each
of which has a constant circular frequency, i.e.,

P(t) = T [X{wn) + wimyyr(wn)] exp (iwnt) 4)
where
X(wn) = mj’f j; " 12 5in © — 97 cos Q) exp (~iwat)]dt  (5)
and

yrlwn) = 2 yr(t) - exp (—iwyt) (6)

The integration appearing in equation (5) is carried out by using
the Newton-Cotes rule of the fourth-order [7] and the principle of
fast-fourier transform [8].

Equation of Motion. The differential equation for the damped
vibration of the Timoshenko beam model is given by [9]

EIo*y(x, t)/ox* + ud2y(x, t)/ot?
I
- f (1 + E/RG)D%y(x, t)/ox20t2

Iu?
kGA?

+ oty (x, t)/ot4 + Coy(x, t)/ot

- % (1+ E/RG)23y(x, t)/ox20t

Ic? IuC
d2y(x, £)/0t2 + 2
wgaz Yt/ kGA®

For the vibration with constant circular frequency, it is possible to
assume that the vibration is harmonic and the complete solution of
equation (7) has the form [10]

y(x, t) = [ag cos(Ax/l) + agsin (\x/1) + a3 cosh (Agx/l)
+ a4 sinh (\gx/1)] - exp (Gwt) (8)

+ By(x, t)/ot3=0 (7)

Applying d’Alembert’s principle to the dynamic equilibrium in the
vertical direction for a small element shown in Fig. 2 and using
equation (8), one obtains the following relations for the bending
moment and shearing force:

Er - —
M(x,t) = -1—2— [AA1a: cos (Arx/l) + Aihiag sin (A\yx/1)
~ Aahzag cosh (\gx/l) — Aghoay sinh (\gx/1)] - exp (iwt)  (9)

Qx, t) = — %I Aiha[Agay sin (A1x/l) — Agag cos (Aix/)

w(t — T1/3) for t>7T + Aag sinh (Agx/l) + Ajaq cosh (Agx/l)] exp (wt) (10)
Nomenclature
a; = the ith constant of integration G = shear modulus wo = the first critical frequency
h = distance shown in Fig. 1 I = moment of inertia wp = C/2u
i=+/=1 k = Timoshinko ‘sh'ear coefficient w; = the ith critical frequency
_ L = length of a simply supported beam . .
| = length of beam element R = \/I/AL? wy, = the nth frequency in the series
t = time T = total time of displacement history w, = the operating speed of the rotor
x = distance T = acceleration time w;p = the ith natural frequency of the simply
Ymda = the maximum amplitude when vy =ER2/RG supported beam

damping is considered
)\1 =

Ymr = the maximum amplitude when shear
¥y )2 /4] 1/2}1/2

deformation and/or rotatory inertia effects
are considered:
yr(t) = the deflection at the rotor location
Y(x,t) = the deflection at distance x and time

7)2/4]1/2}1/2
A= AL — My/h
Az = g+ My/Ag
A = cross-sectional area

C = damping per unit length
E = Young’s modulus

420 / VOL. 48, JUNE 1981

A =} [pw(l - 2wy /wn)/ETVA
MAZRZ + ~)/2 + [L + AYRZ —

Az = M-AXR2 + 4)/2 + [1 + M(R2 -

4 = mass of the beam per unit length
70 = the first natural period
w = circular frequency

wgr = the first natural frequency when shear
deformation and/or rotatory inertia effects
are considered

Q = angular travel of the rotor

¥ = angular speed of the rotor

Q. = the rotor speed at the maximum re-
sponse amplitude
7 = angular acceleration of the rotor

Q; = 2w,/1 — wo/w,/Ty, the angular accel-
eration at critical frequency
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Using equation (8) and the boundary conditions of a simply sup-
ported beam for the symmetrical vibration modes, the coefficients
of integration aj to a4 can be expressed in terms of the deflection and
bending slope amplitudes at the extremities of a beam element. The
corresponding moments and shear forces are then obtained from
equations (9) and (10). Equating each term of the forcing function,
equation (4), to the difference of the shearing force at the midspan
for each circular frequency, a relation is obtained between the mid-
span deflection and the applied force

L3 3
ym(t) = — T {l————
48EI 7 || ®(wn) — Mm,/ul
in which ®(w,,) is the frequency function for the nth term. It has the
form of
®(wn) = MAz(AZ + A cosh Ay cos Ay/
[Xg cosh Mg sin Ay — Az sinh Az cos Ay]  (12)

+ X(wn) - exp (fwnt) (11)

It is to be noted that the procedure described herein can be applied
to analyze a framed structure subjected to any similar forcing func-
tion.

Numerical Analysis and Discussion

Response of an Ideal System. Numerical calculations have been
carried out to investigate the dynamic behavior of a simply supported
beam subjected to an accelerating rotor unbalance force starting from
the rest. For the sake of simplicity, the deflection at the driving point
will be discussed herein.

To generalize the discussion, the following dimensionless variables
are introduced:

o = wy/wp B8="Ti/7o (13a, b)
n=C/2 (u + 2—;—’) wyg b=t/ (13¢c, d)
e=Q"/wi €0 = Qo/w} (13e, /)
€ =Q/wd (13g)

In the first instance an ideal case of the undamped response will
be examined. The effect of rotatory inertia and shear deformation on
the response of the beam will be studied later on. »

Fig. 3 shows the relationship between the displacement envelope
at the midspan, y., and the time factor, b, for « = 0.5, 0.8, 1.2 and 1.5,
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Fig. 4 The effect of unbalanced mass on the determination of natural
frequencies

respectively, 8 = 30 and m,;/uL = 0.1. The solid lines indicate the
results obtained from the present analysis by considering the effect
of acceleration. For the purpose of comparison, the envelope curves
for the two cases (« = 0.8 and 1.2) obtained through consideration of
a steady-state response at a given instance are shown in dotted lines
in the same figure. This type of response will be termed “instanta-
neous steady-state” herein.

Consider the case when the operating speed, w;,, is less than the first
critical frequency, i.e., & < 1.0. In this case one noted that the dis-
placement envelope oscillates around the instantaneous steady-state
regponse envelope and the oscillation amplitude increases as the op-
erating frequency approaches the natural frequency of the system.
For those cases where the operating frequency is greater than the
natural frequency of the system (i.e., « > 1.0), the displacement en-
velope curves deviate considerably from that of the instantaneous
steady-state response. When the instantaneous frequency, ’, of the
rotor approaches the critical frequency of the system, indicated by
the “0” marks on the curves of Fig. 3, the deflection envelope as ex-
pected increases rapidly and reaches a maximum value. After this
maximum has been attained, a very small amount of input energy is
reguired to keep the system in motion. However, since there is no
damping, the displacement envelope oscillates around a certain level
with a maximum value slightly less than the first one already attained.
This slight reduction in the maximum value for the subsequent re-
sponse is due to the change in strain energy of the system resulting
from the consideration of the conservation of energy. The level at
which the oscillation occurs and its amplitude become smaller when
the operating frequency is removed from any one of the critical
frequencies, c.f., « = 1.2 and 1.5 in Fig. 3.

It is noted that the displacement envelope in Fig. 3 especially for
the case of & = 1.2, is not a smooth curve. This phenomenon is due to
the contribution of the higher modes on the response spectrum and
the irregularities will diminish after the rotor attains a constant speed.
It should also be noted that the maximum amplitude does not occur
at the critical frequency. There is an apparent shift in its position and
this shift should be kept in mind when the results of a vibration test

. are interpreted.

The analysis is carried out for different rotor to support beam mass
ratios (m,/uL) varying from 0.01 to 1.0. The influence of this mass
ratio, as to be expected, is in the determination of the natural
frequencies of the system, see Fig. 4. However, when the system re-
sponse to the rotor unbalance forces is normalized as in Fig. 3, for
constant values of coefficients o and 3, the difference in the maximum
response is within 2 percent. We will therefore, present the results for
a mass ratio of m,/ul. = 0.1 which is a representative value of large
turbomachine support systems,

An interesting problem is the relationship among the maximum
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Fig. 5 Relatlonship between the maximum amplitude of vibration and the
acceleration rate through the critical frequency, for different values of
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Fig. 6 The effect of acceleration rate through critical frequency on the shift
of the maximum amplitude of vibration, for different values of o

amplitude of vibration, the rate at which the rotor is accelerated
through the critical frequency, and the level of the operating speed
from that of the critical. It is evident from Fig. 5 that the maximum
amplitude, ¥, is highly dependent upon the acceleration rate through
the critical frequency, i.e., the greater the acceleration through the
critical frequency and/or the greater the deviation of a from unity,
the smaller the maximum amplitude of the system.

Fig. 6 demonstrates the relationship between the shift of the
maximum amplitude and the acceleration through the critical fre-
quency for various levels of the operating speed. It is observed that
the shift increases with the increase of the acceleration rate and/or
with the increase of the frequency ratio, . The dotted line in Fig. 6
for & = 1.1 is intended to show that the maximum amplitude will occur
for this case after the rotor speed has reached its maximum value and
stabilized at that level. Note that the acceleration through resonance
takes place at a value of 4.6w3 X 1073 rad/sec/sec.

To eliminate the effect of the rate of change of the acceleration
when passing through the critical frequency, a case of rotor unbalance
with a constant acceleration is considered. The relationship between
the maximum amplitude, its shift for a constant rate of acceleration
is illustrated in Fig. 7. It is clear from this figure that the effect of the
increasing acceleration is to diminish the maximum response am-
plitude, and to shift its location with respect to the critical frequency.
In comparing Figs. 6 and 7, it becomes evident that a decrease of ac-
celeration rate to achieve the operating speed would alter the location
of the maximum response amplitude, displacing it toward the critical
frequency.

Effect of Shear Deformation and Rotatory Inertia. Let us now
examine the effect of shear deformation and rotatory inertia on the
maximum amplitude of the vibrating system. It is a well known fact
that the effect of shear deformation and/or rotatory inertia in a
steady-state analysis is to decrease the values of the natural
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Fig. 8 The effect of the shear deformation and rotatory Inertia on the first
critical frequency of a simply supported beam
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Fig. 9 The effect of shear deformation and rotatory inertia on the maximum
ampiitude of vibration '
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Fig. 10 Relatlonship between the displacement envelope at midspan, y,,
and the time parameter b, for two values of o

frequencies of the system. This effect becomes more pronounced for
the higher natural frequencies. Fig. 8 shows the effects of shear de-
formation and/or rotatory inertia on the first natural frequency for
the system under consideration.

The influence of shear deformation, rotatory inertia, and their
combination on the maximum amplitude of the beam subject to the
action of an accelerating rotor unbalance load, is shown in Fig. 9. It
is noted that this effect in general is to decrease the maximum am-
plitude of the beam, except for the small values of R when the rotatory
inertia effect is considered alone. This general trend could be ex-
plained by observing that first, due to decrease in the value of natural
frequency, the ratio between the operating speed and the natural
frequency of the system is increased, thus resulting in a decreasing
amplitude. The second influence is due to the higher acceleration rate
when passing through the reduced natural frequency (c.f., Fig. 5).

When the effect of the rotatory inertia is examined alone, the
maximum amplitude increases for small values of R, similar to that
observed in a steady-state analysis. However, for higher values of R,
the effect of rotatory inertia becomes similar to that of the shear de-
formation.

Damping Effect. The effect of the viscous damping on the dy-
namic response is now investigated. This effect is of prime importance
in some practical cases. Fig. 10 shows the relationship between the
displacement envelope and the time parameter, b, for & = 0.8 and 1.2,
B8 = 30, 5 = 0.02 and m/uL = 0.1. The solid lines are obtained from
consideration of the acceleration effect, while the dotted lines are
those of the instantaneous steady-state analysis. In the case when the
operating frequency is less than the first critical one, the displacement
envelope will be identical to that obtained from the instantaneous
steady-state consideration, except for some disturbance. This dis-
turbance is very small in comparison to that observed for the un-
damped case (c.f., Fig. 3).

In most practical cases, however, the operating speed is greater than
the critical frequency of the system, e.g., the low-tuned foundations.
In these cases, there is appreciable increase in the displacement am-
plitude when the instantaneous frequency of the rotor passes through
the critical one. This amplitude reaches a maximum value, then it
decreases rapidly to converge, with some oscillation, to the level of
the steady-state amplitude at the operating speed. Note that the
foregoing maximum amplitude is smaller than that of a steady-state
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Fig. 11 Effect of damping on the maximum amplitude of vibration, for different
values of o

resonance. This reduction is due to the effect of acceleration through
the critical frequency.

Fig. 11 shows the influence of damping ratio, 1, on the maximum
amplitude for « = 1.1, 1.2, 1.3, and 1.5, respectively, 8 = 30 and m,/uL
= (.1. One notes that the greater the damping in the system, the
smaller the maximum amplitude of vibration. This effect becomes
more pronounced when the operating speed is in the neighborhood
of any one of the critical frequencies.

From the foregoing discussion, it is evident that in the design of the
supporting structure for rotating machinery such as the low-tuned
turbine foundations, the effect of acceleration or deceleration of the
machine speed must be taken into account. The magnification factor
based on the steady-state analysis at the normal operating speed may
lead to erroneous results. The maximum amplitude occurs during
acceleration from position of rest to reach operating frequency or
deceleration for shutdown. In these periods, the maximum amplitude
of vibration is greater than that predicted by the steady-state re-
sponse. The designer must acquire the speed-time relationship from
the manufacturer of the machine in order to predict and design
against high amplitudes which may cause damage to the ma-
chinery.

Conclusions
The following conclusions may be drawn from the results of the
present work:

1 The greater the acceleration rate through the critical frequency,
the smaller the maximum amplitude of vibration and the greater the
shift of the position of this maximum with respect to the critical fre-
quency (Figs. 5 and 6).

2 The maximum amplitude of vibration is dependent on the op-
erating speed and its deviation from the critical frequency of the
system.

3 Usage of the magnification factor based on the steady-state
analysis at a normal operating frequency for predicting the maximum
amplitude, is valid only when the operating speed is less than the first
critical frequency of the system. In all other cases, the effect of the
acceleration on the response should be considered.

4 Invibration tests, continuous records are often taken over a wide
range of speeds. As the speed of the machine is increased or decreased,
smaller amplitudes will be registered in comparison to that when the
machine is held at a constant speed directly on a critical frequency.
Furthermore, there is a shift in the position of the maximum ampli-
tude with respect to the critical frequency of the system.

5 Consideration of the shear deformation and rotatory inertia
effects, in general, lead to the reduction of the maximum amplitude.
These effects cannot be neglected, especially in the analysis of massive
structures. )

6 The effect of viscous damping is to decrease the response am-
plitude rapidly after it has reached the maximum value. The maxi-
mum amplitude decreases with the increase of the damping in the
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system. This effect becomes more pronounced when the operating
speed is in the neighborhood of any one of the critical frequencies.
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Buckling of a Clamped-Hinged
Circular Arch Under Gas
Pressure and Related‘Problems

Table 1 Dimensionless buckling load a3p../EI for
different central angles 2«

‘R. Schmidt?

The technical literature is replete with solutions to buckling
problems of symmetric arches [1, 2]. On the other hand, very few cases
of buckling of asymmetric arch-load systems have been investigated
[1, 2). Herein, we consider the in-plane stability (in the classical sense)
of a circular elastic arch subjected to a static external gas pressure p.
One end of the arch is immovably clamped and the other is immovably
hinged. The cross-sectional area A of the arch rib is uniform.

The governing equations for buckling can be obtained as in [3 or
4]. They are®

" ;1
B + b26; = —(cp1— e1), ¥)]
m

up— vy =—ae, vi+u;=ap, (2

where 3 is the angle of rotation of a tangent to the centroidal line, 8
= d1/d¢, ¢ is the position angle meastred clockwise from the vertical,
a = R is the radius of the undeformed circular centroidal line, 1 and
v; are the buckling displacement components of a point on the cen-
troidal line in the tangential and inward normal directions, respec-
tively (vo is the prebuckling radial displacement), e; is a constant of
integration, py is a patameter related to the increase in p,

a I
= e =— 3
“Tga "o (8
3
bP=14 @

E is the modulus of elasticity, and I is the centroidal moment of areal
inertia.
The general solution of equations (1) and (2) is
—e;

81 = Cgcos bg + Cysin be +L
mb2

¥ (5)

! Professor of Engineering Mechanics, Department of Civil Engineering,
University of Detroit, Detroit, Mich. 48221, Mem. ASME.

2 This perturbative formulation of the arch buckling problem is subtly dif-
ferent from the classical formulation. .
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2a a3pe 20 a®per
(deg) El (deg) EI
20 462.17 180 5.0391
30 205.00 200 3.9740
40 114.99 220 3.1953
60 © 50,701 240 2.6156
80 28.204 260 2.1807
90 22.135 280 1.8569
100 17.795 300 1.6251
120 12.145 320 1.4758
140 8.7438 340 1.4047
160 6.5424 360 1.3924
C C -
By = Co+ L sin b — 2 cos by + LPL VO ®)
b b mb?2
by C4—C5cos<i>+C(55-1inqb+-(-M
a mb2
_ Cysinb¢ Cacos bo @
b(b2—1) b(2-1)
C b
2=C5s.in¢+C(;c,‘oh~=.<1>———~—2coS ¢
a b2-1
Cssinb¢ cpy1—er
- + + e, 8
b2—1  mbz (®)

in which the constants {(cp1 — e1)/mb?, Cs, C3, Cy4, Cs, and Cg are re-
lated to each other linearly by the boundary conditions

Bi=ur=vi=0at¢=-q, (9)

Bi=ui=vi=0at¢=a, (10)

and e, in (8), is neglected in comparison with e;/mb?, since mb2 «
1 in the case of slender nonshallow arches buckling elastically. The
resulting system of homogeneous equations yields the characteristic
equation
{(62 — 1) [(b2% — 1) tan a — b2a] — cot o} sin? ba

+ [(b2 — 1)b2q — b* tan a] cos? ba

= [(b2 ~ 1)ba cot 2a — 3b(b2 + 1)] sin 2ba, (11)

whose pertinent eigenvalues are given in Table 1.
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BRIEF NOTES

We observe that the critical values of the gas pressure on the
clamped-hinged arches, presented in Table 1, fall between those for
hingeless and one-hinged symmetrical arches [5, p. 301].

We also make use of this opportunity to correct some of the inac-
curacies in the critical values quoted in the technical literature.

In [5, Table 7-2, p. 301], in the case of one-hinged arch, the values
Pea®/EI = 162 and 17.4 for 2o = 30° and 90° should be replaced by
160 and 18.0, respectively, and, in the case of the three-hinged arch,
the values 27.6 and 6.75 for 2t = 60° and 120° should be replaced by
27.1 and 6.76, respectively.

In [6], the critical value of the constant-directional pressure on a
semicircular two-hinged arch of constant cross section was given as
Per = 3.265 El/a3. The same authors also stated that this value con-
‘stitutes the critical buckling load for a closed circular ring. Despite
the fact that the critical load for a free ring has been calculated by
many investigators to be p.r = 4 EI/a? (e.g., [1]), the value given in
[6] was strongly defended in [7]. A recalculation by the author has
vielded p¢ = 3.271 El/a® for the two-hinged semicircular arch, p;
= 4 EI/a® for the free complete ring, and p¢r = 0.7014 EI/a3 for the
complete ring immovably clamped at a point.

Furthermore, recalculation of Table 1 of [8] has yielded: pea®/El
= 74,95, 19.59, 9.000, and 0.7014 for « = 30°, 60°, 90°, and 180° in-
stead of the values pe.a3/EI = 80.5, 19.4, 9.0, and 5.6, respectively,
given in [8] for the case of constant-directional pressure on hingeless
circular arches; and p..a3/EI = 75,06, 20.11, 10.60, and 6.472 for a =
30°, 60°, 90°, and 180° instead of the values p.a3/EI = 80.5, 20.2,
10.9, and 6.5, respectively, presented in [8] for the case of centrally
directed pressure on hingeless circular arches. Also, equation (2b) in
[8] can be reduced from three to one term, viz.,

Reo + 20/
€@ =——"
R+2
Moreover, in [1, p. 2-109] and in {9], the equation
__P_[ a tan o — 2(1 — cos o) ]

€T 2ET l(3 + 2I/a%A)a cos a + (3 + a tan @) sin aJ

should be replaced by, [10],
P o tan o — 2(1 ~ cos &) 1
€= EE_A [(3 + 2I/a2A)x cos @ — (3 — a tan a) sin aJ

in which the term 2I/a?A may be neglected as very small in compar-
ison with 3. The calculated graphical results are correct in both {1 and
9].
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On the Savart-Masson Effect
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Introduction v

The purpose of this Note is to show that the Savart-Masson (or stair
case) effect (for a fixed previous thermomechanical history, a fixed
ambient temperature, and a fixed amount of impurities) can be de-
scribed by using a rate-type constitutive equation, such as that of [2]
but with a variable viscosity coefficient.

Next, one describes several facts, experimentally observed, which
are essentially incorporated in the proposed model (for details, see

[1iD:

1 This phenomenon appears as a stair case effect, at small con-
stant rates or small increments of the applied stress, in a “soft” testing
machine.

2 Some experimental results show that the jumps in strain are
produced in the neighborhood of certain fixed values of stress [7, 8,
1].

3 If the stress rate & exceeds a certain value, the stair case effect
disappears, i.e., the ¢ ~ ¢ curve becomes a smooth curve.

4  From the experimental measurements of strain variation in time
there follows that: the strain increases slowly in time on the almost
vertical portions of the o ~ € curve; when a certain value of the stress
is reached, a very fast increase of the strain is produced at almost
constant stress.

5 Another experimental evidence is that the length of the hori-
zontal steps increases when the strain increases.

The Constitutive Equation
‘The semilinear rate-type constitutive equation will be taken under

the form
d=FEé¢—-k{c—[(e)), (1)

where ¢ and € are the stress and strain respectively, £ > 0is the Young
modulus and & > 0 is the viscosity coefficient. The smooth curve ¢ =
f(e), e 2 0, 0 = 0, is an equilibrium curve (one assumes that f(¢) is a
monotonic increasing function in this case); the way this curve is
chosen will be discussed as follows. The continuous function {(x) is
defined as

{x) =xH(x), (2)

where H(x) is the Heaviside function.

The solution of equation (1) with e(t) = eg+at, a = const > 0, o(0)
= g9 (say a¢ = f(eo) and k = const > 0), is ¢ = o(t, a, k). The curve (¢
+at, o(t, a, k), for t = 0, represented in the ¢-o plane, will be denoted
by

c=gle,a,k). (3)

This curve has the following properties:
gle, az, k) > gle, ay, k) > f(e),
&(e, a, ko) > gle, a, k1) > f(e),

The properties (4) and (5) are known properties of the constitutive
equation (1). For a and k fixed for € 3> ¢ (i.e., for ¢ 3> 0), the curve o
= g(¢, a, k) becomes (approximately) parallel to the equilibrium curve
¢ = f{¢), at a distance depending on a and k. For a quasi-linear rate-
type constitutive equation such properties have been studied in
I9].

From the foregoing remarks it is clear that the constitutive equation

as>a1>0, €>¢ (4)

0<ks<ki €>¢. (5)
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We observe that the critical values of the gas pressure on the
clamped-hinged arches, presented in Table 1, fall between those for
hingeless and one-hinged symmetrical arches [5, p. 301].

We also make use of this opportunity to correct some of the inac-
curacies in the critical values quoted in the technical literature.

In [5, Table 7-2, p. 301], in the case of one-hinged arch, the values
Pea®/EI = 162 and 17.4 for 2o = 30° and 90° should be replaced by
160 and 18.0, respectively, and, in the case of the three-hinged arch,
the values 27.6 and 6.75 for 2t = 60° and 120° should be replaced by
27.1 and 6.76, respectively.

In [6], the critical value of the constant-directional pressure on a
semicircular two-hinged arch of constant cross section was given as
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the fact that the critical load for a free ring has been calculated by
many investigators to be p.r = 4 EI/a? (e.g., [1]), the value given in
[6] was strongly defended in [7]. A recalculation by the author has
vielded p¢ = 3.271 El/a® for the two-hinged semicircular arch, p;
= 4 EI/a® for the free complete ring, and p¢r = 0.7014 EI/a3 for the
complete ring immovably clamped at a point.

Furthermore, recalculation of Table 1 of [8] has yielded: pea®/El
= 74,95, 19.59, 9.000, and 0.7014 for « = 30°, 60°, 90°, and 180° in-
stead of the values pe.a3/EI = 80.5, 19.4, 9.0, and 5.6, respectively,
given in [8] for the case of constant-directional pressure on hingeless
circular arches; and p..a3/EI = 75,06, 20.11, 10.60, and 6.472 for a =
30°, 60°, 90°, and 180° instead of the values p.a3/EI = 80.5, 20.2,
10.9, and 6.5, respectively, presented in [8] for the case of centrally
directed pressure on hingeless circular arches. Also, equation (2b) in
[8] can be reduced from three to one term, viz.,
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Moreover, in [1, p. 2-109] and in {9], the equation
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should be replaced by, [10],
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in which the term 2I/a?A may be neglected as very small in compar-
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The purpose of this Note is to show that the Savart-Masson (or stair
case) effect (for a fixed previous thermomechanical history, a fixed
ambient temperature, and a fixed amount of impurities) can be de-
scribed by using a rate-type constitutive equation, such as that of [2]
but with a variable viscosity coefficient.

Next, one describes several facts, experimentally observed, which
are essentially incorporated in the proposed model (for details, see

[1iD:

1 This phenomenon appears as a stair case effect, at small con-
stant rates or small increments of the applied stress, in a “soft” testing
machine.

2 Some experimental results show that the jumps in strain are
produced in the neighborhood of certain fixed values of stress [7, 8,
1].

3 If the stress rate & exceeds a certain value, the stair case effect
disappears, i.e., the ¢ ~ ¢ curve becomes a smooth curve.

4  From the experimental measurements of strain variation in time
there follows that: the strain increases slowly in time on the almost
vertical portions of the o ~ € curve; when a certain value of the stress
is reached, a very fast increase of the strain is produced at almost
constant stress.

5 Another experimental evidence is that the length of the hori-
zontal steps increases when the strain increases.

The Constitutive Equation
‘The semilinear rate-type constitutive equation will be taken under

the form
d=FEé¢—-k{c—[(e)), (1)

where ¢ and € are the stress and strain respectively, £ > 0is the Young
modulus and & > 0 is the viscosity coefficient. The smooth curve ¢ =
f(e), e 2 0, 0 = 0, is an equilibrium curve (one assumes that f(¢) is a
monotonic increasing function in this case); the way this curve is
chosen will be discussed as follows. The continuous function {(x) is
defined as

{x) =xH(x), (2)

where H(x) is the Heaviside function.

The solution of equation (1) with e(t) = eg+at, a = const > 0, o(0)
= g9 (say a¢ = f(eo) and k = const > 0), is ¢ = o(t, a, k). The curve (¢
+at, o(t, a, k), for t = 0, represented in the ¢-o plane, will be denoted
by

c=gle,a,k). (3)

This curve has the following properties:
gle, az, k) > gle, ay, k) > f(e),
&(e, a, ko) > gle, a, k1) > f(e),

The properties (4) and (5) are known properties of the constitutive
equation (1). For a and k fixed for € 3> ¢ (i.e., for ¢ 3> 0), the curve o
= g(¢, a, k) becomes (approximately) parallel to the equilibrium curve
¢ = f{¢), at a distance depending on a and k. For a quasi-linear rate-
type constitutive equation such properties have been studied in
I9].

From the foregoing remarks it is clear that the constitutive equation

as>a1>0, €>¢ (4)
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Fig. 1 Stress-strain curves for different stress rates. (The computations have

been started from the state (¢ = 0.908 percent, ¢ = 0)). — Experimental data
(Sharpe [7] test 957); — @ — Equilibrium curve (C); —X— “Quasi-static”
curve (S); Computed curves. *<*+++++ & = 306 psi/min; —— & = 30.6
psi/min; — V¥ — & = 3060 psi/min; —B— & = 30,600 psi/min.

(1) with a variable k can model the Savart-Masson effect. In what
follows, one discusses a form of the function k = k(¢, ¢) which will
allow the description of this effect according to Remarks 1-3 of the
previous section; Remarks 4-5 will be used to check the validity of the
model.

First, one will make precise the way one chooses the curve o = f(¢)
in equation (1). Remark 1 of the previous section suggests as equi-
librium curve ([1, pp. 657, 42-43]) “the envelope of the bottom of the
steps” of the stair case function o ~ ¢ (see the full line of Fig. 1 which
reproduces the experimental data of [6]). For strains between 0.3
percent and 3.0 percent, a function of the form

g =fle) =B.ex (C) B, =4.05X%10*psi,

will give a good approximation as shown in Fig. 1.

For the comparison of the numerical data with the experimental
data, one has selected the experimental results presented by Sharpe
{6] since they are obtained on the same type of aluminum as those used
in 3, 4] (cf. also [5]) but in a dynamic domain. This choice will also
permit to compare the viscosity coefficient determined here with that
obtained in the previously quoted papers.

The chosen viscosity coefficient will be a function of the form

ke, 0) = ko + k(o) o — glo)], "N

for f(e) = .2 < o < g(e) and 0.003 < € < 0.03. The curve ¢ = g(e)
must be chosen as the lowest possible curve obtained in a loading
process with 6 = ¢ = constant, for which the stair case effect disap-
pears. The fact that there exists a ¢ > 0 for which the stair case effect
disappears is an observed experimental behavior. Here, Bell’s dynamic
parabola [1]

a. =045 (6)

= gle) = Bsel/2, B, = 5.6 X 104 psi, ®)

has been chosen as curve ¢ = g(e). The choice (8) will give a much
larger distance between the curves (C) and (S) from Fig. 1 than it
(probably) is for the real body considered here but it allows us to see
much better how the position of the ¢ ~ ¢ curves varies with &.

One denotes by 0i, 0; < 6541, = 1,2,..., N — 1 the stress values
where the horizontal jumps in strain take place on the ¢ ~ € curve (see
Fig. 1) and one chooses A such that

0 <2\ & min | i1 — o:l.
i=1,2,... ,N—1
The function & (o) will be defined as
_ N~ (c—0)? iflo—o] <\ i=12,...
Fo) = by X N~ (c—a)? if|o .a,l N i=12,...,N
0 otherwise

9

where k; = constant > 0
With the choice (6) of the function f(¢) and with the choice (7) to
(9) of the function k (e, o), the experimental facts mentioned in in-
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troduction at 1-3 are incorporated in the model. In the next section
one determines, based on the experimental data of [7], the coefficients
ko, k1, and A such that the computed o ~ € curve behaves according
to the experiments. As a consequence, the experimental facts men-
tioned in the previous section at Points 4 and 5 will be automatically
described.

The Comparison Beiween Numerical and
Experimental Data

One uses the experimental data [7] (Fig. 1) for the ¢ ~ ¢ relation,
obtained for & = 306 psi/min, For the comparison of the experimental
strain e = e(t) with the computed one, the experimental data [1, 8, 10]
will be used in principle only since these data are obtained in com-
pression and torsion, respectively.

According to the previous discussion, the constitutive equation can
be written as

Eé = &+ [ko +k(0)|o — Bse1/?|] (0 — Bee) (10)
where k(o) is defined by formula (9). '
The constants kg, k1, and A were chosen as
ko =1 (min)~1, k;=1(min)~Ypsi)™3, X =5psi. (11)

Note that the constant kg is smaller than the dynamic viscosity
coefficient [4] (cf. also [6]) by at least 6 orders of magnitude.

The experimental data of Fig. 1 show that, for strains between 1
percent and 3 percent, large increments of strain are produced for
o;(psi) X 1073 = 5.3; 5.6; 5.85; 6.25; 6.6; 6.8; 7.2; 7.5; 7.75; 8.05; 8.4.

Note that the horizontal portion of the computed curve increases
with the strain as is experimentally observed.

The choice (11) for k1 and A in formula (9) gives a variation for the
variable viscosity coefficient k(A% ~ (¢ — 0;)2)|o — Bs€1/?| that
ranges from zero up to a value of the order of 104(min)~". This means
that the maximum value of this coefficient is by 2-3 orders of mag-
nitude smaller than the dynamic viscosity coefficient. By integrating
equation (10) where the constants are given by (9) and & = 306 psi/
min. One gets a 6 ~ ¢ curve which is close to the experimental one as
shown in the figure. On the other hand it follows that the time nec-
essary for the process to move on the vertical and the horizontal
portions of the o ~ ¢ curve is in agreement with the experimental data
[1, 8, 10]. The figure also presents the behavior of ¢ ~ € curves with
respect to stress rate changes.

Concluding Remarks

This Note shows, in principle, that the Savart-Masson effect can
be described by a rate-type constitutive equation. The viscosity
coefficient has strong variations in some regions of the ¢, o plane that
lie above the equilibrium curve ¢ = f(€). The Portevin-Le Chatelier
(serration) effect is also due to these variations but this assertion will
be discussed elsewhere. Since the available experimental results
(especially to this author) referring to a given material with a fixed
previous thermomechanical history are very limited, an attempt to
a deeper analysis of the structure of the viscosity coefficient & (e, o)
could not be performed,
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Crack-Tip Stress and Strain
Singularity in Thermally
Loaded Elastic-Plastic Material

S. Aoki,! K. Kishimoto,2 and M. Sakata®

For the thermal stress problems, an elastic-plastic fracture me-
chanics parameter, J-integral [1] loses the property of path-inde-
pendence and it is not evident if the elastic-plastic stress or strain field
near a crack tip is characterizable in terms of J-integral. Recently,
Wilson, et al. [2], Gurtin [3], and McCartney [4], have discussed
path-independent integrals for thermoelasticity. For elastic-plastic
problems, Blackburn, et al. [5], Ainsworth, et al. 6], and the present
authors [7], have proposed new path-independent integrals, J*, J,
and J, respectively. In the present paper, the relationship between
the J-integral and the stress or strain near a crack tip in a thermally
loaded elastic-plastic material is determined.

We consider a two-dimensional crack in an elastic-plastic body
subjected to thermal stress, as shown in Fig. 1. 0-Xy, X is the fixed
frame and I" denotes any curve surrounding the crack tip O. A is the
area surrounded by the curve I" and the crack surfaces. For simplicity,
we neglect the traction on the crack surfaces, the body forces, the
inertia of material, and the fracture process region. The energy-release
rate due to crack extension is given by J-integral [7]:

J——J:T Qui dI‘+ff 7 E”dA (1

where T is surface traction, u; displacement, g;; stress tensor, and
¢;; strain tensor. It has been proved theoretically in the literature [7]
that the J-integral given by equation (1) does not lose the property
of path-independence and the physical significance as the energy-
release rate, even if the material is not homogeneous.

We decompose the strain ¢; into elastic strain ¢;;¢, thermal strain
¢;;%, and plastic strain €;;7.
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Fig. 1 Crack in elastic-plastic body subjected to thermal loading

€ = €% + 5t + ;P (2)

In the case when the material under consideration is homogeneous,
at least in the X1-direction, equation (1) becomes

J"j;Weng—f Qi dI‘+ff 3(6” +‘””)

where

3)

we = J:)qj g de;e (4)

We assume I' to be a small circle of radius p and consider that the
thermal strain ¢;;¢ arises in proportion to temperature increment. It
may be assumed that the crack-tip singularity of thermal strain does
not exist in the usual circumstancess and ¢;;* may be neglected com-
pared with ¢;¢ and ¢;P as p — 0. In case that the elastic-plastic be-
havior is modeled through the deformation plasticity theory and
unloading does not occur, the material can be treated as a nonlinear
elastic material and hence equations (1) or (3) reduces to

-m” WdX, — fT—au—‘dI‘] 5)

where
W = ﬁﬁj o’ijdéij (6)

Here we have assumed that the material is homogeneous in the small
circle of radius p. From equation (5), we obtain

J = lim J (7
p—0

where J is the Rice J-integral
J= f WdX; — f T,ﬁdr ®)

Since ¢;*¢ is much smaller than the other strain components as p
—> 0, the stress and strain at the vicinity of the crack tip have the HRR
type [8, 9] singularity:

E lim J\ V1

p—0

aij = oy oy lr d;;(0,n)
(9
E lim g /*V
ay p—0
g =22 &0,
v E O'YZI,J‘} 61( n)

where (r, #) is the polar coordinate system as shown in Fig. 1, E the
Youx_lg’s modulus, oy the yield stress, I, an integration constant, and
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Crack-Tip Stress and Strain
Singularity in Thermally
Loaded Elastic-Plastic Material

S. Aoki,! K. Kishimoto,2 and M. Sakata®

For the thermal stress problems, an elastic-plastic fracture me-
chanics parameter, J-integral [1] loses the property of path-inde-
pendence and it is not evident if the elastic-plastic stress or strain field
near a crack tip is characterizable in terms of J-integral. Recently,
Wilson, et al. [2], Gurtin [3], and McCartney [4], have discussed
path-independent integrals for thermoelasticity. For elastic-plastic
problems, Blackburn, et al. [5], Ainsworth, et al. 6], and the present
authors [7], have proposed new path-independent integrals, J*, J,
and J, respectively. In the present paper, the relationship between
the J-integral and the stress or strain near a crack tip in a thermally
loaded elastic-plastic material is determined.

We consider a two-dimensional crack in an elastic-plastic body
subjected to thermal stress, as shown in Fig. 1. 0-Xy, X is the fixed
frame and I" denotes any curve surrounding the crack tip O. A is the
area surrounded by the curve I" and the crack surfaces. For simplicity,
we neglect the traction on the crack surfaces, the body forces, the
inertia of material, and the fracture process region. The energy-release
rate due to crack extension is given by J-integral [7]:

J——J:T Qui dI‘+ff 7 E”dA (1

where T is surface traction, u; displacement, g;; stress tensor, and
¢;; strain tensor. It has been proved theoretically in the literature [7]
that the J-integral given by equation (1) does not lose the property
of path-independence and the physical significance as the energy-
release rate, even if the material is not homogeneous.

We decompose the strain ¢; into elastic strain ¢;;¢, thermal strain
¢;;%, and plastic strain €;;7.
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Fig. 1 Crack in elastic-plastic body subjected to thermal loading

€ = €% + 5t + ;P (2)

In the case when the material under consideration is homogeneous,
at least in the X1-direction, equation (1) becomes

J"j;Weng—f Qi dI‘+ff 3(6” +‘””)

where

3)

we = J:)qj g de;e (4)

We assume I' to be a small circle of radius p and consider that the
thermal strain ¢;;¢ arises in proportion to temperature increment. It
may be assumed that the crack-tip singularity of thermal strain does
not exist in the usual circumstancess and ¢;;* may be neglected com-
pared with ¢;¢ and ¢;P as p — 0. In case that the elastic-plastic be-
havior is modeled through the deformation plasticity theory and
unloading does not occur, the material can be treated as a nonlinear
elastic material and hence equations (1) or (3) reduces to

-m” WdX, — fT—au—‘dI‘] 5)

where
W = ﬁﬁj o’ijdéij (6)

Here we have assumed that the material is homogeneous in the small
circle of radius p. From equation (5), we obtain

J = lim J (7
p—0

where J is the Rice J-integral
J= f WdX; — f T,ﬁdr ®)

Since ¢;*¢ is much smaller than the other strain components as p
—> 0, the stress and strain at the vicinity of the crack tip have the HRR
type [8, 9] singularity:

E lim J\ V1

p—0

aij = oy oy lr d;;(0,n)
(9
E lim g /*V
ay p—0
g =22 &0,
v E O'YZI,J‘} 61( n)

where (r, #) is the polar coordinate system as shown in Fig. 1, E the
Youx_lg’s modulus, oy the yield stress, I, an integration constant, and
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oij and €; are dimensionless functions of § and the hardening exponent
n. The substitution of equation (7) into equation (9) leads to

EJ \t/n+1) _
Oij = 0y —'2—“ gij G,n)
ay?l,r,
(10)
oy | EdJ )n/("‘rl)~ ©@.n)
€= — & 0,n
Y E oy?l,r Y

Thus, for thermal stress problem, the stress and strain near the crack
tip are uniquely determined by the J-integral. Even in the case when
the elastic-plastic behavior is best modeled with the flow theory of
plasticity, the deformation near the crack-tip may be characterized
by the HRR singularity (and then equation (10) may hold) except for
very small region at the crack tip [10].
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Effect of the External Load on
the Thermoelastoplastic Creep
Deformation
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Introduction

In the author’s previous papers the transient inelastic deformations
of a heated circular solid [1] and hollow [2] cylinder are analyzed
considering the static primary creep with Norton’s law. The effect of
the external load at various temperature levels on the creep defor-
mation is discussed here in detail with the strain-hardening hypothesis
for physical primary creep. The thermal and material properties are
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reasonably assumed to be temperature-dependent to describe pre-
cisely the actual behavior of a material at elevated temperature.

Analysis

We consider an infinite solid circular cylinder of radius a, which
is initially under the mean axial stress p. Then it is subjected to an
axial symmetric temperature distribution which varies with time,
assuming the zero initial uniform temperature of the cylinder.

If the temperature at a generic radius r is T at time £, then the total
strain should be written as

=6+ fadT + P + ¢°, etc. (1)

where superscripts e, p, and ¢ denote elastic, plastic, and creep
components, respectively, and « is the coefficient of thermal expan-
sion. The time-independent plastic strain and the time-dependent
creep strain should not be strictly distinguished from each other in
the phenomelogical sense as the experiments show that these two
components are not really different [3]. However, for convenience sake
they could be separated as in (1), in engineering sense, following the
customary concept [4].

The basic formulation has been given in [2] based on the incre-
mental theory of plasticity and the Mises-Mises creep theory.
Moreover, the axial strain ¢, is assumed not to depend on r and z, and
determined from the condition of the axial force i.e., 21 [ o,rdr =
wa?p. Mendelson’s [5] method of successive elastic solutions is used
also in its modified total strain form to calculate the plastic, and creep
strain increments as in [2]. Namely, using the von Mises yield criterion
and the Prandtl-Reuss equations, the plastic strain increments can
be obtained. The constitutive equation to calculate the plastic strain
increments is the following Ramberg-Osgood stress-strain relation
[6] in temperature fields

Ee = a,[:[ +2 (ﬂ)q 1] @)
T\o 1
where ¢; and o, are the uniaxial strain and stress, and o7 is the yield
stress.

The creep strain increments can be presented with Mises-Mises
theory of creep [7], and the equivalent creep strain increment is de-
termined from the strain-hardening creep law that corresponds to the
constant stress relation in uniaxial state [7], which shows the following
physical primary creep as the constitutive equation:

€tC=A0'tntm, m<1 (3)

where A, n, and m are temperature-dependent material proper-

ties.

Results

In the numerical calculations, the solid circular cylinder is divided
into 80 radial increments, whereas the period during which the plastic
and creep deformations proceed is divided into 200 time increments,
For g = 19 in stress-strain relation (2), corresponding to austenitic
stainless steel (ASTM 316N), we assume the coefficient of thermal
expansion «, the conductivity K, the elastic modulus £ and the yield
stress o as

a=165X(1—552X 107X T) X 10-% (m/K),
K=110X{1+182X103XT) (W/mK),
E =206 X (1 ~5.08 %1077 X T?) X 10° (N/m?),

01=2320 X (1 —2.06 X 1073 X T + 3.26 X 106 X T2 — 1.92
X 107° X T3) X 106 (N/m2) (4)
for T < 732.2°C,
A ='exp [(T — 1869.3)/60.39]
m=2.398 X 1073 X T —0.8226, n = 3.6 X 1073 X T + 2.964,
and for T = 732.2°C
A = exp [(T — 1102.3)/19.66],

m =0.933, n=56 (5)
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oij and €; are dimensionless functions of § and the hardening exponent
n. The substitution of equation (7) into equation (9) leads to
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Thus, for thermal stress problem, the stress and strain near the crack
tip are uniquely determined by the J-integral. Even in the case when
the elastic-plastic behavior is best modeled with the flow theory of
plasticity, the deformation near the crack-tip may be characterized
by the HRR singularity (and then equation (10) may hold) except for
very small region at the crack tip [10].
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reasonably assumed to be temperature-dependent to describe pre-
cisely the actual behavior of a material at elevated temperature.

Analysis

We consider an infinite solid circular cylinder of radius a, which
is initially under the mean axial stress p. Then it is subjected to an
axial symmetric temperature distribution which varies with time,
assuming the zero initial uniform temperature of the cylinder.

If the temperature at a generic radius r is T at time £, then the total
strain should be written as

=6+ fadT + P + ¢°, etc. (1)

where superscripts e, p, and ¢ denote elastic, plastic, and creep
components, respectively, and « is the coefficient of thermal expan-
sion. The time-independent plastic strain and the time-dependent
creep strain should not be strictly distinguished from each other in
the phenomelogical sense as the experiments show that these two
components are not really different [3]. However, for convenience sake
they could be separated as in (1), in engineering sense, following the
customary concept [4].

The basic formulation has been given in [2] based on the incre-
mental theory of plasticity and the Mises-Mises creep theory.
Moreover, the axial strain ¢, is assumed not to depend on r and z, and
determined from the condition of the axial force i.e., 21 [ o,rdr =
wa?p. Mendelson’s [5] method of successive elastic solutions is used
also in its modified total strain form to calculate the plastic, and creep
strain increments as in [2]. Namely, using the von Mises yield criterion
and the Prandtl-Reuss equations, the plastic strain increments can
be obtained. The constitutive equation to calculate the plastic strain
increments is the following Ramberg-Osgood stress-strain relation
[6] in temperature fields

Ee = a,[:[ +2 (ﬂ)q 1] @)
T\o 1
where ¢; and o, are the uniaxial strain and stress, and o7 is the yield
stress.

The creep strain increments can be presented with Mises-Mises
theory of creep [7], and the equivalent creep strain increment is de-
termined from the strain-hardening creep law that corresponds to the
constant stress relation in uniaxial state [7], which shows the following
physical primary creep as the constitutive equation:

€tC=A0'tntm, m<1 (3)

where A, n, and m are temperature-dependent material proper-

ties.

Results

In the numerical calculations, the solid circular cylinder is divided
into 80 radial increments, whereas the period during which the plastic
and creep deformations proceed is divided into 200 time increments,
For g = 19 in stress-strain relation (2), corresponding to austenitic
stainless steel (ASTM 316N), we assume the coefficient of thermal
expansion «, the conductivity K, the elastic modulus £ and the yield
stress o as

a=165X(1—552X 107X T) X 10-% (m/K),
K=110X{1+182X103XT) (W/mK),
E =206 X (1 ~5.08 %1077 X T?) X 10° (N/m?),

01=2320 X (1 —2.06 X 1073 X T + 3.26 X 106 X T2 — 1.92
X 107° X T3) X 106 (N/m2) (4)
for T < 732.2°C,
A ='exp [(T — 1869.3)/60.39]
m=2.398 X 1073 X T —0.8226, n = 3.6 X 1073 X T + 2.964,
and for T = 732.2°C
A = exp [(T — 1102.3)/19.66],

m =0.933, n=56 (5)
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Fig. 1 Axial stress ¢.*

In (4), the coefficient of thermal expansion, the conductivity, and
the elastic modulus have been interporated from the data given in [8],
whereas the yield stress and material properties for creep are taken
from [9]. Moreover, the thermal diffusivity is taken to be h = 5.29
mm?/sec from [8] and Poisson’s ratio v is assumed to be unaffected
by temperature and to be equal to 0.4.

In Figs. 1-8, the nondimensional representations are used, that is,
o.* = (1 = v)0,/EoooTo,p* = (1 — »)p/EgueoTo, &* = (1 — v)e, /oo T,
and s = (h/a?)t, where Ej and oy are the elastic modulus and the
coefficient of thermal expansion at T'= 0 in (4), and T is the constant
surface temperature to which the boundary of the cylinder is suddenly
exposed. Also in these Figs. 1-3, 019 is the yield stress at T = 0in (4).
All results presented in this Note were calculated for a solid circular
cylinder of radius ¢ = 3 mm. Then the relation between the real time
t and the dimensionless time s becomes to ¢t = (a%/h)s = 1.70s
(sec).

Fig. 1 shows the variation of o, with r/a for different values of the
external load p/o0 at time s = 1.75, 1.e., t = 3 (sec), when the steady
state of temperature, that is T' = 900°C at every place of the cylinder,
is attained after subjection to rapid surface heating with the step
temperature rise of To = 900°C. With large external load (p/o10 = 0.4),
the other two stresses ¢,* and ¢4* become almost zero because the
thermal stresses caused by the variation of temperature after
subjection to rapid surface heating have relaxed from the large creep
strain. In the meantime, o,* will be expected to be equal to its mean
tensile stress p* in the whole cylinder from the relaxation of thermal
stress, and in fact for p/o19 = 0.4 in Fig. 1, 0, * takes almost near values
of 0,* = p* = 0.0252. The numerals p* = 0.0189 and 0.0126 in Fig.
1 correspond to the values p/a19 = 0.3 and 0.2, respectively.

Fig. 2 shows the variations €, *, ¢,*P, and ¢,*¢ at the surface of the
cylinder with s for the two values of the external load, i.e., p/o1o = 0.4
and 0 with the reference temperature T = 900°C, Taking into con-
sideration the fact that the temperature at the surface attains its
constant value of T = 900°C in the instant of being subjected to rapid

-surface heating and the fact that the total strain consists of an elastic,
_plastic, and creep strain together with thermal expansion, as is given
in (1), it can be easily recognized from this Fig. 2 that the plastic strain,
to which the special attention should be paid because of its minus sign,
is dominant in the deformation of structure at the earlier stage,
whereas the creep strain plays the important role after the plastic
strain becomes constant, when the thermal stress is not produced any
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more. At p/o19 = 0.4, €,* increases with s because of the increase of
creep strain, which is accompanied with the relaxation of stresses as
shown in Fig. 1. On the contrary, at p/o19 = 0, €,* maintains its con-
stant value except the earlier stage of deformation because of very
little increase of creep strain. Including both results, the effect of the
external load on the deformation of structure with constant Ty =
900°C is shown in Fig. 3 with the solid lines. With increase of p/o1g,
increases €, * as might be expected, while the effect of the magnitude
of step temperature Tg on €,* with constant p/o1o = 0.4 is also shown
in this figure with the dash-dot lines. At Ty = 900°C the extremely
larger creep strain makes the outstanding characteristic in the be-
havior of the deformation, whereas even at Ty = 800°C, the temper-

" ature should not effect much on the deformation of structure, showing

the resistance of this stainless steel to creep deformation.
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Some Observations in the
Behavior of Laminated
Composite Beams

K. M. Rao"

In recent years the analysis of structural members of composite
materials has received the attention of many investigators. The be-
havior of these structural members depend on relative stiffness and
thickness of layers, boundary conditions, and continuity conditions
at the interfaces. Moreover accuracy of the results depend on the
degree of refinement of the theory. The influence of the foregoing
factors are studied by DiTaranto [1] and Rao [2] using strength of
materials theory. Integral equation approach for formulating the
Airy’s stress function satisfying the equations of elastic anisotropic
medium is suggested by Schile [4, 5]. A simple and straightforward
procedure to select polynomial Airy’s stress function, a special case
of that of Schile [4, 5] suitable to analyze rectangular laminated beams
under polynomial loading is proposed in reference [3] by the author.
Here the author aims to study the influence of the aforementioned
factors on the behavior of laminated composite beams using the
foregoing procedure to select Airy’s stress function. This refined so-
lution, when applied to clamped-clamped laminated beam, brings out
some strange and interesting observations in its behavior, and these
observations are found to be contradictory to those given by ele-
mentary theories [1, 2] of certain layer-materials combinations.

Analysis

The beam shown in Fig. 1 is assumed to be made of an arbitrary
number of layers N wherein each layer is of specially orthotropic
medium, and the interlayer surfaces are perfectly bonded. The beam
is subjected to a normal surface traction of intensity ¢; under these
conditions each layer is in a state of generalized plane stress. The
compatibility condition of nth layer of such a beam is [3]
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in which ¢y, (x, y) is Airy’s stress function, and
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In equation (2), S11, S12n, Saan, and Sss, are the elastic constants
of nth layer; the corresponding strain-stress relations are

kin? + kon? = (2S12n + S33n)/S20n, k1n%k2n? = S11n/S22n

exn = S11,0n + SlZnUyn; €yn = Sion0xn + Szzno‘yn,

3

where exn, €yn, exyn are the engineering strains, and o4y, oyn, 74yn are
the stresses in nth layer. These quantities are defined by

€xyn = SSSnTxyn

oun = ou, ey = ayn' erym = ou, Ov, (4)
ox oy oy ox
Py, %y, %y,

Oxn = byz’ Oyn = bxz’ Txyn = — %0y (5)

where u,(x, y) and v, (x, y) are the deformations along x and y-axes,
respectively (Fig. 1).

According to the procedure proposed by the author [3] to select the
polynomial Airy’s stress function, stress function ¢, (x, y) for nth layer
of the beam under uniformly distributed load is

dn(x,¥) = a2,2%/2 + bonxy + cony?/2 + banx2y/2 + canxy?/2
+ dany3/6 + c4nx2y?/2 + danxy3/6 + eqny?/12
+ dsnx2y3/6 + f5ny5/20  (6)

in which

esn = — (k1n2 + kanDeanlh1n?kon?,

fon = — (k1n2 + Ran2dsn/R1n2kon? (7
and agy, ban . . . ., f5n are the coefficients of stress function.

The boundary and continuity conditions, to be used to evaluate the
aforementioned coefficients, are
Oy1=—q,Txy1 =0 at y=-—hl;
Oyl = Oy2, Txyl = Txyz, U1 = Uz, V1 =03 at y =0;

Oyn = Oyn+1, Txyn = Txyntl Un = Un+1, Un = Un+l
at y=h,(n=2,3,.. N—-1);

GyN=Tzxn =0 at y=hN;

N Yn
b (oxndy, O'xn(y — H)dy, Txyndy)

n=1 ¥'n-1

=(Py,—M,R1) at x=0 (8)
in which
)]

indicates the location of end points of the kth layer that are con-
strained kinematically, and

H = (hp—1+ he)/2

(n=2,8,...,N)
(n=3,4,...,N)

“y1=0, Yn = hn

y'1==h1, y2=0, yn-1=hp-1

In the previous expressions, hy, is the distance of the farthest longi-
tudinal surface of nth layer measured from x -axis; Py, M1, and R; are
the reactions at the end x = 0 (Fig. 1).
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Some Observations in the
Behavior of Laminated
Composite Beams

K. M. Rao"

In recent years the analysis of structural members of composite
materials has received the attention of many investigators. The be-
havior of these structural members depend on relative stiffness and
thickness of layers, boundary conditions, and continuity conditions
at the interfaces. Moreover accuracy of the results depend on the
degree of refinement of the theory. The influence of the foregoing
factors are studied by DiTaranto [1] and Rao [2] using strength of
materials theory. Integral equation approach for formulating the
Airy’s stress function satisfying the equations of elastic anisotropic
medium is suggested by Schile [4, 5]. A simple and straightforward
procedure to select polynomial Airy’s stress function, a special case
of that of Schile [4, 5] suitable to analyze rectangular laminated beams
under polynomial loading is proposed in reference [3] by the author.
Here the author aims to study the influence of the aforementioned
factors on the behavior of laminated composite beams using the
foregoing procedure to select Airy’s stress function. This refined so-
lution, when applied to clamped-clamped laminated beam, brings out
some strange and interesting observations in its behavior, and these
observations are found to be contradictory to those given by ele-
mentary theories [1, 2] of certain layer-materials combinations.

Analysis

The beam shown in Fig. 1 is assumed to be made of an arbitrary
number of layers N wherein each layer is of specially orthotropic
medium, and the interlayer surfaces are perfectly bonded. The beam
is subjected to a normal surface traction of intensity ¢; under these
conditions each layer is in a state of generalized plane stress. The
compatibility condition of nth layer of such a beam is [3]
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in which ¢y, (x, y) is Airy’s stress function, and
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In equation (2), S11, S12n, Saan, and Sss, are the elastic constants
of nth layer; the corresponding strain-stress relations are

kin? + kon? = (2S12n + S33n)/S20n, k1n%k2n? = S11n/S22n

exn = S11,0n + SlZnUyn; €yn = Sion0xn + Szzno‘yn,
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where exn, €yn, exyn are the engineering strains, and o4y, oyn, 74yn are
the stresses in nth layer. These quantities are defined by

€xyn = SSSnTxyn

= WM 2n O @
ox oy oy ox
Py, %y, ¢y,

Oxn = byz’ Oyn = bxz’ Txyn = — %0y (5)

where u,(x, y) and v, (x, y) are the deformations along x and y-axes,
respectively (Fig. 1).

According to the procedure proposed by the author [3] to select the
polynomial Airy’s stress function, stress function ¢, (x, y) for nth layer
of the beam under uniformly distributed load is

dn(x,¥) = a2,2%/2 + bonxy + cony?/2 + banx2y/2 + canxy?/2
+ dany3/6 + c4nx2y?/2 + danxy3/6 + eqny?/12
+ dsnx2y3/6 + f5ny5/20  (6)

in which

esn = — (k1n2 + kanDeanlh1n?kon?,

fon = — (k1n2 + Ran2dsn/R1n2kon? (7
and agy, ban . . . ., f5n are the coefficients of stress function.

The boundary and continuity conditions, to be used to evaluate the
aforementioned coefficients, are
Oy1=—q,Txy1 =0 at y=-—hl;
Oyl = Oy2, Txyl = Txyz, U1 = Uz, V1 =03 at y =0;

Oyn = Oyn+1, Txyn = Txyntl Un = Un+1, Un = Un+l
at y=h,(n=2,3,.. N—-1);

GyN=Tzxn =0 at y=hN;

N Yn
b (oxndy, O'xn(y — H)dy, Txyndy)

n=1 ¥'n-1

=(Py,—M,R1) at x=0 (8)
in which
)]

indicates the location of end points of the kth layer that are con-
strained kinematically, and

H = (hp—1+ he)/2

(n=2,8,...,N)
(n=3,4,...,N)

“y1=0, Yn = hn

y'1==h1, y2=0, yn-1=hp-1

In the previous expressions, hy, is the distance of the farthest longi-
tudinal surface of nth layer measured from x -axis; Py, M1, and R; are
the reactions at the end x = 0 (Fig. 1).
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Fig. 4 Variation of central deflection v over the depth

The kinematic end conditions of a clamped-clamped beam are
taken as

ur =Ur = OUp/0x =0 atbothends x=0,L and y=H, (10)

where L is the span of the beam (Fig. 1).

The problem can be completely solved by evaluating the stresses
Gxn, Oyn, and Tyy,, and deformations u, and v, with the help of
equations (3)-(6); in turn substituting these into equations (7)—(10),
sufficient number of algebraic equations are obtained to solve for the
constants of integration and coefficients of stress functions ¢, (n =
1,2,...N).

Results and Conclusions

The previous analysis is particularized to the case of 3-layered
beam, and the numerical data of o, 7.y, and v is presented in Figs.
2-8. In these figures A = L/(hy + h3), £ = (ha ~ ho)/hy, { = ha/h;and
p = 8111/S119; Bijk, Tijk, and Mijk denote, respectively, the bottom,
top, and middle fiber of ith layer in a beam with p = 0-jk or OR. For
the beam corresponding to p = 0.01, 0.1, and 0.2, the layers are made
of isotropic materials in which the top and bottom layers are of the
same material and the middle layer is of comparatively flexible ma-
terial; p = OR denotes the beam in which the top, middle, and bottom
layers are, respectively, of boron/epoxy, glass/epoxy, and graphite/
epoxy composites, the material properties of these being taken from
Jones [6]. In the graphs o, §, and 7 signify, respectively, the normal
stress in the top fiber of midsection, deflection of midsection, and
maximum shear stress at one-fourth span of an equivalent Euler
beam. The equivalent Euler beam is defined as one which has same
outer dimensions, end conditions, and load as laminated beam, and
which has the medium with Young’s modulus £ = 1/S131.

The strange and interesting observations that are made by the
author are as follows:

1 When the middle layer is flexible (p = 0.01), the deflection given
by elasticity solution is much less than that given by elementary so-
lution (Figs. 2 and 3). When p = 0.01, £ = 1 and ¢ = 2 (Fig. 2), the ratio
is as much as 1:7. As the elastic modulus ratio p tends to unity and ¢
tends to zero, this deviation decreases.

2 At lower values of span-to-depth ratio (A < 8) and p = 0.01, the
deflection varies considerably over the depth (Fig. 4).

3 The normal stress o, given by elasticity and elementary theories
differ considerably both by quantity and quality at low values of p
(Figs. 6 and 7). The stress pattern given by elasticity solution is re-
versed in nature (i.e., compressive stress on convex side and tensile
stress on concave side) compared to conventional stress pattern in a
beam when p = 0.01. This reversed stress pattern changes to con-
ventioned one as p approaches to unity (Fig. 7). For the case of
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Fig. 5 Variation of shear stress 7,, over the depth at one-fourth span

orthotropic layered beam (p = OR), the stress in top layer (M10R)
is tensile, whereas that in bottom fiber (B3 OR) changes from tensile
to compression over 0.05 < £ < 2.0.

4 Tt is also observed that the reversed stress pattern in isotropic
layered beam with p = 0.01 continues up to A is about 12; and the
stress on the concave side of orthotropic layered beam (T10R) is
tensile upto A is about 8.

5 The inner fibers of top and bottom layers of isotropic layered
beam with a very flexible middle layer are stressed more than the
outer fibers, whereas generally the outer fibers of a beam are stressed
more (Fig. 7).

6 In case of orthotropic layered beam, maximum value of normal
stress g, in top layer is in the middle fiber, and that in bottom layer
is in bottom fiber (Fig. 7¢).

7 At midsection the location of the point at which g is maximum
is highly dependent on the parameters p, £, and {.

8 Thestress o, varies linearly over the depth of each layer of iso-
tropic layered beam; but as shown by Fig. 8. o, varies nonlinearly over
the depth of each layer of orthotropic layered beam. For span-to-
depth ratio A > 10, even incase p = OR, o, varies linearly over the
depth of the beam.
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The author feels that the discrepancy in the results of elasticity and
elementary solutions of a beam with flexible middle layer is due to
the existence of significant amount of shear strain at the clamped
ends. In the models of DiTaranto [1] and Rao [2], the shear strain is
not accommodated in an element at the fixed end. But in the present
model it is accommodated by the rotation of transverse fiber relative
to the Jongitudinal fiber at the clamped end. These observations show
the inadequacy of the elementary theory for the analysis of laminated
beam with flexible layers.
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Drag on a Droplet in
Translating Fluctuating Flow

M. B. Stewart! and F. A. Morrison, Jr.2

Introduction

A droplet in a fluctuating translating flow experiences an unsteady
force exerted by the surrounding fluid. We consider low Reynolds
number flow with a relative velocity U(1 + ¢ exp (iwt)) where € is
small. w is the oscillation frequency and t is the time. We seek the
effect of this small oscillation on the force imposed on an isolated
spherical droplet.

Starting from Stokes classical creeping flow analysis, Proudman
and Pearson [1] used matched asymptotic expansions to describe
steady low Reynolds number motion past a rigid sphere. lllingworth
[2] subsequently determined effects of small superimposed oscilla-
tions.

Taylor and Acrivos [3] found the analogous steady low Reynolds
number extension of the Hadamard [4] and Rybezynski [5] analysis
of creeping droplet motion. In this Note, we generalized Illingworth’s
results to include fluid spheres.

The axisymmetric flow is described using Stokes stream function
Y in spherical coordinates r, #, . The flow of an uncompressed fluid
with constant viscosity and density obeys

% (E%) — J (Y, ¥) = vESY (1)

i is the cosine of the polar angle 8 and v is the kinematic viscosity. For
later convenience, we have introduced the notation

d[f, (E?0)/r* (1 — u?)]

J({,0) = (2)
o(r,u)
E? is the Stokes stream function operator
o2 1—u2 d2
Br=— 4 H 3)
or? r? ou?

The free-steam velocity variation suggests a stream function of the
form

V¥ = o+ eexp (wthn (4)

The flow in three regions is analyzed here. Flow interior to the
droplet is coupled, at the droplet radius a, to the inner flow of the
exterior fluid which, in turn, is matched to the outer flow.

The dimensionless position, p, used for the inner flows, is r/a. The
corresponding stretched coordinate, p, of the outer flow is Re p. The
steady flow Reynolds number, Re, is Ua/v, using the exterior fluid
kinematic viscosity. The dimensionless inner stream functions are
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The author feels that the discrepancy in the results of elasticity and
elementary solutions of a beam with flexible middle layer is due to
the existence of significant amount of shear strain at the clamped
ends. In the models of DiTaranto [1] and Rao [2], the shear strain is
not accommodated in an element at the fixed end. But in the present
model it is accommodated by the rotation of transverse fiber relative
to the Jongitudinal fiber at the clamped end. These observations show
the inadequacy of the elementary theory for the analysis of laminated
beam with flexible layers.
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Drag on a Droplet in
Translating Fluctuating Flow

M. B. Stewart! and F. A. Morrison, Jr.2

Introduction

A droplet in a fluctuating translating flow experiences an unsteady
force exerted by the surrounding fluid. We consider low Reynolds
number flow with a relative velocity U(1 + ¢ exp (iwt)) where € is
small. w is the oscillation frequency and t is the time. We seek the
effect of this small oscillation on the force imposed on an isolated
spherical droplet.

Starting from Stokes classical creeping flow analysis, Proudman
and Pearson [1] used matched asymptotic expansions to describe
steady low Reynolds number motion past a rigid sphere. lllingworth
[2] subsequently determined effects of small superimposed oscilla-
tions.

Taylor and Acrivos [3] found the analogous steady low Reynolds
number extension of the Hadamard [4] and Rybezynski [5] analysis
of creeping droplet motion. In this Note, we generalized Illingworth’s
results to include fluid spheres.

The axisymmetric flow is described using Stokes stream function
Y in spherical coordinates r, #, . The flow of an uncompressed fluid
with constant viscosity and density obeys

% (E%) — J (Y, ¥) = vESY (1)

i is the cosine of the polar angle 8 and v is the kinematic viscosity. For
later convenience, we have introduced the notation

d[f, (E?0)/r* (1 — u?)]

J({,0) = (2)
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E? is the Stokes stream function operator
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The free-steam velocity variation suggests a stream function of the
form

V¥ = o+ eexp (wthn (4)

The flow in three regions is analyzed here. Flow interior to the
droplet is coupled, at the droplet radius a, to the inner flow of the
exterior fluid which, in turn, is matched to the outer flow.

The dimensionless position, p, used for the inner flows, is r/a. The
corresponding stretched coordinate, p, of the outer flow is Re p. The
steady flow Reynolds number, Re, is Ua/v, using the exterior fluid
kinematic viscosity. The dimensionless inner stream functions are
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Y/Ua? These are  within the droplet andy outside. The outer flow,
far from the droplet, is described by ¥ = Re?J/Ua?.
Accordingly, the steady flows are governed by

E* Yo+ J3[¥0, Yo = 0 (5)
E,Jo + Re J,[o, %] = 0 6)

and
E, o + ARe J,[do, Yol = 0 G

A is the ratio of external to internal kinematic viscosity.
The oscillating components satisfy

Est 4 + J 5o, ¥1) + I3, Yo) — i0E;2 J1=0 (8)
E 1+ Re [Jp(\,_bo, V) +J,0L 0] —icRe2E2); =0  (9)
and

E 1+ A Re [J,(J0, $1) + J,(01, ¥o)] —ioARe2E, 21 =0 (10)

Terms of order €2 are neglected. ¢ is wv./U?, the ratio of Strouhal
number to Reynolds number.

The Steady Drag Component
Taylor and Acrivos obtained a solution to equations (5)-(7) by
expanding each of the steady stream functions in the manner

1[/0=\p00+Re\l/01+...

The flow remains bounded at the origin and approaches uniform
streaming far from the droplet. Tangential velocity and stress are
continuous across the droplet surface. This surface is impervious. The
flows in the exterior fluid are matched.

The zeroth-order solution in the outer steady flow represents uni-
form streaming. The corresponding inner flows are those of Hadamard
and Rybczynski. Taylor and Acrivos obtained the first-order steady
stream functions and the corresponding drag on the rigid sphere

2v +3 2
EEIRICES P
v+1 4 \yv+1

e is the external fluid viscosity and + is the ratio of external to in-
ternal viscosity, the reciprocal of Taylor and Acrivos «.

(11)

F=mp.alU [2( (12)

The Oscillating Drag Component

With this background, we address the oscillating component. Three
regimes, distinguished by the magnitude of the dimensionless fre-
quency o are considered.

When the dimensionless frequency is much less than one, the flow
is quasi-steady and the drag depends, as in a steady flow, on the in-
stantaneous velocity. We have simply

27+3)+_RE(2‘)/+3)2+
vy+1 4 \y+1

F = wp.alU [2( . l [1+ eexp (Gwt)]

(13)

When the dimensionless frequency is large, much greater than Re™?,
the local acceleration dominates. This corresponds to a large Strouhal
number. The convective acceleration terms in equations (9) and (10)
are neglected. The transient Stokes relations apply and there is no
need to match to an outer flow. As part of an analysis of droplet mo-
tion governed by the transient Stokes relations, Stewart and Morrison
[6] found the drag on a droplet in an accelerating fluid. From their
results, we can write an expression for the drag on a stationary droplet
in an oscillating flow.

2
F = 6ruca {(1 + k)Y + %—]Ue exp {iwt) (14)

k?is iwo Re? and 2 is given by
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> o=1— (1 +k)[(—3 + 3kv/A— k2\) exp (Rv/N)
+ (3 + 8k N + k2\) exp (—RVN/A  (15)

and
A =1[(2 ~ 3y — vk)(3 ~ 3ky/X + k2))

+ E2\(1 = k/N)] exp (kv/N)

- [(2 =3y — vk)(3 + 3RV}

+ k21 + kv/N)] exp (~kv/N)
Combining with equation (13) gives
27+3+_I_E_e_>[2*y+3]2

v+1 4 ly+1]

(16)

F=mu.all (2

+6 {(1 +RB)Y +%2‘ € exp (iwt)) an

When ¢ greatly exceeds Re ™2, % is large, the k2 term dominates and
the most significant part of the oscillating force does not depend on
internal viscosity.

2y +3 + Re (27 +3
y+1 4 \y+1

F = wueal |2 (18)

2
) + 2ic Re? e exp (iwt)

We finally consider ¢ of order unity. In this case, local acceleration
can be neglected for the inner flows, simplifying equations (9) and
(10). Just as an expansion of the form (11) was useful for solving
equations (5)-(7), the expansion

$1=¢w+Reyi  +...

can now be utilized in the solution of equation (8) together with the
simplified equations (9)—(10).

The solution closely follows the rigid sphere analysis and is rather
lengthy. Accordingly, only the results are presented here. Zeroth-order
solutions are

(19)

Y10 = Yoo = H2Co1/2(u) (20)

— - 1 2y +3 1
=00 = = (202 — +
V1o =Yoo Z(p ’y+1p o

1

C.~12(y) is the Gegenbauer polynomial of order n and degree —3.
Defining « as 1 + 4ig, first-order solutions are

. 2y+3 le?+a+1,
_ 2y (_A+_ P

p‘l)Cz‘l/z(#) (21)

11 )Cz“m(u)

oy +1) 3 a+l
1
- 5/3203‘1/2(/1)} + 0% (22)
Tu = 2y+3 a?+a+1-
Yoy+1) a+1 7°
2v+3 %= 27+3p__ 1 )1
4y+1 20vy+1)° 2y +1)
6y +5) ]
— L 1+ p~2)Ca~ 12 (23)
10(’y+1)2( p~H|Cs (1)
With this stream function, the force on the droplet is calculated.
2y +3 Re[2v + 3\2 2y +3
F=7r,ugaU(2 44 +_e('y ) Y
v+l 4 \y+1 v+1
12y +3a2+a+1 ,
X [1 + —l—La——Re]*e exp (Lwt)) (24)
6y+1 a+l
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On an Elastic Theory of
Friction

N. Phan-Thien?

Recently, Villaggio [1] proposed an elegant and simple theory of
elastic friction which is based on a reasonable definition of the limit
tangential load. He argued, very correctly, that if the contact bodies
deform elastically then Coulomb’s, or rather Amonston’s law (see [2])
should not be accepted as a postulate, but as a consequence of the
elastic deformation of the contact regions. This is justifiable if the
contact surfaces are not very rough so that there is no plastic defor-
mation involved. Villaggio’s starting point was the plane contact
problem which was considered by Poritsky {3} using a potential
analogy, refer to Fig. 1. To prevent interpenetration under the action
of a normal force per unit width, Ny, it is necessary to produce over
the contact band — @ < x < a a normal displacement over each surface
whose sum is given by

v1+ vy = Wo -} px?, (1)

where Wy is the relative approach at x = 0 and p is given by p1 — p2,
with p; and ps being the curvatures of the mating surfaces.

Poritsky [3] showed that the contact length and the relative ap-
proach are given through (there is a factor 4 missing in various equa-
tions of Poritsky’s paper)

a = (4Ny/wpE’)1/2 (2)
Ny =2wE'Wo/13, (3)
where
i=1~V12+1“‘V22
E Eq Es

and E;, v; are Young’s modulus and Poisson’s ratio of the body i, =
1,2.

Now a tangential force per unit width, S, is allowed to act on body
1. Villaggio (1] called Sy the limit tangential load if, under its action,
that part of body 2 that lies in the interval — a < x < 0 becomes flat.
This requirement leads to [1]

4.21 plpg( 1-p2 Eg)
S =———1+——=—=|alN)N (4
g TR E, a(Ny)Ny )

50 that the coefficient of friction, 8 = S3/Ny, is proportional to a (N1)
or N1%2, a fact at variance with available experimental data. Note that
the factor (1 — 712 E1/(1 — v22)E5 in (4) should be replaced by its in-
verse if it is greater than unity [1].

Notwithstanding the aforementioned drawback, Villaggio’s theory
appears sound and ought to be improved in order to bring it into close
agreement with experimental observations.

Now, Archard [4] has pointed out that if the contact surfaces are
covered with asperities, and each asperity with microasperities, and
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each microasperity with micro-microasperities, and so on, then such
approximation gives successively a closer approximation to the law
A « Ni, where A is the total contact area. This idea was exploited
elegantly by Greenwood and Williamson [5] who assumed a random
surface roughness. We now show that, using Greenwood and Wil-
liamson’s method, Villaggio’s theory can be brought into conformity
with experimental data.

Basically we consider the contact problem between a plane and a
nominal flat surface covered with plane asperities whose heightisa
random variable with probability density function ¢(z); see Fig. 2.
Here, nominal flat surfaces are defined as in Greenwood and Wil-
liamson’s [5]; these surfaces have large apparent areas of contact so
that the individual contacts are dispersed and the forces acting
through neighboring spots do not influence each other. In effect, a
collection of “dilute” indentors is considered. Mathematically we
require that a characteristic wavelength of the plane asperities is large
compared to the contact length a.

Since the probability of having as asperity of height greater than
Wo is given by f¥,¢(z) dz, the expected normal load is

27 , @
= ME fWO (@ — Wo) ¢z) dz, (5)

and the expected limit tangential load is given by, if the asperities have
the same curvature p,
_saz(sye B
2 p 2
1372113 1— vy

where M is the total number of asperities.
For exponentially distributed asperity height we have ¢(z) = o~
exp (—z/0), where ¢ is the mean asperity height. Also,

f "2 - Wo2p(z) dz,  (6)
Wo

f Wm (2 = Wo)*d(z) dz = o°T'(cx + 1)e~Wolo,
0

Where T'(x) is the Gamma function. Thus the frictional coefficient is
given by
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deform elastically then Coulomb’s, or rather Amonston’s law (see [2])
should not be accepted as a postulate, but as a consequence of the
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and E;, v; are Young’s modulus and Poisson’s ratio of the body i, =
1,2.

Now a tangential force per unit width, S, is allowed to act on body
1. Villaggio (1] called Sy the limit tangential load if, under its action,
that part of body 2 that lies in the interval — a < x < 0 becomes flat.
This requirement leads to [1]
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50 that the coefficient of friction, 8 = S3/Ny, is proportional to a (N1)
or N1%2, a fact at variance with available experimental data. Note that
the factor (1 — 712 E1/(1 — v22)E5 in (4) should be replaced by its in-
verse if it is greater than unity [1].

Notwithstanding the aforementioned drawback, Villaggio’s theory
appears sound and ought to be improved in order to bring it into close
agreement with experimental observations.

Now, Archard [4] has pointed out that if the contact surfaces are
covered with asperities, and each asperity with microasperities, and
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each microasperity with micro-microasperities, and so on, then such
approximation gives successively a closer approximation to the law
A « Ni, where A is the total contact area. This idea was exploited
elegantly by Greenwood and Williamson [5] who assumed a random
surface roughness. We now show that, using Greenwood and Wil-
liamson’s method, Villaggio’s theory can be brought into conformity
with experimental data.

Basically we consider the contact problem between a plane and a
nominal flat surface covered with plane asperities whose heightisa
random variable with probability density function ¢(z); see Fig. 2.
Here, nominal flat surfaces are defined as in Greenwood and Wil-
liamson’s [5]; these surfaces have large apparent areas of contact so
that the individual contacts are dispersed and the forces acting
through neighboring spots do not influence each other. In effect, a
collection of “dilute” indentors is considered. Mathematically we
require that a characteristic wavelength of the plane asperities is large
compared to the contact length a.

Since the probability of having as asperity of height greater than
Wo is given by f¥,¢(z) dz, the expected normal load is
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= ME fWO (@ — Wo) ¢z) dz, (5)

and the expected limit tangential load is given by, if the asperities have
the same curvature p,
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where M is the total number of asperities.
For exponentially distributed asperity height we have ¢(z) = o~
exp (—z/0), where ¢ is the mean asperity height. Also,

f "2 - Wo2p(z) dz,  (6)
Wo

f Wm (2 = Wo)*d(z) dz = o°T'(cx + 1)e~Wolo,
0

Where T'(x) is the Gamma function. Thus the frictional coefficient is
given by
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8=S8/N

1- Vlz_E_g 1- 1/22 &)] (7)

=0.142 (6p)2 |1 + in( ,
(0',0) [ m 1—1’22E1 1—V12E2

which is in qualitative agreement with the bulk of our experimental
knowledge. For a Gaussian surface roughness, 8 can also be approx-
imated by (B) over several decades of the imposed normal load N.

Thus Amonton’s frictional law, according to Villaggio’s theory,
appears to be a direct consequence of both the topology and the elastic
deformation of the contact surface.
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Bending and Twisting of
Internally Pressurized Thin-
Walled Cylinder With Creep

J. H. Lau' and G. K. Listvinsky?2

Introduction

A closed-form relation for the bending and twisting of a pressurized
thin-walled cylinder which obeys the Bailey-Norton type isothermal
power creep law with n = 2 is presented here. Dimensionless mo-
ment-curvature charts are also presented for various isostatic cir-
cumferential stress due to internal pressure, and isostatic shear stress
due to twisting moment. The cylinder material is assumed to have
identical tensile and compressive stress-strain rate relations. The
derivation is based on the Bernoulli-Euler theory which stated that
plane sections before bending remain plane during bending. It is as-
sumed also that the thickness of the cylinder is so thin, compared with
the inner radius, that all the nonzero stresses are uniformly distributed
across the wall thickness.

The same problem without twisting moment has been studied by

- Edstam and Hult [1], wherein the integral equations were performed

by means of Simpson’s formula. It will be shown that the difference
between the present solution with [1] is as high as 18 percent.

Analysis
A stationary state of creep will develop [3-5], if the average uniaxial
stress-strain rate relation is

e=(o/m)*, nz21,m>0, 1)

and its multiaxial counterpart
éij = 3(g/m)r1! Sij/Zm, . (2)

where

G = \/%Sijsij , (3)

and ¢;; and S;j are the strain rate tensor and stress deviation tensor,
respectively.

For the pressurized cylinder under consideration, cylindrical
coordinates are used with z being the axial direction and r and  being
the radial and circumferential directions, respectively. The nonzero
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stress and strain rate components are 0p, 02, Toz, &, €0, €2, and Yg;.
Equations (1)-(3) become

2
-t
m
& = 1o, — o, ®)
m
and
0=V 09— 050, + 052+ 3752 (6)

Since plane sections remain plane, the strain rate distribution is
linear

Rsinf
b= —, (7)
p
where R is the radius of the cylinder, p is the radius of curvature rate
due to bending.
The equilibrium equations are as follows:
o9 = PR/h, 74, =T/27R2h, (8)
and
2
M =R% f o sin 9d6, ©)
0

where P is the internal pressure, T is the twisting moment, M is the
bending moment, and A is the thickness of the cylinder.
Let

g, = ao/2 + f(8). (10)
Then, equations (5)—(7), and (10) yield
2 i 2
F4(6) + {iﬂ os? + 31022}1‘2(0) - ['”—}1,—33‘—" =0,
Consequently
3 2 2p\2
fo) = \/\/(g o + g 7022) + (mle) sin?f — (g 0 + g Tﬂz2)
(12)

Substituting equations (10) and (12) into equation (9), in view of
equation (8), we have

M = 4R%hm /7 fzw/\/1 (5)2 sin?f — 1sin8d, (13)
0 n.

where

£=R/p,

S{PR}Z 3l T ]2
p=—{—t +—3——1 -
8 lmh 2 127R2%hm

Performing the integration, see Appendix, leads to

and

(14)
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which is in qualitative agreement with the bulk of our experimental
knowledge. For a Gaussian surface roughness, 8 can also be approx-
imated by (B) over several decades of the imposed normal load N.
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Fig. 1 Dimensionless moment—curvature rate relation for varfous P
and F

2
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where

k=@ 1—-————1——<1, (16)

2 £\2

1+ (-)

1

and F (7/2, k) and E (r/2, k) are the complete elliptic integrals of the
first and the second kinds, respectively. Equation (15) is plotted in
Fig. 1 for various values of 1.

Guided by Edstam and Hult [1], the “stress ratio” ¢ is defined by
the relation

_ oy
P o
where
M \2
TUN2 = 2
0P = m {2 * (szhm) / "] a8
and
T2 = ym2{1 + /1 + (E/)3) (19
Consequently,
¢2 = 1+ A4 1+ (5/77)2 (20)

2+ (M/xR*hm)?/y

Substituting equation (20) into equation (15) leads to the interac-
tion equation for M, P, and T'. For the case, there is no twisting mo-
ment, Table 1 shows these results along with the results of (1). As can
be seen that for ¢ = 0.999, the difference between the present value
with (1) is 18 percent.

Conclusions

A closed-form relation has been established for the bending and
twisting of an internally pressurized thin-walled cylinder which obeys
the Bailey-Norten type power law with n = 2. Dimensionless charts
which can be used for engineering practice convenience have also been
provided. The result presented herein (n = 2) is not only a good ap-
proximation of a wide class of materials, but also provides a standard
tool for estimating the accuracy of different direct schemes such as
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Table 1
PRB/M
6
Edstam
Present s Hult
0.9 0.03 0.00
0.92 0.13 *
0.95 0.24 0.22
0.96 0.28 *
0.97 0.34 *
0.98 0.42 0.43
0.99 0.56 0.58
0.992 0.60 *
0.994 0.67 *
0.995 0.71 0.73
0.996 0.76 *
0.997 0.83 *
0.998 0.94 *
0.999 1.15 1.36

* not presented

numerical and finite-element

methods.

integration, finite-difference,
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APPENDIX

M = 4R%m /7 j; P VI + En)en 6 — 1sin 6df

Let
VI+(Em?sin?0 =8
Then
&m S VI+ER? - B
Let
u=+/B=1 and dv= pap

V1+ E/mE -6
Then, fudv = ur — §vdu leads to
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Note that the first term on the right-hand side is zero, and that the
second term can be evaluated from [2, Page 235}, then we have
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Introduction

The dynamic elastoplastic behavior of rectangular plates is studied
by applying finite-element idealization and numerical integration.
Step-by-step response is obtained by using explicit schemes and the
effects of plastic flow are incorporated through the initial strain ap-
proach. Inelastic analysis is carried out by applying the explicit
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elastoplastic matrix relation that relates stress increments to total
strain increments. The analysis is restricted to small deformations,
the material is assumed to obey the von Mises yield criterion, and the
stress-strain curve is taken to be bilinear. The computational details
of the analysis are given in references [1, 2].

Results and Discussion

The response of rectangular plates is found using the 12-degree-
of-freedom compatible element due to Bogner, et al. [3], which is based
on Hermitian interpolation polynomials. Lumped mass matrix with
geometric lumping was used. Responses were evaluated using a
fourth-order Runge-Kutta scheme of Gill. Results are presented in
Figs. 1-4 in terms of the nondimensional parameters 8, q, 6, and A
defined as 0 = ¢/T, ¢ = p/py, 6 = 8/(q - 6y), A = Vo/V,,and V, =
pyYT1/(10 m) = &k~ ao/[pE/(1 — v2)]V/2, where t = time, T'; = funda-
mental period, p = applied distributed load, py = static yield load,
6 = deflection of central point, 8y = static deflection under py, Vo
= applied uniform impulse, V,. = reference velocity, m = mass per unit
area, o9 = yield stress, p = mass density, v = Poisson’s ratio, E =
Young’s modulus, and % is a constant. For a simply supported square
plate of side @, py = Mo/(0.048 a2), dy = 0.00406 Cq, T = C¢/18.73,
and k = 0.576 where Mo = aoh?/4, C1 = pyai/D, cs = 2wa2(m/D)%s
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fourth-order Runge-Kutta scheme of Gill. Results are presented in
Figs. 1-4 in terms of the nondimensional parameters 8, q, 6, and A
defined as 0 = ¢/T, ¢ = p/py, 6 = 8/(q - 6y), A = Vo/V,,and V, =
pyYT1/(10 m) = &k~ ao/[pE/(1 — v2)]V/2, where t = time, T'; = funda-
mental period, p = applied distributed load, py = static yield load,
6 = deflection of central point, 8y = static deflection under py, Vo
= applied uniform impulse, V,. = reference velocity, m = mass per unit
area, o9 = yield stress, p = mass density, v = Poisson’s ratio, E =
Young’s modulus, and % is a constant. For a simply supported square
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and D = Eh3/{12 (1 — »?)} where h = thickness of the plate. For a
clamped plate, py = M/(0.053 a2), 5y = 0.00126 Cy, T1 = C2/36, and
k = 0.294.

The responses of a clamped plate under the action of three different
pulses are shown in Fig. 1. The pulse parameters, for comparison, are
chosen on the basis of equal area and equal duration. Here the ordi-
nate refers to the nondimensional response obtained for impulsive
load. It is seen that, for a pulse period of §; = 0.11, the influence of
pulse shape is not significant, and that for this pulse duration the
impulsive approximation, predicts a response that is close to the actual
one. For #; = 0.22, however, the influence of pulse shape is more
pronounced, and, the impulsive approximation results in a large upper
bound to the actual response.

In Figs. 2-4, the propagation of the plastic zones is presented for
uniformly loaded and impulsively loaded plates. These results are
obtained by defining yielding of the entire thickness on the basis of
fully plastic moment and by using a 3 X 3 mesh and four Gaussian
subdivisions in each element. In the case of uniformly loaded plates
(Fig. 2) predictable patterns of plastic zones are observed. In fact they
are in good agreement with the results obtained by Ang and Lopez
[4] in their studies on the limit analysis of plates. In the case of im-
pulsive load, however, no definite pattern is noticed (Fig. 3). A com-
parison between Figs. 3(b) and 4 reveals that the mode of propagation
of plastic zones in an impulsively loaded plate is a function of the
initial velocity (A).

During the initial phase of the response, the nodal displacements
do not conform to the static deflection shape, and at such instances
the maximum moment may not be at the centre or the edges. In an
impulsively loaded plate, yielding is almost instantaneous, and, it
appears that because of this the plastic zones do not follow any pre-
dictable pattern.
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where the principle of least work was used to calculate the stress
distribution in a clamped plate. A schematic diagram of the plate is

= X seen in Fig. 1. The calculations are based on the assumption that the
h . ‘ stress in the film plane o, can be written as
e oxx = f1(x) + yfa(x) + y*fa(x) 1)
Following Aleck’s solution,
] Oxx 3 6 X
—— e = Y- i—1 h )\ -1
Y EAaAT i§1 ,El y T oS Ax
Fig. 1 Schematic diagram of a clamped plate subject to stress given by Ty 3 yi .
equation (1) FAaAT i§1 j§1 A,-,-T A;j sinh Ajx-
Tyy 3.6 i+1
—_—= A;j———\;2 cosh A\jx, 2
FAaAT & S i r N cosh A @
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Fig. 2 Stress distribution in a clamped plate L/2h = 1, y = 0.25, y = 1 according to equation (2), ( a) computed with coefficients of Table 1, (b) computed
with the coefficients of Aleck’s paper [1]

Table 1 Calculated values of A;, Az;/ Ayj, and Ag;/ Ay for v = 0.25
Aj Agj/Ayj
—9.269707015

Asj/Ayj
13.29296812

21.46929445

6.555641247 + 2.811853236i
6.555641247 — 2.811853236i1
2.580328004 + 1.339360994i
2.580328004 — 1.339360994i
1.000579564

TR WD = |~

—17.228832564 + 0.3938203841i
—7.228832554 — 0.3938203841i
—4,275900625 + 0.5528040859i
—4.275900625 —~ 0.5528040859i
—0.1308266266

8.305571674 — 0.9943166057i

8.305571674 + 0.9943166057i

3.137293505 — 0.4612713004i

3.137293505 + 0.4612713004i
—0.778698474
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Fig. 5 Stress distribution in a clamped plate L/2h = 5, v = 0.25, according to equation (2)

where E is the Young’s modulus, Aw is the differential thermal ex-
pansion coefficient, and AT is the temperature difference, so that
AaAT is the total thermal expansion of the plate relative to the
clamping member. The nondimensional variables x and y are nor-
malized to the plate thickness k. The coefficients A;; depend on L/2h
and Poisson’s ratio v, and the A;’s depend on ».

The solution of equation (2) involves finding the condition where
a determinant equals zero [1]. A computer was used to find the roots
of the polynomial associated with this determinant and to determine
the values for Aj and A;;. A measure of the accuracy of the calculation
is how closely the determinant approaches zero upon substitution of
the roots. The complex roots obtained by us result in zeros better than
10712, whereas the roots given by Aleck lead to values in the range of
7.5 X 1075 — 10710,

Although the A;;’s depend on L/2h, the ratios of Agj/Ay; and Ag;/
Ajj are independent of L/2h. Values of the coefficients A, Agj/Ay;,
and Ag;/Ay; for v = 0.25 are given in Table 1.

We find that the values of A and A3 in particular differ from those
of Aleck and consequently the coefficient ratios also differ signifi-
cantly. Correspondingly, the calculated o4y, 7«y, and oy, are consid-
erably different from the previously reported values [1, 2]. In Fig. 2
we have compared the stress distribution in a clamped plate for the
case of y = 1 and L/2h = 1 using our coefficients with that using Al-

Journal of Applied Mechanics

eck’s coefficients. Figs. 3, 4, and 5 show stress distributions using our
coefficients over the range 0 <y < 1and L/2h = 0.25,1, and 5.
Finally, the stress calculations were extended to a polynomial
containing four terms,
oxx = f1(x) + yfalx) + y¥falx) + y3falx) (3)
The corresponding stress equations are,
8

— = § S Auyi=leosh hix — 1
EAaAT S /57Y ;

Txy 4 yi .
EAaAT AL\, sinh s
EAaAT igljgl i Aj sinh A\jx

Tyy 4 yitl
Ty Asi N2 cosh \; \
EhadT 5 5 T M s v (4)

It was found that the additional term in equation (3) does not alter
the stress distribution significantly.
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A Reinterpretation of the
Palmgren-Miner Rule for
Fatigue Life Prediction!

M. Ben-Amoz.2 The author is to be commended for attempting
to present a simple theory of interaction under cyclic loading that
takes into account sequence-of-loading effects. Despite its apparent
simplicity, the fact that the theory depends on the existence of a fa-
tigue limit in all metals, raises some questions in the writer’s mind
which deserve discussion. This writer, unaware of the author’s work,
has developed in the past two years in unpublished work, a phe-
nomenological model of metal fatigue for constant amplitude cycling,
which was used as the basis for a theory of interaction under multi-
stage loading, quite different from the author’s. The writer believes
that discussion of his results in this forum would be of interest to
JOURNAL readers as well as to the author in clarifying the significance
of the Palmgren-Miner rule and the author’s own theory. For sim-
plicity, the discussion will be confined to two-stage strain cycling, and
to metals obeying the Coffin-Manson fatigue law, namely, Aep = 2
ef (2N) =M1, where Aep is the plastic strain-range; ef, the true fracture
strain and N is the fatigue life; M1 is a constant, characteristic of the
metal. In log-log coordinates, the fatigue curve for single-stage cycling
is thus a straight line emanating from Aep = 2ef at N = 3, as shown
in Fig. 1 of this discussion. The writer, in contrast to the author’s as-
sumption, accepts the fact that some metals possess an endurance

* limit while others do not. Accordingly, attention will first be focused
on metals without an endurance limit, in which case the straight line
fatigue curve is assumed to be valid over the entire range 3 S N < o,
Let us now consider 2-stage cycling from low to high strain amplitudes
corresponding to Nz and N fatigue lives, respectively, as shown in
Fig. 1. Assume that ny cycles are applied at the lower strain amplitude
(N2) and it is desired to determine the residual life N1 at the higher
amplitude (N1). Actually, we shall seek to determine bounds on the
residual life at the higher amplitude. In doing so, it is worth empha-
sizing an overlooked fact that the true fracture strain in the Coffin-
Manson relation is actually a cyclic ductility which is assumed to be
approximately equal to the monotonic ductility. In many (but not
all) metals, the reduction in ductility due to cycling is quite small (but
finite) so that this assumption is acceptable as an approximation.
Keeping this fact in mind, one must allow for possibly larger reduc-
tions in cyclic ductility in some metals. Accordingly, let us assume that
the residual fatigue life (RL) curve passing through No™ = Ny ~ ng
is parallel to the base fatigue curve, as in Fig. 1. This curve corresponds
to the maximum possible reduction in cyclic ductility and thus pro-
vides one bound on the actual RL curve passing through No” = Ny
~ ng. A second bound is obtained if one assumes no reduction in
ductility, so that the RL curve converges to the base curve at N = 3,
Corresponding to the two RL curves, are the bounds N1” min and N,"

1 By Z. Hashin, and published in the June, 1980, issue of the ASME JOURNAL
OF APPLIED MECHANICS, Vol. 47, pp. 324-328.

2 General Electric Company, 1000 Western Ave. (240G7), Lynn, Mass.
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Fig. 1 Bounds on residual life curves passing through N»” = N — n, for
low-high {(L-H) and high-low (H-L) cycling in metals without endurance
limit

max, which from simple geometric relations (in log-log coordinates)
are

ng log 2N1/log 2Ng
Ny N N>

It is seen that the lower bound represents the Palmgren-Miner
straight line while the upper bound involves only the two endurances
N1, No. It is thus clear that if a metal undergoes a large reduction in
ductility due to cycling, the interaction curve would approach the
Palmgren-Miner line whereas if the reduction is neglibible (as in the
case in most metals), the interaction curve approaches the upper
bound. It is easy to show, based on Fig. 1, that by interchanging the
bounds in (1), we obtain bounds for high-to-low cycling. Furthermore,
the bounds (1) remain valid even if an endurance limit exists, provided
both stages lie above or below the transition fatigue life N7, Only in
the exceptional case when one stage lies above and the other below
Nr, different bounds apply. Such bounds have been egtablished, in-
volving N rather than the endurance limit, but are omitted due to
space limitations.

(N1< Ny) (1)

T. Bui-Quoc.? The author’s suggestion! that the linear damage
(Palmgren-Miner) rule is a special case of the “‘generalized theory of
fatigue lifetime prediction” proposed in [1] is of interest, but some
features of the demonstration, in the discusser’s opinion, warrant a
more elaborated treatment. The major points noted are as follows:

1 What is the basis for the simplifying assumption used in the
author’s paper! that the endurance limit of a fatigued specimen is
identical to that corresponding to the original material? This does not

3 Associate Professor, Section of Applied Mechanics, Department of Me-.
chanical Engineering, Ecole Polytechnique, Montreal, Canada.
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reflect, in general, the material behavior {2, 3] and, in fact, the strength
reduction associated with the original endurance limit has been taken
into consideration in several investigations [4-7].

2 In [1], the general theory has been presented with four alter-
native procedures for estimating the remaining lives of a material
under multilevel loading, i.e., two types of o-N diagram (log-log and
semilog coordinates) combined with two convergence points of iso-
damage lines (the upper point corresponding to the ultimate tensile
stress and the lower-point corresponding to the endurance limit).
Experimental support has been given for one procedure only (asso-
ciated with the lower convergence point) in the case of a sequence of
loading with two stresses.

It appears that the estimated remaining lives depend primarily
upon the convergence point consideration. As an example, for two
decreasing stresses, i.e., s1 > s, the predicted sum of life-fractions at
failure, i.e., Z(n/N), is larger than unity with the upper-conver-
gence-point consideration and this sum is smaller than unity when
the lower-convergence point is used. What is the potential of appli-
cability of each procedure, as well as its limitations?

Since semilog coordinates are commonly used to plot experimental
results in the o-N diagram, and since the data may be reasonably
represented by a straight line in most cases, the further points in this
discussion are presented on the basis of this type of plot. With this
consideration, the general theory is reduced to two major alternatives
characterized by the convergence points.

3 Let us examine a particular case of loading involving two de-
creasing stresses applied to a material with a typical value of s, = 0.4.
According to the author’s paper,! when the two stresses are close to
the ultimate tensile strength, say within 1.0-0.8, it is expected that
the sum of the cycle-ratios at failure is greater than unity (upper-
convergence-point method); on the other hand, when the two stresses
are in the neighborhood of the endurance limit, say, within 0.6-0.4,
it is expected that this sum is smaller than unity (lower-conver-
gence-point procedure). Thus, in the middle range of stresses, i.e.,
0.8-0.6, would the linear damage rule be valid? If it is not the case, how
may one determine the specific stresses which delimit the two zones?
How can one consider the case where the two stresses are not in the
same zone?

4 Concerning the upper-convergence-point method, a similar
concept has been proposed by Manson, et al. [6]. Fig. 2 of this dis-
cussion shows the method in [6] in comparison with the author’s
procedure for a typical case of loading (two decreasing stresses). The
localization of the convergence points being of little importance for
the purpose of the present discussion, the main difference between
the two propositions is the starting point of the procedure to follow
in order to obtain the remaining life (point A in Fig, 2). As a conse-
quence, the estimated sum of cycle-ratios at failure given by the
procedure outlined in Fig. 2(a) is opposite that obtained from the
technique described by Fig. 2(b); the latter sum is in good agreement
with test results reported in [2, 8]. Is there experimental evidence to
support the approach in Fig. 2(a)?

5 Regarding the lower-convergence-point technique, what is the
difference between the method advanced by Subramanyan [8] and
the technique outlined by the author?!

6 An example is given in the author’s paper! concerning the se-
quence of m stages of regularly increasing (or decreasing) stresses
specified by two extreme levels s and s,,. With m different stresses
imposed (see the author’s Fig. 5) there are (m — 1) stress intervals,
ie.,

As = Sm — 81
m-—1

It is not clear why the denominator in the author’s equation (31)!
is m.

7 Tt is not easy to see how the Palmgren-Miner rule is obtained
as a special case (author’s equations (26) and (27)) when ¢, = con-
stant. Then with ¢, = constant (= B, say), equations (28) and (30)
become .

dr =sp ~Se =B
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Fig. 2 Comparison between the two life-prediction methods proposed by
Hashin and Manson, et al, (upper-convergence point)

b _ _log (Np/Ne) _
dr-1 log (Nx—1/N,)

Thus, for a given material, since s, (or N,) is a fixed value, s, (or Nj,)
should also be a fixed value for all stress levels considered in the se-
quence, according to the two foregoing equations. If there is no change
in the stress levels, there is no cumulative damage in the usual sense
requiring at least two distinct levels of solicitation. Note further that,
in this case (no stress change), any fatigue damage theory yielding a
normalized damage function (including stress-dependent cases) is
equivalent to the linear damage rule on the basis of cycle-ratio cal-
culations {9].
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DISCUSSIONS

Author’s Closure

1 very much appreciate the discussers’ interest and comments. May
I say before attempting to answer that the present paper and its
predecessor [10] should not be construed as an attempt to give a de-
finitive solution to the cumulative damage problem. Their purpose
is to present a rational point of view based on the damage curve con-
cept and the equivalent loading postulate. Since the damage curves
are not known, simple ad hoc forms have been assumed in order to
obtain results. It is to be hoped and expected that better damage
curves will be given in the future. The equivalent loading postulate
is the key to lifetime analysis for any loading program, the damage
curves being sufficient information for this purpose. Thus the main
achievement, if any, is construction of a theory and not the actual
results given. The chief shortcoming of the theory given is not in that
damage curves are not sufficiently accurate or that the fatigue limit
has been assumed constant, but in that scatter of data is not in-
cluded.

Now to the comments of Professor Bui-Quoc considered sequen-
tially, but first a correction in reference to his opening sentence.
Whether or not this cumulative damage theory is accepted, it has been
shown, not suggested, that it incorporates the Palmgren-Miner rule
as a special case.

1 The basis for the assumption of constant fatigue limit is that
no one knows its dependence on arbitrary cyeclic loading histories.
Discusser’s references are concerned with fatigue limit dependence
on simple loading histories. Such information is not sufficient for
generalization of the theory to history-dependent fatigue limit.

2 As has been said previously, the damage curves are not known.
It is possible to construct damage curves of second order in log n which
would converge into the static ultimate and fatigue limit. This com-
plicates the mathematics considerably. Linear damage curves (lines)
which converge into the fatigue limit show trends observed in metals,
ie.,, Zn/N>1 for low-high two-stage loadings and the reverse for
high-low loadings. Therefore they have been used (successfully) for
metal fatigue data. Unidirectional fiber composites sometimes exhibit
reverse trends but the evidence is not conclusive. The damage lines
converging into static ultimate are thus of potential utility for such
materials.

3 Again, the damage lines used should not be considered defini-
tive. It has been shown in paper under discussion that for two-stage
loading the sum of cycle ratios (PM coefficient) is larger than 1 for
low-high and smaller than 1 for high-low when the slope of the damage
curves is smaller than that of the S-N curve. Since such trends are
generally observed in metals it seems reasonable to use this kind of
damage curves for metals. The simplest such damage curves are
straight lines converging into the fatigue limit.

When approaching the s-axis the damage curves must ultimately
change slope and converge into the static ultimate. How and where
this takes place is not known. Near the static ultimate there must be
a region where the slope of the damage curves becomes larger than
that of the S-N curve thus reversing previously described trend.
However, this portion of the S-N curve is not well known because of
the considerable scatter due to failure occurring after a small number
of cycles.

4 The relation between discusser’s (Bui-Quoc) Fig. 2 and our
method is not clear to me, since we would use damage lines converging
into the fatigue limit which is not the case in the figure, Our predic-
tions are in good agreement with data obtained by Manson, et al., as
shown in our paper.

5 Iam grateful for the reference to this paper of which I was not
aware. This author has also used straight damage lines converging into
fatigue limit thus arriving at some of our results without, however,
attempting to give underlying reasons or to develop a general
theory.

6 May I be forgiven for this misprint.

7 When the ¢ are all constant and equal, all exponents in (26)
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are equal to one and the PM rule is obtained. When the ¢;, are given
by either of (27)-(29) they are obviously not constant.

Dr. Ben Amoz’ approach and comments are interesting but are not
related to the present work in obvious fashion. Our theory does not
assume that all metals have fatigue limits as indeed it is not confined
to metals. The only material information which enters into the theory
is damage curves for two stage loadings and the absence of a fatigue
limit will require damage curves which take this into account. Fur-
thermore, the information contained in the Coffin-Manson fatigue
law or any other such relation does not enter into the theory. It is
perhaps of interest to mention that the present theory has been suc-
cessfully applied to two-stage strain cycling, [L1]. For such cycling a
fatigue limit is not experimentally detectable but that does not mean
that it does not exist. In the paper mentioned the fatigue limit was
estimated on the basis of persistent slip band considerations.
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The Flow of a Non-
Newtonian Fluid
Past Projections and
Depressions!

Vivian O'Brien.2 The boundary integral approach to study
two-dimensional second-order fluid pressure fields is a welcome ad-
dition to more conventional finite-difference or finite-element
methods. But the paper “The Flow of a Non-Newtonian Fluid Past
Projections and Depressions”! seems to be only the introductory
chapter. Undoubtedly, as the authors say, the method is applicable
to more arbitrary geometries than rectangular depressions, but un-
fortunately such results were not described. Schubert’s conformal
mapping of an unbounded Couette shear flow past circular arc pro-
jections or depressions was cited, with the statement that conformal
transformations “cannot be used” for internal shear flow over more
arbitrary shapes. On the contrary, we have used conformal mappings
to model pulsatile axisymmetric viscous flow over smoothly varying
projections [1, 2]. The same analytic mapping functions can be used
for corresponding two-dimensional configurations, with a uniform
velocity boundary condition on the flat plane for Couette shear flow.
Moreover, various numerical mappings can be applied to any shape,
and the resulting transformed equations solved by finite-difference
methods [3].

Lest the reader come away with some incomplete ideas regarding
the present Newtonian results presented in footnote 1 for creeping
Couette flow over rectangular slots, it would have been instructive
to compare the calculations to earlier Stokes solutions (none cited).
For example, it had been shown that circulation patterns in the slots
depend on two geometric ratios, d/w and D/d [4], where d and w are,
respectively, the depth and width of the slot depression and D is the
channel depth. Not only can there be one large vortex spanning the
slot or two vortices side-by-side,! but for fixed D/d as d/w — 0 the two
vortices get isolated in the corners and as d/w — « a vertical line of
central vortices of alternate sign appears. The heights of these vortex

1By A. Mir-Mohamad-Sadegh and K. R. Rajagopal and published in the
September, 1980, issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol.
47, pp. 485488,

2 Applied Physics Laboratory, The Johns Hopkins University, Johns Hopkins
Road, Laurel, Md. 20810.
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1 very much appreciate the discussers’ interest and comments. May
I say before attempting to answer that the present paper and its
predecessor [10] should not be construed as an attempt to give a de-
finitive solution to the cumulative damage problem. Their purpose
is to present a rational point of view based on the damage curve con-
cept and the equivalent loading postulate. Since the damage curves
are not known, simple ad hoc forms have been assumed in order to
obtain results. It is to be hoped and expected that better damage
curves will be given in the future. The equivalent loading postulate
is the key to lifetime analysis for any loading program, the damage
curves being sufficient information for this purpose. Thus the main
achievement, if any, is construction of a theory and not the actual
results given. The chief shortcoming of the theory given is not in that
damage curves are not sufficiently accurate or that the fatigue limit
has been assumed constant, but in that scatter of data is not in-
cluded.

Now to the comments of Professor Bui-Quoc considered sequen-
tially, but first a correction in reference to his opening sentence.
Whether or not this cumulative damage theory is accepted, it has been
shown, not suggested, that it incorporates the Palmgren-Miner rule
as a special case.

1 The basis for the assumption of constant fatigue limit is that
no one knows its dependence on arbitrary cyeclic loading histories.
Discusser’s references are concerned with fatigue limit dependence
on simple loading histories. Such information is not sufficient for
generalization of the theory to history-dependent fatigue limit.

2 As has been said previously, the damage curves are not known.
It is possible to construct damage curves of second order in log n which
would converge into the static ultimate and fatigue limit. This com-
plicates the mathematics considerably. Linear damage curves (lines)
which converge into the fatigue limit show trends observed in metals,
ie.,, Zn/N>1 for low-high two-stage loadings and the reverse for
high-low loadings. Therefore they have been used (successfully) for
metal fatigue data. Unidirectional fiber composites sometimes exhibit
reverse trends but the evidence is not conclusive. The damage lines
converging into static ultimate are thus of potential utility for such
materials.

3 Again, the damage lines used should not be considered defini-
tive. It has been shown in paper under discussion that for two-stage
loading the sum of cycle ratios (PM coefficient) is larger than 1 for
low-high and smaller than 1 for high-low when the slope of the damage
curves is smaller than that of the S-N curve. Since such trends are
generally observed in metals it seems reasonable to use this kind of
damage curves for metals. The simplest such damage curves are
straight lines converging into the fatigue limit.

When approaching the s-axis the damage curves must ultimately
change slope and converge into the static ultimate. How and where
this takes place is not known. Near the static ultimate there must be
a region where the slope of the damage curves becomes larger than
that of the S-N curve thus reversing previously described trend.
However, this portion of the S-N curve is not well known because of
the considerable scatter due to failure occurring after a small number
of cycles.

4 The relation between discusser’s (Bui-Quoc) Fig. 2 and our
method is not clear to me, since we would use damage lines converging
into the fatigue limit which is not the case in the figure, Our predic-
tions are in good agreement with data obtained by Manson, et al., as
shown in our paper.

5 Iam grateful for the reference to this paper of which I was not
aware. This author has also used straight damage lines converging into
fatigue limit thus arriving at some of our results without, however,
attempting to give underlying reasons or to develop a general
theory.

6 May I be forgiven for this misprint.

7 When the ¢ are all constant and equal, all exponents in (26)
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by either of (27)-(29) they are obviously not constant.

Dr. Ben Amoz’ approach and comments are interesting but are not
related to the present work in obvious fashion. Our theory does not
assume that all metals have fatigue limits as indeed it is not confined
to metals. The only material information which enters into the theory
is damage curves for two stage loadings and the absence of a fatigue
limit will require damage curves which take this into account. Fur-
thermore, the information contained in the Coffin-Manson fatigue
law or any other such relation does not enter into the theory. It is
perhaps of interest to mention that the present theory has been suc-
cessfully applied to two-stage strain cycling, [L1]. For such cycling a
fatigue limit is not experimentally detectable but that does not mean
that it does not exist. In the paper mentioned the fatigue limit was
estimated on the basis of persistent slip band considerations.
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Past Projections and
Depressions!

Vivian O'Brien.2 The boundary integral approach to study
two-dimensional second-order fluid pressure fields is a welcome ad-
dition to more conventional finite-difference or finite-element
methods. But the paper “The Flow of a Non-Newtonian Fluid Past
Projections and Depressions”! seems to be only the introductory
chapter. Undoubtedly, as the authors say, the method is applicable
to more arbitrary geometries than rectangular depressions, but un-
fortunately such results were not described. Schubert’s conformal
mapping of an unbounded Couette shear flow past circular arc pro-
jections or depressions was cited, with the statement that conformal
transformations “cannot be used” for internal shear flow over more
arbitrary shapes. On the contrary, we have used conformal mappings
to model pulsatile axisymmetric viscous flow over smoothly varying
projections [1, 2]. The same analytic mapping functions can be used
for corresponding two-dimensional configurations, with a uniform
velocity boundary condition on the flat plane for Couette shear flow.
Moreover, various numerical mappings can be applied to any shape,
and the resulting transformed equations solved by finite-difference
methods [3].

Lest the reader come away with some incomplete ideas regarding
the present Newtonian results presented in footnote 1 for creeping
Couette flow over rectangular slots, it would have been instructive
to compare the calculations to earlier Stokes solutions (none cited).
For example, it had been shown that circulation patterns in the slots
depend on two geometric ratios, d/w and D/d [4], where d and w are,
respectively, the depth and width of the slot depression and D is the
channel depth. Not only can there be one large vortex spanning the
slot or two vortices side-by-side,! but for fixed D/d as d/w — 0 the two
vortices get isolated in the corners and as d/w — « a vertical line of
central vortices of alternate sign appears. The heights of these vortex
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patterns depend on D/d and also on the shear flow velocity profile
[4]. Poiseuille flow produces a slightly different circulation pattern
from a Couette flow in the same geometry and thus also a different
second-order fluid pressure effect [5].

The nonlinear influence of the Reynolds number is not mentioned
in the paper,! but applies to many experimental situations. Townsend
[6] has included the nonlinear convective term for second-order
Poiseuille flow over slots. Perhaps the authors will demonstrate that
the boundary integral method can be extended to these cases.
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ERRATUM

Erratum on “Free Vibration of a Beam Supported by Unsymmet-
rical Spring Hinges,” by R. C. Hibbeler, and published as a Brief Note
in the June, 1975, issue of the ASME JOURNAL OF APPLIED ME-
CHANICS, Vol. 42, pp. 501-502,

The boundary condition, equation (3), should include a minus sign,
ie.,

—y(l,t)= —EI 2y(l t) (3)

Consequently, the frequency equation, equation (7), is then

K
2(knl)? tan knl tanh k,l + (I;}l 2’) (knl) (tan k!
Kl Kzl)( S
— tanh kul) — =0 (7
an ) ( )( cos k,,l cosh k,l ™

Table 1 is not affected significantly; however, a corrected version
can be obtained from the author (P.O. Box 40141, Lafayette, La.
70504).

The author wishes to thank Messrs. G. Prathap and D. Nigogi who
brought this matter to his attention.
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Dynamical Systems and Evolution Equations: Theory and Ap-
plications. By J. A, Walker. Plenum Publishing Corp. New York.
1980. Pages viii—236. Price $29.50.

REVIEWED by T. K. CAUGHEY!

This is the first book to give a systematic account of the consider-
able progress which has been made in extending the geometrical
methods, developed for ordinary differential equations, to systems
whose evolutionary equations are partial, delay or functional differ-
ential equations. The difficulty with such systems is that their state
spaces are infinite dimensional and not ideally compact, unlike or-
dinary differential equations where state spaces are finite dimen-
sional.

The book is organized into five chapters. The first chapter discusses
the general ideas and illustrates the techniques for finite dimensional
systems. Chapters II, III, and IV extend the introductory treatment
of Chapter I to a general metric space framework. Chapter II sum-
marizes much of the mathematics needed for this extension, Chapter
II1 discusses abstract evolution equations in Banach spaces and
Chapter IV describes some of the more useful ideas of topological
dynamics. The extension of Liapunov’s direct method for investi-
gating stability and asymptotic behavior by the invariance principle
is studied in some detail. Attention is focused throughout the book
on dynamical systems (the autonomous case) while processes (the
nonautonomous case) are mentioned only briefly. Chapter V contains
some recent applications of the theory to physical systems ranging
from supersonic panel flutter to the stability of a nuclear reactor.

Interferometry by Holography. By U. 1. Ostrovsky, M. M. Butosov,
and G. V. Ostrovskaya. Springer-Verlag, Berlin, Heidelberg, New
York. 1980. Pages 330. Price $35.90.

REVIEWED by F. P. CHIANG?

In the late sixties and early seventies there had been a saying to the
effect that the only useful application of laser is in holography and
the only useful application of holography is in holographic interfer-
ometry. To a certain extent the statement is still true today. Nu-
merous articles and books have been written on the subject of holo-
graphic interferometry. However, most of them assume the reader
to have a good knowledge of optics and many even assume the fa-
miliarity of communication theory. This is so, because most of the
authors are electrical engineers in whose field modern optics has been
residing for the past two decades. (Indeed, it is the recognition of the
formal analogy between optics and communication theory that has
prompted the rapid development of modern optics.) As a result me-
chanical engineers, material scientists, biologists, etc., who have little
or no training in optics are handicapped in their quest to enter the
field. It is with these people in mind that the authors have set out to

1 Professor, Mail Code 104-44, California Institute of Technology, Pasadena,
Calif. 91125.
2 Senior Visiting Fellow, Physics and Chemistry of Solids, Cavendish Lab-
%ratoll;y), Cambridge University, England (on sabbatical leave from SUNY, Stony
rook.
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write the book. In my opinion they have largely succeeded in their goal
of bringing the subject matter closer to the uninitiated.

The book is divided into five chapters. The first (with 83 pages)
deals with the general principles of light interference, classical in-
terferometry, holography and holographic interferometry. The in-
clusion of classical interferometry is rather unique and quite useful
because classical and holographic interferometric methods are closely
related. The sections on holography and holographic interferometry
are clearly written without the unnecessary mathematical jargon. The
second chapter entitled “experimental techniques” (60 pages) gives
a good account of the hardwares needed for performing holographic
interferometry. Items discussed range from lasers, recording materials,
and vibration tables to pinhole filters, beam splitters, and hologram
fasteners. The next three chapters are on applications. The most
comprehensive is the one on the “investigation of phase inhomo-
geneities” (Chapters 8, 86 pages) which reflects the authors personal
experiences in the field. Detailed descriptions of various methods are
given including many examples in the studies of plasma and gas dy-
namics. The next chapter (58 pages) is on the measurement of (de-
formation induced) displacements, generation of surface contours,
and detection of flaws. The part of deformation measurement is
perhaps the weakest of the entire book. Only general principle of
deducing displacement vector from a deformed three-dimensional
object is outlined. No discussion is given to the calculation of stress
or strain; and the only quantitative example is that of a cantilever
beam. The final chapter (25 pages) is on the “studies of vibration,”
which is perhaps the most important engineering application of ho-
lographic interferometry and is well presented in the chapter.

The book also has some other minor blemishes: there are quite a
few typographical errors, the English could stand some improvement,
etc., but on the whole, it is a valuable addition to the literature. I
recommend it to anyone who is interested in the applications of ho-
lographic interferometry.

Rheology. Edited by G. Astarita, G. Marrucci, and L. Nicholais.
Proceedings of the Eighth International Congress of Rheology.
Naples, Italy. 1980. Plenum Publishing Corp., New York. Vol.
1, pp. xvi-421; Vol. 2, pp. xxv-677; Vol. 3, pp. xx1ii~785. Price Vol.
1, $45; Vol. 2, $69.50; Vol. 3, $69.50.

REVIEWED BY R. M. CHRISTENSEN?

The Proceedings of this congress provide a useful and very broad
cross section of contemporary work in rheology. The subjects span
solid, fluid behavior, macroscopic, molecular scales of consideration,
and experimental theotetical, and processing lines of investigation.

It is not possible to give a concise survey of the contents, it is simply
too extensive. Rather, a small sampling of the papers may better serve
to provide an indication of the contents. The keynote lecture of the
congress was delivered by C. Truesdell, entitled “Sketch for a History
of Constitutive Relations.” In a lively and interesting account, the use

3 Lawrence Livermore Laboratory, P.O. Box 808, L-338, Livermore, Calif.
94550.
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of the term constitutive relations is traced and the significance of it
is assessed. The invited lectures covered a variety of subjects. For
example, K. Walters and H. A. Barnes discuss the anomalous effects
that are caused by lack of recognition of extensional flow behavior in
some types of viscometers. In fact, if there is one subject that is re-
ceiving the major emphasis in current rheological studiés it is that of
extensional flows for polymer melts. The activity in this area is well
represented in the Proceedings. An informative survey of various
aspects of extensional flow is covered by C. J. S. Petrie and J. M.
Dealy. T. Raible and J. Meissner present experimental results, on
extensional flows, that focuses on the critically important subject of
the existence or nonexistence of a stable steady state, at high rates
of elongation.

In other typical areas, H. Janeschitz-Kriegl surveys flow birefrin-
gence and R. B. Bird discusses bead-spring-rod models of the kinetic
theories for polymer solutions. M. J. Crochet and M. Bézy discuss
numerical solutions for the die entry flow problem, while R. I. Tanner
applies a finite-element approach to the die exit problem, including
the consequent swelling. S. T. J. Peng developes a model for the an-
isotropy of thermal expansion in materials under states of large de-
formation.

Overall, the Proceedings of this congress are highly recommended
to interested workers in mechanics. These three volumes provide a
convenient and useful entry to much of the current work in rhe-

ology.

Creep Analysis. By H. Kraus. John Wiley & Sons. 1980. Pages
xvii-250. Price $28.75.

REVIEWED BY D. L. MARRIOTT!

In the past decade a number of major advances have been made in
creep analysis, mostly concerned with cyclic loading and with damage
accumulation. Although this progress has been widely reported in
scientific papers, little has been done to keep up with the current state
of the art with a textbook. Several collections of papers have been
published in book form, but these lack the continuity of a single author
text. For these reasons Professor Kraus’s book is both relevant and
opportune.

Professor Kraus deliberately confines his treatment of creep to
phenomenological or empirical material descriptions and concentrates
on computational methods of interest to the design analyst.

All the recognized and understood creep phenomena such as steady
state, transient creep, primary, secondary and tertiary phases, variable
and multiaxial behavior are discussed adequately. In addition, recent
progress in description of material and component behavior under
variable loading is reviewed very competently. There are sections on
creep ratchetting and creep fatigue interaction which form excellent
introductions to these two highly topical subjects.

The main thrust of the book is toward analysis of component be-
havior, Professor Kraus is an acknowledged authority in the field of
finite-element analysis. Not surprisingly the application of finite el-
ements to creep problems is well done. It is obviously impossible to
give a full treatment of finite-element analysis as a section of a book
on creep but the basic principles are well laid out, several examples
of analysis of complex structures are given, and there is useful advice
for the newcomer on the availability of standard computer codes.

A large proportion of the book is given over to approximate methods
of analysis such as bounding methods, and reference stress applica-
tions—the latter particularly with reference to creep rupture. The
field of approximate analysis has a long history of application to creep
problems. There was some opinion in the 1960’s that the advent of

4 Visiting Associate Professor, Department of Mechanical and Industrial
Engineering, University of Illinois at Urbana-Champaign, Urbana, Ili.
61801. :

Journal of Applied Mechanics

BOOK REVIEWS

finite-element methods would render all this effort redundant. It is
interesting therefore that use of such methods is still advocated, partly
because of the high cost of exact analysis, but also because of the in-
sight into the basic structural action which is less easy to obtain by
numerical methods. Professor Kraus’s book is the first textbook to
give a full treatment of the developments in approximate analysis
which have occurred in the past 5 years.

One area, not always very well dealt with in textbooks, is the rela-
tionship between research, analysis, and design codes. Professor Kraus
gives a very clear picture of recent ASME Code developments. He
devotes a full section to a discussion of ASME Code Case 1592—the
most authoritative guide available at present for high temperature
design. This section is invaluable to the newcomer to the subject.

This book is written as an introductory text for an advanced subject.
It does not claim to examine the most advanced developments in creep
but is aimed more at setting down in easily understandable form, those
aspects of the subject which can be used to solve current engineering
problems, Its main appeal would be to structural analysts in industry,
and as a textbook for graduate or senior undergraduate specialist
courses. Given this objective the book is well written with clear ex-
planations and amply supplied with worked and unworked examples.
There is no doubt that this text is a welcome contribution to the lit-
erature and should become a standard introductory text.

Dislocations in Solids: Dislocations in Metallurgy. Vol. 4. Edited
gy F. R. N. Nabarro. North-Holland. 1979. Pages viii-464. Price
87.75.

REVIEWED: T. MURA®

This is the fourth.of five volumes devoted to the behavior of dislo-
cations and their influence on the properties of solids. It contains
seven papers concerned with the phenomenon of slip in crystal, the
predominant mechanism of the process of plastic deformation, and
other processes such as precipitation and fracture. The author, title
of paper, and summary of contents of each of these papers are listed
as follows:

R. W. Balluffi and A. V. Granato. “Dislocations, Vacancies and
Interstitials,” pp. 1-133. At the present time, the authors say, there
is still a serious lack of reliable and quantitative information on the
interaction of vacancies and interstitials with dislocations. This is
because the basic properties of the point defects themselves are not
yet well enough established.

As a necessary preliminary, the authors begin with a brief account
of present knowledge of the lattice properties of the vacancies and
interstitials. Then, their interactions with dislocations and the manner
in which they probably diffuse to and along dislocations are discussed.
In the regime of low point-defect concentrations, the types of basic
information on the dislocation climb, the temperature dependence
of the yield stress for locked dislocations, and the striking effects in
superconductors are obtained from internal friction (ultrasonic at-
tenuation or damping) measurements.

The interaction between the hydrostatic component of the elastic
stress field of the dislocation and the dilation due to the defect, elec-
trical interactions in ionic crystals, and the localized vibrational mode
interactions are discussed. Calculations of the configuration and
binding energies of vacancies and interstitials in the cores of dislo-
cations are introduced. No direct measurements have yet been made
of the diffusion rates of either vacancies or interstitials along dislo-
cations. However, several theoretical models and indirect experiments
are proposed. Granato and Liicke consider a dislocation line with two

“types of pinning points (strong and weak pinning points) and calculate

the damping and modulus changes for all frequencies.

5 Professor, The Technological Institute, Department of Civil Engineering,
Northwestern University, Evanston, I11. 60201.
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F. Larché. “Nucleation and Precipitation on Dislocations,”
pp. 134-153. Dislocations can act as catalysts for nucleation of a new
phase in solids. The misfit strain of a precipitate is accommodated
by the strain field of the dislocation, reducing the activation energy
necessary to the formation of a nucleus. The difference between co-
herent and incoherent interfaces is not clearly mentioned in the text
from the mechanical point of view.

P. Haasen. “Solution Hardening in f.c.c. Metals,” pp. 154-189.
The f.c.c. metals have low values of the Peierls-Nabarro force while
b.c.c. metals have its high values. The dislocation theory of solution
hardening depends strongly on the crystal structure. Haasen writes
for f.c.c. metals in this chapter and H. Suzuki writes for b.c.c. metals
in the following chapter.

The elementary interactions between a single foreign atom and a
dislocation on a nearby slip plane, the force to derive a dislocation
through a solid solution at 7" = 0, temperature and inertia effects, and
experimental results are treated in a very organized way.

H. Suzuki. “Solid Solution Hardening in Body-Centered Cubic
Alloys,” pp. 190-217. This chapter is very original in the sense that
most of the materials in the text are the author’s work. Nevertheless,
the author gives fair credits to other researchers’ papers. The author
uses a new statistical method by which he calculates the average ve-
locity of the motion of a kink overcoming a random distribution of
barriers caused by solute atoms. The statistics involve finding & solute
atoms in N total number of atoms entering the dislocation core and
finding possible motion of a kink. His theoretical prediction for lower
yield stresses of iron alloys is compared with Takeuchi’s experimental
results.

V. Gerold. “Precipitation Hardening,” pp. 218-260. For
shearable particles the author discusses the origins of the interactions
between dislocations and particles through chemical, elastical, atomic
ordering, and stacking fault considerations. However, our knowledge
about the subject is still vague. The theories predicting the macro-
scopic yield stress from the interactions mentioned previously are not
satisfactory when a number of dislocation-particle geometrical en-
countings are conceivable.

The Orowan process of the dislocation line tension for nonshearable
particles is treated reasonably well in the text. However, the author’s
treatment on the dispersion hardening due to Orowan loops contains
some ambiguities on the image stress, the average stress in the matrix
and that in the inclusions. The author should have read and cited as
references the celebrated papers of K. Tanaka and T. Mori, Acta.
Met., Vol. 18,1970, pp. 931-941 and of T. Mori and K. Tanaka, Acta.
Met., Vol. 21,1973, pp. 571-574. They correctly defined these quan-
tities and obtained them rigorously.

Recent progress in the temperature-dependent relaxation mech-
anism is also not properly mentioned in the text. The author should
have studied the review paper by L. M. Brown, Proceedings, 5th In-
ternational Conference Strength Metals Alloys, 1979, p. 1551.

S. J. Basinski and Z. S. Basinski. “Plastic Deformation and
Work Hardening,” pp. 261-362. According to Cottrell, this subject
was the first problem to be attempted by the dislocation theory of slip
and may well prove to be the last to be solved. The authors completely
agree with Cottrell and state that the reason lies, at least partly, in
the very large number of parameters which, even in the simplest case
of tensile deformation of a single crystal, include such variables as
crystal orientation and purity. Since many review articles representing
many points of view have been published over the years and the
available experimental evidence has been documented in reasonable
detail, the authors say, special consideration is given to areas where
relatively recent work has in some way changed the perspective. In
view of the extensive body of literature on plastic deformation, the
frame of reference established here is tensile deformation of pure f.c.c.
crystals, primarily Cu deformed in single glide. The article contains
surface effects, transmission electron microscopy of Ge foil and of

neutron irradiated Cu, latent hardening and quantitative secondary -

slip data, and thermal glide. Well-organized and substantial discus-
sions follow each subject. Only very few mathematical equations ap-.
pear in the whole text.

E. Smith. “Dislocations and Cracks,” pp. 363-448. This chapter
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by E. Smith could be an excellent textbook on fracture physics for last
year students in undergraduate or first year students in gradient
studies. The article is well written with an interdisciplinary approach
combining materials science and mechanics. Unfortunately, however,
a few important subjects (e.g., stress-intensity factors in anisotropic
materials, growing cracks in elastic-plastic materials) are ignored in
the text. Barnett and Asaro, Journal of Mechanics and Physics of
Solids, Vol. 20, 1972, pp. 353-366; for instance, used the dislocation
model to a slit-like elastic crack in anisotropic materials and found
that the stress-intensity factor is independent of the elastic moduli.
The article could be richer in contents if the author further introduced
the work on the growing crack by Wnuk, Proceedings, International
Conference on Dynamic Crack Propagation, Lehigh University, 1972,
pp. 273-280, Rice and Sorensen, Journal of Mechanics and Physics
of Solids, Vol. 26, 1976, pp. 163-186; Kfouri, Journal of Mechanics
and Physics of Solids, Vol. 27, 1979, pp. 135-150, among others.

Dislocations in Solids: Other Effects of Dislocations: Disclina-
tions. Vol. 5. Edited by F. R. N, Nabarro. North-Holland, New
York and The Netherlands. 1980. Pages viii—421. Price $78.

REVIEWED BY T. MURA®

This is the last of five volumes devoted to the behavior of disloca-
tions and their influence on the properties of solids. It contains seven
review papers which fall into two groups. The first group treats the
influence of ordinary translational dislocations and the second group
treats the theory and properties of rotational dislocations (disclina-
tions). The author, title of paper, and summary of contents of each
of these papers are listed as follows:

C. J. Humphreys. “Image of Dislocations,” pp. 1-56. This
chapter concentrates on the most important techniques for the
imaging of dislocations and in particular upon significant recent de-
velopments which have not yet been reviewed in other publications.
Early developments, up to 1964, have been covered in the book of
Amelinckx (The Direct Observation of Dislocations, Academic Press,
New York, 1964).

The article contains a simple quantitative physical explanation of
the method and the theory for describing a particular imaging tech-
nique, the theory and principles of electron propagaion in crystals,
the many-beam dynamical theory of electron diffraction, high-voltage
electron microscopy, X-ray for bulk specimens, and recent develop-
ments in field-iron and optical microscopy.

B. Mutaftschiev. “Crystal Growth and Dislocations,” pp.
57-126. Half of the chapter is devoted to the theory of crystal growth.
The second part of the chapter is limited to examples of growth
morphology by a dislocation mechanism. The third part deals with
the generation of dislocations during crystal growth.

Within a few months of the presentation of Frank’s theory (1949)
for the behavior during growth of flat faces containing dislocations,
the first experimental support appeared. L. J. Griffin (1950) found
systems of steps corresponding exactly to the prediction of the theory
by observation of the surface of natural beryl crystals by phase con-
trast optical microscopy. Now, however, the author says, some of the
conclusions or interpretations on the crystal growth through dislo-
cations obtained in the last decade are not as sure as they first ap-
peared. For example, the existence of spirals with a step-height much
larger than monomolecular shows that the nonsplitting of a step could
not be a proof for its elementary height.

R. Labusch and W. Schréter. “Electrical Properties of Dis-
locations in Semiconductors,” pp. 127-191. The occupation sta-
tistics and the calculation of the electrostatic potential around a

8 Professor, The Technological Institute, Department of Civil Engineering,
Northwestern University, Evanston, Il1. 60201.
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charged dislocation resulting in relations between the occupation
ration f (fraction of dislocation states occupied by electrons) and
temperature or between the Fermi level and f are outlined and some
important aspects in the application of these relations to experimental
results are discussed. The problem of deriving the carrier density and
f from Hall effect data is also discussed. Theoretical calculations of
the free-carrier mobility in deformed semiconductors are compared
with experiments.

F.R. N. Nabarro and A. T. Quintanilha. “Dislocations in Su-
perconductors,” pp. 192-242, In 1968, Kojima and Suzuki, con-
ducting tensile tests at a constant rate of strain on the Type I super-
conductor lead and on the Type II superconductor niobium at 4.2 K,
found that the flow stress increased when superconductivity was
destroyed by a magnetic field. The electron drag on the moving dis-
Jocations was absent in the superconducting state and restored by the
magnetic field.

The first part of this chapter discusses the change in the mobility
of ordinary dislocations of the crystal lattice of a metal when the metal
becomes superconducting.

The second part of this chapter is not very closely related to the first
part. It is concerned with the magnetization of a superconductor of
Type II, which occurs by the motion of a lattice of flux lines through
the crystal. During this process, the authors postulate, the dislocations
of the crystal lattice remain fixed, and act as moderatley effective
obstacles to the motion of the flux-line lattice. The nature and effect
of dislocations in the lattice of flux lines in a T'ype II superconductor
are analyzed in the last section.

M. Kléman. “The General Theory of Disclinations,” pp.
243-297. The concept of disclinations (rotational dislocations) has
recently found wide application in liquid crystals. Disclinations are
the topoligical concepts which help in a description of broken sym-
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metries of directional media (mesomorphic phases, surface crystals,
spin lattices, etc.).

The first part of the text is devoted for explanation on the topology
and geometry of disclinations. From this geometrical consideration,
one can say that disclinations act as dislocation sources and sinks.
Next, the energy of a disclination line in a nematic crystal is presented..
Singular solutions which minimze the energy, assuming that the so-
lutions are planar, show some geometries discussed in the first part
of the text. The last part of the article describes about disclinations
in cholesterics. Although the author writes another chapter on dis-
locations in the same volume, the article seems to need some intro-
duction for readers to explain how disclinations are related to the
physical properties of the directional media.

Y. Bouligand. “Defects and Textures in Liquid Crystals,” pp.
299-347. This chapter deals with the direct observation of defects
in mesmorphic media and their geometrical and topological aspects.
The lamellated structure of smectics, myelinics, and cholesterics with
a small helical pitch leads to textures which will be studied in terms
of the geometry of parallel surfaces. The textures of nematics and
weakly twisted cholesterics lead to problems of topology in director
fields. Readers will be impressed by many beautiful and interesting
figures and pictures.

M. Kléman. “Dislocations, Disclinations and Magnetism,” pp. .
349-402. The distribution of the magnetization around a dislocation
or disclination becomes important when one wants to correlate the
saturation law under large applied magnetic field to the defect content
of the medium. The article starts with the basic concepts in domain
theory and follows by the magnetoelasticity in terms of dislocation
and disclination theories, the singularities which appear in spin lat-
tices, and the interactions of lattice dislocations with the magnetic
structure of a ferromagnetic crystal.

Thermal Stresses in Severe Environments. Edited by D. P. H.
Hasselman and R. A. Heller. Plenum Press, New York and
London. 1980. Pages X-737. Price $75.

REVIEWED BY J. L. NOWINSKI’

The book contains the Proceedings of the International Conference
on Thermal Stresses in Materials and Structures held at Virginia
Polytechnic Institute and State University in Blacksburg, Va., in 1980.
The 33 contributions, most of them by the well-known experts in the
field, may roughly be divided into five groups. First of these (8 papers)
concerns thermal fields in specific materials such as polymeric and
crystalline solids from the atomistic viewpoint; body (cylinder) with
temperature-dependent properties; nonlinear composite propellants;
ceramic composites; semiabsorbing materials under intense radiation;
layered structures; heat-absorbing glasses; glass seals under thermal
shock. The second group (5 papers) involves problems of prediction
in thermoviscoplasticity; creep in jamb frames, as well as three vis-
coelastic analyses: of interaction effects in filled polymers, of allowable
strength under variable thermal loads, and of Monte-Carlo simulation,
Fracture and associated phenomena are the topics of the third group
of 8 papers that include: examination of elastic-brittle materials;
statistical fracture analysis; evaluation of failure probability in an-
isotropic structures; study of part through cracks subjected to thermal
shock; investigation of effects of spatial variation of thermal con-
ductivity; of crack healing; thermally induced stress singularities; and
of instability of parallel cracks and its influence on rock geothermal
energy. To the fourth group, involving dynamic and quasi-dynamic
phenomena, one can include 5 papers discussing: finite wave speeds;
transient and permanent thermal stresses; thermal shock of refrac-
tories; thermal shock resistance of ceramics; and, finally, thermoelastic
buckling of plates. The fifth group, rather diversified in contents,

7H. Fletcher Brown Professor Emeritus, Department of Mechanical and
Aerospace Engineering, University of Delaware, Newark, Del. 19711.
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takes care of 7 papers: a general survey of the present state of the field
and conceivable future trends; analysis of thermomechanical pa-
rameters due to fire; life predication of heat exchangers; thermal
stresses in linings of combustion engines; analysis of stresses in loft
densometer mounting lug assembly; propagation of propellant sep-
arations in rocket motor grains; and estimate of storage life of some
projectiles. The volume is highly recommended to those who want an
up-to-date look at the research in the field.

New Approaches to Nonlinear Problems in Dynamics. Edited
by Philip J. Holmes. SIAM, Philadelphia, Pa. 1980. Cloth. Pages
xii and 529. Price $42.50.

REVIEWED BY P.K. C. WANG?

Recently, the study of nonlinear dynamical systems, in particular,
bifurcation phenomena and systems with chaotic or complex behavior,
has become a highly active area of research in mathematics and var-
ious branches of science and engineering. Most of the engineering
studies are based on physical experimentation, stimulation, and
analysis using conventional approaches such as perturbation and
averaging methods. On the other hand, recent mathematical devel-
opments in this area make extensive use of concepts and results in
topology and differential geometry such as the theory of differentiable
manifolds which are unfamilar to most engineers. An exchange of
information, ideas, and viewpoints between the mathematicians and
engineeérs could be mutually beneficial and helpful in enriching the
research in this area. In this spirit, a conference under the title of this

8 Professor, Department of System Science, University of California, Los
Angeles, Calif. 90024.
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charged dislocation resulting in relations between the occupation
ration f (fraction of dislocation states occupied by electrons) and
temperature or between the Fermi level and f are outlined and some
important aspects in the application of these relations to experimental
results are discussed. The problem of deriving the carrier density and
f from Hall effect data is also discussed. Theoretical calculations of
the free-carrier mobility in deformed semiconductors are compared
with experiments.

F.R. N. Nabarro and A. T. Quintanilha. “Dislocations in Su-
perconductors,” pp. 192-242, In 1968, Kojima and Suzuki, con-
ducting tensile tests at a constant rate of strain on the Type I super-
conductor lead and on the Type II superconductor niobium at 4.2 K,
found that the flow stress increased when superconductivity was
destroyed by a magnetic field. The electron drag on the moving dis-
Jocations was absent in the superconducting state and restored by the
magnetic field.

The first part of this chapter discusses the change in the mobility
of ordinary dislocations of the crystal lattice of a metal when the metal
becomes superconducting.

The second part of this chapter is not very closely related to the first
part. It is concerned with the magnetization of a superconductor of
Type II, which occurs by the motion of a lattice of flux lines through
the crystal. During this process, the authors postulate, the dislocations
of the crystal lattice remain fixed, and act as moderatley effective
obstacles to the motion of the flux-line lattice. The nature and effect
of dislocations in the lattice of flux lines in a T'ype II superconductor
are analyzed in the last section.

M. Kléman. “The General Theory of Disclinations,” pp.
243-297. The concept of disclinations (rotational dislocations) has
recently found wide application in liquid crystals. Disclinations are
the topoligical concepts which help in a description of broken sym-
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metries of directional media (mesomorphic phases, surface crystals,
spin lattices, etc.).

The first part of the text is devoted for explanation on the topology
and geometry of disclinations. From this geometrical consideration,
one can say that disclinations act as dislocation sources and sinks.
Next, the energy of a disclination line in a nematic crystal is presented..
Singular solutions which minimze the energy, assuming that the so-
lutions are planar, show some geometries discussed in the first part
of the text. The last part of the article describes about disclinations
in cholesterics. Although the author writes another chapter on dis-
locations in the same volume, the article seems to need some intro-
duction for readers to explain how disclinations are related to the
physical properties of the directional media.

Y. Bouligand. “Defects and Textures in Liquid Crystals,” pp.
299-347. This chapter deals with the direct observation of defects
in mesmorphic media and their geometrical and topological aspects.
The lamellated structure of smectics, myelinics, and cholesterics with
a small helical pitch leads to textures which will be studied in terms
of the geometry of parallel surfaces. The textures of nematics and
weakly twisted cholesterics lead to problems of topology in director
fields. Readers will be impressed by many beautiful and interesting
figures and pictures.

M. Kléman. “Dislocations, Disclinations and Magnetism,” pp. .
349-402. The distribution of the magnetization around a dislocation
or disclination becomes important when one wants to correlate the
saturation law under large applied magnetic field to the defect content
of the medium. The article starts with the basic concepts in domain
theory and follows by the magnetoelasticity in terms of dislocation
and disclination theories, the singularities which appear in spin lat-
tices, and the interactions of lattice dislocations with the magnetic
structure of a ferromagnetic crystal.

Thermal Stresses in Severe Environments. Edited by D. P. H.
Hasselman and R. A. Heller. Plenum Press, New York and
London. 1980. Pages X-737. Price $75.

REVIEWED BY J. L. NOWINSKI’

The book contains the Proceedings of the International Conference
on Thermal Stresses in Materials and Structures held at Virginia
Polytechnic Institute and State University in Blacksburg, Va., in 1980.
The 33 contributions, most of them by the well-known experts in the
field, may roughly be divided into five groups. First of these (8 papers)
concerns thermal fields in specific materials such as polymeric and
crystalline solids from the atomistic viewpoint; body (cylinder) with
temperature-dependent properties; nonlinear composite propellants;
ceramic composites; semiabsorbing materials under intense radiation;
layered structures; heat-absorbing glasses; glass seals under thermal
shock. The second group (5 papers) involves problems of prediction
in thermoviscoplasticity; creep in jamb frames, as well as three vis-
coelastic analyses: of interaction effects in filled polymers, of allowable
strength under variable thermal loads, and of Monte-Carlo simulation,
Fracture and associated phenomena are the topics of the third group
of 8 papers that include: examination of elastic-brittle materials;
statistical fracture analysis; evaluation of failure probability in an-
isotropic structures; study of part through cracks subjected to thermal
shock; investigation of effects of spatial variation of thermal con-
ductivity; of crack healing; thermally induced stress singularities; and
of instability of parallel cracks and its influence on rock geothermal
energy. To the fourth group, involving dynamic and quasi-dynamic
phenomena, one can include 5 papers discussing: finite wave speeds;
transient and permanent thermal stresses; thermal shock of refrac-
tories; thermal shock resistance of ceramics; and, finally, thermoelastic
buckling of plates. The fifth group, rather diversified in contents,
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Aerospace Engineering, University of Delaware, Newark, Del. 19711.
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takes care of 7 papers: a general survey of the present state of the field
and conceivable future trends; analysis of thermomechanical pa-
rameters due to fire; life predication of heat exchangers; thermal
stresses in linings of combustion engines; analysis of stresses in loft
densometer mounting lug assembly; propagation of propellant sep-
arations in rocket motor grains; and estimate of storage life of some
projectiles. The volume is highly recommended to those who want an
up-to-date look at the research in the field.

New Approaches to Nonlinear Problems in Dynamics. Edited
by Philip J. Holmes. SIAM, Philadelphia, Pa. 1980. Cloth. Pages
xii and 529. Price $42.50.

REVIEWED BY P.K. C. WANG?

Recently, the study of nonlinear dynamical systems, in particular,
bifurcation phenomena and systems with chaotic or complex behavior,
has become a highly active area of research in mathematics and var-
ious branches of science and engineering. Most of the engineering
studies are based on physical experimentation, stimulation, and
analysis using conventional approaches such as perturbation and
averaging methods. On the other hand, recent mathematical devel-
opments in this area make extensive use of concepts and results in
topology and differential geometry such as the theory of differentiable
manifolds which are unfamilar to most engineers. An exchange of
information, ideas, and viewpoints between the mathematicians and
engineeérs could be mutually beneficial and helpful in enriching the
research in this area. In this spirit, a conference under the title of this
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ERRATUM

Erratum for “On the Stokes Flow of Viscous Fluids Through Corru-
gated Pipes,” by N. Phan-Thien, and published in the December,
1980, issue of the ASME JOURNAL OF APPLIED MECHANICS, Vol.
47, pp. 961-963.

Delete the sentence containing the equation dy/dr = 0 in the In-
troduction, Although the boundary condition dy/or = 0, as used by
Manton [6]' and other authors, differs on the surface from the
boundary condition (3) reported in the original Note in some terms
of first and second-order, both are correct for axisymmetric flows and
lead to the same expression for the pressure drop enhancement.

The author regrets any inconvenience caused by the implication
that the boundary conditions stated by Manton [8] are incorrect.

1 Number in square bracket refers to the reference listed in the original
Note.
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